Skip to yearly menu bar Skip to main content


Search All 2024 Events
 

13 Results

<<   <   Page 1 of 2   >   >>
Poster
Wed 11:00 Physics-Informed Variational State-Space Gaussian Processes
Oliver Hamelijnck · Arno Solin · Theodoros Damoulas
Poster
Fri 16:30 Numerically Stable Sparse Gaussian Processes via Minimum Separation using Cover Trees
Alexander Terenin · David Burt · Artem Artemev · Seth Flaxman · Mark van der Wilk · Carl Edward Rasmussen · Hong Ge
Workshop
Sun 8:30 Invited talk: data-driven vs inductive bias-driven methods in machine learning and the physical sciences
Lukas Heinrich
Workshop
FEABench: Evaluating Language Models on Real World Physics Reasoning Ability
Nayantara Mudur · Hao Cui · Subhashini Venugopalan · Paul Raccuglia · Michael Brenner · Peter Norgaard
Workshop
A Probabilistic Generative Method for Safe Physical System Control Problems
Peiyan Hu · Xiaowei Qian · Wenhao Deng · Rui Wang · Haodong Feng · Ruiqi Feng · Tao Zhang · Long Wei · Yue Wang · Zhi-Ming Ma · Tailin Wu
Workshop
Sun 9:00 Panel: data-driven vs inductive bias-driven methods in machine learning and the physical sciences
Animashree Anandkumar · Naoya Takeishi · Johannes Brandstetter
Poster
Thu 16:30 Mutual Information Estimation via Normalizing Flows
Ivan Butakov · Aleksandr Tolmachev · Sofia Malanchuk · Anna Neopryatnaya · Alexey Frolov
Workshop
The Well: a Large-Scale Collection of Diverse Physics Simulations for Machine Learning
Ruben Ohana · Michael McCabe · Lucas Meyer · Rudy Morel · Fruzsina Agocs · Miguel Beneitez · Marsha Berger · Blakesly Burkhart · Stuart Dalziel · Drummond Fielding · Daniel Fortunato · Jared Goldberg · Keiya Hirashima · Yan-Fei Jiang · Rich Kerswell · Suryanarayana Maddu · Jonah Miller · Payel Mukhopadhyay · Stefan Nixon · Jeff Shen · Romain Watteaux · Bruno Régaldo-Saint Blancard · Liam Parker · Miles Cranmer · Shirley Ho
Competition
Sat 13:50 #1st Place- MMGP: a Mesh Morphing Gaussian Process-based machine learning method for regression of physical problems under non-parameterized geometrical variability
Fabien Casenave
Workshop
Convergence Guarantees for Neural Network-Based Hamilton–Jacobi Reachability
William Hofgard
Workshop
Convolutional Hierarchical Deep Learning Neural Networks-Tensor Decomposition (C-HiDeNN-TD): a scalable surrogate modeling approach for large-scale physical systems
Jiachen Guo · Chanwook Park · Xiaoyu Xie · Zhongsheng Sang · Gregory J. Wagner · Kam Liu
Poster
Wed 16:30 Exploring Jacobian Inexactness in Second-Order Methods for Variational Inequalities: Lower Bounds, Optimal Algorithms and Quasi-Newton Approximations
Artem Agafonov · Petr Ostroukhov · Roman Mozhaev · Konstantin Yakovlev · Eduard Gorbunov · Martin Takac · Alexander Gasnikov · Dmitry Kamzolov