Affinity Event
|
|
Heart Disease Prediction: A Comparative Study of Optimizers Performance in Deep Neural Networks.
chisom chibuike · Adeyinka Ogunsanya
|
|
Workshop
|
|
CubicML: Automated ML for Large ML Systems Co-design with ML Prediction of Performance
WEI WEN · Quanyu Zhu · Weiwei Chu · Wen-Yen Chen · Jiyan Yang
|
|
Workshop
|
Sun 16:30
|
Is Expressivity Essential for the Predictive Performance of Graph Neural Networks?
Fabian Jogl · Pascal Welke · Thomas Gärtner
|
|
Workshop
|
|
Accelerated Stability in Performative Prediction
Pedram Khorsandi · Rushil Gupta · Mehrnaz Mofakhami · Simon Lacoste-Julien · Gauthier Gidel
|
|
Workshop
|
|
Auxiliary objectives improve generalization performance but reduce model specification for low-data neuroimaging-based brain age prediction
Donghyun Kim · Eloy Geenjaar · Vince Calhoun
|
|
Poster
|
Thu 16:30
|
Stochastic Optimization Schemes for Performative Prediction with Nonconvex Loss
Qiang LI · Hoi-To Wai
|
|
Poster
|
Fri 16:30
|
Scalable Early Childhood Reading Performance Prediction
Zhongkai Shangguan · Zanming Huang · Eshed Ohn-Bar · Ola Ozernov-Palchik · Derek Kosty · Michael Stoolmiller · Hank Fien
|
|
Poster
|
Fri 16:30
|
Distributionally Robust Performative Prediction
Songkai Xue · Yuekai Sun
|
|
Poster
|
Wed 16:30
|
Predicting the Performance of Foundation Models via Agreement-on-the-Line
Rahul Saxena · Taeyoun Kim · Aman Mehra · Christina Baek · J. Zico Kolter · Aditi Raghunathan
|
|
Poster
|
Fri 11:00
|
Observational Scaling Laws and the Predictability of Langauge Model Performance
Yangjun Ruan · Chris Maddison · Tatsunori Hashimoto
|
|
Workshop
|
|
Pretraining Frequency Predicts Compositional Generalization of CLIP on Real-World Tasks
Thaddäus Wiedemer · Yash Sharma · Ameya Prabhu · Matthias Bethge · Wieland Brendel
|
|