Poster
|
Tue 18:30
|
Speeding Up Latent Variable Gaussian Graphical Model Estimation via Nonconvex Optimization
Pan Xu · Jian Ma · Quanquan Gu
|
|
Poster
|
Mon 18:30
|
Scalable Model Selection for Belief Networks
Zhao Song · Yusuke Muraoka · Ryohei Fujimaki · Lawrence Carin
|
|
Workshop
|
Fri 14:15
|
Sayantan Dasgupta (Michigan) on Multi-label Learning for Large Text Corpora using Latent Variable Model
Sayantan Dasgupta
|
|
Poster
|
Wed 18:30
|
An Empirical Bayes Approach to Optimizing Machine Learning Algorithms
James McInerney
|
|
Poster
|
Mon 18:30
|
Neural Variational Inference and Learning in Undirected Graphical Models
Volodymyr Kuleshov · Stefano Ermon
|
|
Poster
|
Wed 18:30
|
Excess Risk Bounds for the Bayes Risk using Variational Inference in Latent Gaussian Models
Rishit Sheth · Roni Khardon
|
|
Poster
|
Mon 18:30
|
Neural Expectation Maximization
Klaus Greff · Sjoerd van Steenkiste · Jürgen Schmidhuber
|
|
Poster
|
Mon 18:30
|
Gaussian process based nonlinear latent structure discovery in multivariate spike train data
Anqi Wu · Nicholas Roy · Stephen Keeley · Jonathan Pillow
|
|
Poster
|
Wed 18:30
|
Causal Effect Inference with Deep Latent-Variable Models
Christos Louizos · Uri Shalit · Joris Mooij · David Sontag · Richard Zemel · Max Welling
|
|
Poster
|
Mon 18:30
|
Collapsed variational Bayes for Markov jump processes
Boqian Zhang · Jiangwei Pan · Vinayak Rao
|
|
Poster
|
Mon 18:30
|
A Probabilistic Framework for Nonlinearities in Stochastic Neural Networks
Qinliang Su · xuejun Liao · Lawrence Carin
|
|
Poster
|
Tue 18:30
|
Efficient Modeling of Latent Information in Supervised Learning using Gaussian Processes
Zhenwen Dai · Mauricio Álvarez · Neil Lawrence
|
|