Fault-Tolerant Federated Reinforcement Learning with Theoretical Guarantee
Xiaofeng Fan · Yining Ma · Zhongxiang Dai · Wei Jing · Cheston Tan · Bryan Kian Hsiang Low
The growing literature of Federated Learning (FL) has recently inspired Federated Reinforcement Learning (FRL) to encourage multiple agents to federatively build a better decision-making policy without sharing raw trajectories. Despite its promising applications, existing works on FRL fail to I) provide theoretical analysis on its convergence, and II) account for random system failures and adversarial attacks. Towards this end, we propose the first FRL framework the convergence of which is guaranteed and tolerant to less than half of the participating agents being random system failures or adversarial attackers. We prove that the sample efficiency of the proposed framework is guaranteed to improve with the number of agents and is able to account for such potential failures or attacks. All theoretical results are empirically verified on various RL benchmark tasks.
Scaling Neural Tangent Kernels via Sketching and Random Features
Amir Zandieh · Insu Han · Haim Avron · Neta Shoham · Chaewon Kim · Jinwoo Shin
The Neural Tangent Kernel (NTK) characterizes the behavior of infinitely-wide neural networks trained under least squares loss by gradient descent. Recent works also report that NTK regression can outperform finitely-wide neural networks trained on small-scale datasets. However, the computational complexity of kernel methods has limited its use in large-scale learning tasks. To accelerate learning with NTK, we design a near input-sparsity time approximation algorithm for NTK, by sketching the polynomial expansions of arc-cosine kernels: our sketch for the convolutional counterpart of NTK (CNTK) can transform any image using a linear runtime in the number of pixels. Furthermore, we prove a spectral approximation guarantee for the NTK matrix, by combining random features (based on leverage score sampling) of the arc-cosine kernels with a sketching algorithm. We benchmark our methods on various large-scale regression and classification tasks and show that a linear regressor trained on our CNTK features matches the accuracy of exact CNTK on CIFAR-10 dataset while achieving 150x speedup.
On the Value of Interaction and Function Approximation in Imitation Learning
Nived Rajaraman · Yanjun Han · Lin Yang · Jingbo Liu · Jiantao Jiao · Kannan Ramchandran
We study the statistical guarantees for the Imitation Learning (IL) problem in episodic MDPs.Rajaraman et al. (2020) show an information theoretic lower bound that in the worst case, a learner which can even actively query the expert policy suffers from a suboptimality growing quadratically in the length of the horizon, $H$. We study imitation learning under the $\mu$-recoverability assumption of Ross et al. (2011) which assumes that the difference in the $Q$-value under the expert policy across different actions in a state do not deviate beyond $\mu$ from the maximum. We show that the reduction proposed by Ross et al. (2010) is statistically optimal: the resulting algorithm upon interacting with the MDP for $N$ episodes results in a suboptimality bound of $\widetilde{\mathcal{O}} \left( \mu |\mathcal{S}| H / N \right)$ which we show is optimal up to log-factors. In contrast, we show that any algorithm which does not interact with the MDP and uses an offline dataset of $N$ expert trajectories must incur suboptimality growing as $\gtrsim |\mathcal{S}| H^2/N$ even under the $\mu$-recoverability assumption. This establishes a clear and provable separation of the minimax rates between the active setting and the no-interaction setting. We also study IL with linear function approximation. When the expert plays actions according to a linear classifier of known state-action features, we use the reduction to multi-class classification to show that with high probability, the suboptimality of behavior cloning is $\widetilde{O}(dH^2/N)$ given $N$ rollouts from the optimal policy. This is optimal up to log-factors but can be improved to $\widetilde{O}(dH/N)$ if we have a linear expert with parameter-sharing across time steps. In contrast, when the MDP transition structure is known to the learner such as in the case of simulators, we demonstrate fundamental differences compared to the tabular setting in terms of the performance of an optimal algorithm, Mimic-MD (Rajaraman et al. (2020)) when extended to the function approximation setting. Here, we introduce a new problem called confidence set linear classification, that can be used to construct sample-efficient IL algorithms.
A Consciousness-Inspired Planning Agent for Model-Based Reinforcement Learning
Mingde Zhao · Zhen Liu · Sitao Luan · Shuyuan Zhang · Doina Precup · Yoshua Bengio
We present an end-to-end, model-based deep reinforcement learning agent which dynamically attends to relevant parts of its state during planning. The agent uses a bottleneck mechanism over a set-based representation to force the number of entities to which the agent attends at each planning step to be small. In experiments, we investigate the bottleneck mechanism with several sets of customized environments featuring different challenges. We consistently observe that the design allows the planning agents to generalize their learned task-solving abilities in compatible unseen environments by attending to the relevant objects, leading to better out-of-distribution generalization performance.
TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classification
Zhuchen Shao · Hao Bian · Yang Chen · Yifeng Wang · Jian Zhang · Xiangyang Ji · yongbing zhang
Multiple instance learning (MIL) is a powerful tool to solve the weakly supervised classification in whole slide image (WSI) based pathology diagnosis. However, the current MIL methods are usually based on independent and identical distribution hypothesis, thus neglect the correlation among different instances. To address this problem, we proposed a new framework, called correlated MIL, and provided a proof for convergence. Based on this framework, we devised a Transformer based MIL (TransMIL), which explored both morphological and spatial information. The proposed TransMIL can effectively deal with unbalanced/balanced and binary/multiple classification with great visualization and interpretability. We conducted various experiments for three different computational pathology problems and achieved better performance and faster convergence compared with state-of-the-art methods. The test AUC for the binary tumor classification can be up to 93.09% over CAMELYON16 dataset. And the AUC over the cancer subtypes classification can be up to 96.03% and 98.82% over TCGA-NSCLC dataset and TCGA-RCC dataset, respectively. Implementation is available at: https://github.com/szc19990412/TransMIL.
Reliable and Trustworthy Machine Learning for Health Using Dataset Shift Detection
Chunjong Park · Anas Awadalla · Tadayoshi Kohno · Shwetak Patel
Unpredictable ML model behavior on unseen data, especially in the health domain, raises serious concerns about its safety as repercussions for mistakes can be fatal. In this paper, we explore the feasibility of using state-of-the-art out-of-distribution detectors for reliable and trustworthy diagnostic predictions. We select publicly available deep learning models relating to various health conditions (e.g., skin cancer, lung sound, and Parkinson's disease) using various input data types (e.g., image, audio, and motion data). We demonstrate that these models show unreasonable predictions on out-of-distribution datasets. We show that Mahalanobis distance- and Gram matrices-based out-of-distribution detection methods are able to detect out-of-distribution data with high accuracy for the health models that operate on different modalities. We then translate the out-of-distribution score into a human interpretable \textsc{confidence score} to investigate its effect on the users' interaction with health ML applications. Our user study shows that the \textsc{confidence score} helped the participants only trust the results with a high score to make a medical decision and disregard results with a low score. Through this work, we demonstrate that dataset shift is a critical piece of information for high-stake ML applications, such as medical diagnosis and healthcare, to provide reliable and trustworthy predictions to the users.
ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees
Kuan-Lin Chen · Ching-Hua Lee · Harinath Garudadri · Bhaskar D Rao
Models recently used in the literature proving residual networks (ResNets) are better than linear predictors are actually different from standard ResNets that have been widely used in computer vision. In addition to the assumptions such as scalar-valued output or single residual block, the models fundamentally considered in the literature have no nonlinearities at the final residual representation that feeds into the final affine layer. To codify such a difference in nonlinearities and reveal a linear estimation property, we define ResNEsts, i.e., Residual Nonlinear Estimators, by simply dropping nonlinearities at the last residual representation from standard ResNets. We show that wide ResNEsts with bottleneck blocks can always guarantee a very desirable training property that standard ResNets aim to achieve, i.e., adding more blocks does not decrease performance given the same set of basis elements. To prove that, we first recognize ResNEsts are basis function models that are limited by a coupling problem in basis learning and linear prediction. Then, to decouple prediction weights from basis learning, we construct a special architecture termed augmented ResNEst (A-ResNEst) that always guarantees no worse performance with the addition of a block. As a result, such an A-ResNEst establishes empirical risk lower bounds for a ResNEst using corresponding bases. Our results demonstrate ResNEsts indeed have a problem of diminishing feature reuse; however, it can be avoided by sufficiently expanding or widening the input space, leading to the above-mentioned desirable property. Inspired by the densely connected networks (DenseNets) that have been shown to outperform ResNets, we also propose a corresponding new model called Densely connected Nonlinear Estimator (DenseNEst). We show that any DenseNEst can be represented as a wide ResNEst with bottleneck blocks. Unlike ResNEsts, DenseNEsts exhibit the desirable property without any special architectural re-design.
