Workshop
|
|
Improving out-of-distribution generalization by mimicking the human visual diet.
Spandan Madan · You Li · Mengmi Zhang · Hanspeter Pfister · Gabriel Kreiman
|
|
Poster
|
Fri 11:00
|
TSGM: A Flexible Framework for Generative Modeling of Synthetic Time Series
Alexander Nikitin · Letizia Iannucci · Samuel Kaski
|
|
Poster
|
Fri 16:30
|
Predicting Label Distribution from Ternary Labels
Yunan Lu · Xiuyi Jia
|
|
Poster
|
Fri 11:00
|
FedAvP: Augment Local Data via Shared Policy in Federated Learning
Minui Hong · Junhyeog Yun · Insu Jeon · Gunhee Kim
|
|
Workshop
|
|
Matchmaker: Self-Improving Compositional LLM Programs for Table Schema Matching
Nabeel Seedat · Mihaela van der Schaar
|
|
Poster
|
Thu 11:00
|
EEVR: A Dataset of Paired Physiological Signals and Textual Descriptions for Joint Emotion Representation Learning
Pragya Singh · Ritvik Budhiraja · Ankush Gupta · Anshul Goswami · Mohan Kumar · Pushpendra Singh
|
|
Poster
|
Thu 11:00
|
Provable and Efficient Dataset Distillation for Kernel Ridge Regression
Yilan Chen · Wei Huang · Lily Weng
|
|
Poster
|
Thu 11:00
|
Offline Behavior Distillation
Shiye Lei · Sen Zhang · Dacheng Tao
|
|
Poster
|
Thu 16:30
|
Are Large-scale Soft Labels Necessary for Large-scale Dataset Distillation?
Lingao Xiao · Yang He
|
|
Poster
|
|
SelectIT: Selective Instruction Tuning for LLMs via Uncertainty-Aware Self-Reflection
Liangxin Liu · Xuebo Liu · Derek Wong · Dongfang Li · Ziyi Wang · Baotian Hu · Min Zhang
|
|
Session
|
Tue 9:00
|
Pushing the Boundaries of AI Art: an Immodest Proposal
Eugenia Iofinova
|
|
Poster
|
Fri 11:00
|
TSDS: Data Selection for Task-Specific Model Finetuning
Zifan Liu · Amin Karbasi · Theodoros Rekatsinas
|
|