Skip to yearly menu bar Skip to main content


Search All 2017 Events
 

33 Results

<<   <   Page 1 of 3   >   >>
Poster
Tue 18:30 Speeding Up Latent Variable Gaussian Graphical Model Estimation via Nonconvex Optimization
Pan Xu · Jian Ma · Quanquan Gu
Poster
Mon 18:30 Scalable Model Selection for Belief Networks
Zhao Song · Yusuke Muraoka · Ryohei Fujimaki · Lawrence Carin
Workshop
Fri 14:15 Sayantan Dasgupta (Michigan) on Multi-label Learning for Large Text Corpora using Latent Variable Model
Sayantan Dasgupta
Poster
Wed 18:30 An Empirical Bayes Approach to Optimizing Machine Learning Algorithms
James McInerney
Poster
Mon 18:30 Neural Variational Inference and Learning in Undirected Graphical Models
Volodymyr Kuleshov · Stefano Ermon
Poster
Wed 18:30 Excess Risk Bounds for the Bayes Risk using Variational Inference in Latent Gaussian Models
Rishit Sheth · Roni Khardon
Poster
Mon 18:30 Neural Expectation Maximization
Klaus Greff · Sjoerd van Steenkiste · Jürgen Schmidhuber
Poster
Mon 18:30 Gaussian process based nonlinear latent structure discovery in multivariate spike train data
Anqi Wu · Nicholas Roy · Stephen Keeley · Jonathan Pillow
Poster
Wed 18:30 Causal Effect Inference with Deep Latent-Variable Models
Christos Louizos · Uri Shalit · Joris Mooij · David Sontag · Richard Zemel · Max Welling
Poster
Mon 18:30 Collapsed variational Bayes for Markov jump processes
Boqian Zhang · Jiangwei Pan · Vinayak Rao
Poster
Mon 18:30 A Probabilistic Framework for Nonlinearities in Stochastic Neural Networks
Qinliang Su · xuejun Liao · Lawrence Carin
Poster
Tue 18:30 Efficient Modeling of Latent Information in Supervised Learning using Gaussian Processes
Zhenwen Dai · Mauricio Álvarez · Neil Lawrence