Posterior Collapse and Latent Variable Non-identifiability
Yixin Wang · David Blei · John Cunningham
Variational autoencoders model high-dimensional data by positinglow-dimensional latent variables that are mapped through a flexibledistribution parametrized by a neural network. Unfortunately,variational autoencoders often suffer from posterior collapse: theposterior of the latent variables is equal to its prior, rendering thevariational autoencoder useless as a means to produce meaningfulrepresentations. Existing approaches to posterior collapse oftenattribute it to the use of neural networks or optimization issues dueto variational approximation. In this paper, we consider posteriorcollapse as a problem of latent variable non-identifiability. We provethat the posterior collapses if and only if the latent variables arenon-identifiable in the generative model. This fact implies thatposterior collapse is not a phenomenon specific to the use of flexibledistributions or approximate inference. Rather, it can occur inclassical probabilistic models even with exact inference, which wealso demonstrate. Based on these results, we propose a class oflatent-identifiable variational autoencoders, deep generative modelswhich enforce identifiability without sacrificing flexibility. Thismodel class resolves the problem of latent variablenon-identifiability by leveraging bijective Brenier maps andparameterizing them with input convex neural networks, without specialvariational inference objectives or optimization tricks. Acrosssynthetic and real datasets, latent-identifiable variationalautoencoders outperform existing methods in mitigating posteriorcollapse and providing meaningful representations of the data.
Neural Active Learning with Performance Guarantees
Zhilei Wang · Pranjal Awasthi · Christoph Dann · Ayush Sekhari · Claudio Gentile
We investigate the problem of active learning in the streaming setting in non-parametric regimes, where the labels are stochastically generated from a class of functions on which we make no assumptions whatsoever. We rely on recently proposed Neural Tangent Kernel (NTK) approximation tools to construct a suitable neural embedding that determines the feature space the algorithm operates on and the learned model computed atop. Since the shape of the label requesting threshold is tightly related to the complexity of the function to be learned, which is a-priori unknown, we also derive a version of the algorithm which is agnostic to any prior knowledge. This algorithm relies on a regret balancing scheme to solve the resulting online model selection problem, and is computationally efficient. We prove joint guarantees on the cumulative regret and number of requested labels which depend on the complexity of the labeling function at hand. In the linear case, these guarantees recover known minimax results of the generalization error as a function of the label complexity in a standard statistical learning setting.
Variance-Aware Off-Policy Evaluation with Linear Function Approximation
Yifei Min · Tianhao Wang · Dongruo Zhou · Quanquan Gu
We study the off-policy evaluation (OPE) problem in reinforcement learning with linear function approximation, which aims to estimate the value function of a target policy based on the offline data collected by a behavior policy. We propose to incorporate the variance information of the value function to improve the sample efficiency of OPE. More specifically, for time-inhomogeneous episodic linear Markov decision processes (MDPs), we propose an algorithm, \texttt{VA-OPE}, which uses the estimated variance of the value function to reweight the Bellman residual in Fitted Q-Iteration. We show that our algorithm achieves a tighter error bound than the best-known result. We also provide a fine-grained characterization of the distribution shift between the behavior policy and the target policy. Extensive numerical experiments corroborate our theory.
SADGA: Structure-Aware Dual Graph Aggregation Network for Text-to-SQL
Ruichu Cai · Jinjie Yuan · Boyan Xu · Zhifeng Hao
The Text-to-SQL task, aiming to translate the natural language of the questions into SQL queries, has drawn much attention recently. One of the most challenging problems of Text-to-SQL is how to generalize the trained model to the unseen database schemas, also known as the cross-domain Text-to-SQL task. The key lies in the generalizability of (i) the encoding method to model the question and the database schema and (ii) the question-schema linking method to learn the mapping between words in the question and tables/columns in the database schema. Focusing on the above two key issues, we propose a \emph{Structure-Aware Dual Graph Aggregation Network} (SADGA) for cross-domain Text-to-SQL. In SADGA, we adopt the graph structure to provide a unified encoding model for both the natural language question and database schema. Based on the proposed unified modeling, we further devise a structure-aware aggregation method to learn the mapping between the question-graph and schema-graph. The structure-aware aggregation method is featured with \emph{Global Graph Linking}, \emph{Local Graph Linking} and \emph{Dual-Graph Aggregation Mechanism}. We not only study the performance of our proposal empirically but also achieved 3rd place on the challenging Text-to-SQL benchmark Spider at the time of writing.
Multiple Descent: Design Your Own Generalization Curve
Lin Chen · Yifei Min · Mikhail Belkin · Amin Karbasi
This paper explores the generalization loss of linear regression in variably parameterized families of models, both under-parameterized and over-parameterized. We show that the generalization curve can have an arbitrary number of peaks, and moreover, the locations of those peaks can be explicitly controlled. Our results highlight the fact that both the classical U-shaped generalization curve and the recently observed double descent curve are not intrinsic properties of the model family. Instead, their emergence is due to the interaction between the properties of the data and the inductive biases of learning algorithms.
Graph Neural Networks with Adaptive Residual
Xiaorui Liu · Jiayuan Ding · Wei Jin · Han Xu · Yao Ma · Zitao Liu · Jiliang Tang
Graph neural networks (GNNs) have shown the power in graph representation learning for numerous tasks. In this work, we discover an interesting phenomenon that although residual connections in the message passing of GNNs help improve the performance, they immensely amplify GNNs' vulnerability against abnormal node features. This is undesirable because in real-world applications, node features in graphs could often be abnormal such as being naturally noisy or adversarially manipulated. We analyze possible reasons to understand this phenomenon and aim to design GNNs with stronger resilience to abnormal features. Our understandings motivate us to propose and derive a simple, efficient, interpretable, and adaptive message passing scheme, leading to a novel GNN with Adaptive Residual, AirGNN. Extensive experiments under various abnormal feature scenarios demonstrate the effectiveness of the proposed algorithm.
Quality diversity (QD) is a growing branch of stochastic optimization research that studies the problem of generating an archive of solutions that maximize a given objective function but are also diverse with respect to a set of specified measure functions. However, even when these functions are differentiable, QD algorithms treat them as "black boxes", ignoring gradient information. We present the differentiable quality diversity (DQD) problem, a special case of QD, where both the objective and measure functions are first order differentiable. We then present MAP-Elites via a Gradient Arborescence (MEGA), a DQD algorithm that leverages gradient information to efficiently explore the joint range of the objective and measure functions. Results in two QD benchmark domains and in searching the latent space of a StyleGAN show that MEGA significantly outperforms state-of-the-art QD algorithms, highlighting DQD's promise for efficient quality diversity optimization when gradient information is available. Source code is available at https://github.com/icaros-usc/dqd.
Efficient Mirror Descent Ascent Methods for Nonsmooth Minimax Problems
Feihu Huang · Xidong Wu · Heng Huang
In the paper, we propose a class of efficient mirror descent ascent methods to solve the nonsmooth nonconvex-strongly-concave minimax problems by using dynamic mirror functions, and introduce a convergence analysis framework to conduct rigorous theoretical analysis for our mirror descent ascent methods. For our stochastic algorithms, we first prove that the mini-batch stochastic mirror descent ascent (SMDA) method obtains a gradient complexity of $O(\kappa^3\epsilon^{-4})$ for finding an $\epsilon$-stationary point, where $\kappa$ denotes the condition number. Further, we propose an accelerated stochastic mirror descent ascent (VR-SMDA) method based on the variance reduced technique. We prove that our VR-SMDA method achieves a lower gradient complexity of $O(\kappa^3\epsilon^{-3})$. For our deterministic algorithm, we prove that our deterministic mirror descent ascent (MDA) achieves a lower gradient complexity of $O(\sqrt{\kappa}\epsilon^{-2})$ under mild conditions, which matches the best known complexity in solving smooth nonconvex-strongly-concave minimax optimization. We conduct the experiments on fair classifier and robust neural network training tasks to demonstrate the efficiency of our new algorithms.
CO-PILOT: COllaborative Planning and reInforcement Learning On sub-Task curriculum
Shuang Ao · Tianyi Zhou · Guodong Long · Qinghua Lu · Liming Zhu · Jing Jiang
Goal-conditioned reinforcement learning (RL) usually suffers from sparse reward and inefficient exploration in long-horizon tasks. Planning can find the shortest path to a distant goal that provides dense reward/guidance but is inaccurate without a precise environment model. We show that RL and planning can collaboratively learn from each other to overcome their own drawbacks. In ''CO-PILOT'', a learnable path-planner and an RL agent produce dense feedback to train each other on a curriculum of tree-structured sub-tasks. Firstly, the planner recursively decomposes a long-horizon task to a tree of sub-tasks in a top-down manner, whose layers construct coarse-to-fine sub-task sequences as plans to complete the original task. The planning policy is trained to minimize the RL agent's cost of completing the sequence in each layer from top to bottom layers, which gradually increases the sub-tasks and thus forms an easy-to-hard curriculum for the planner. Next, a bottom-up traversal of the tree trains the RL agent from easier sub-tasks with denser rewards on bottom layers to harder ones on top layers and collects its cost on each sub-task train the planner in the next episode. CO-PILOT repeats this mutual training for multiple episodes before switching to a new task, so the RL agent and planner are fully optimized to facilitate each other's training. We compare CO-PILOT with RL (SAC, HER, PPO), planning (RRT*, NEXT, SGT), and their combination (SoRB) on navigation and continuous control tasks. CO-PILOT significantly improves the success rate and sample efficiency.
Diversity Enhanced Active Learning with Strictly Proper Scoring Rules
Wei Tan · Lan Du · Wray Buntine
We study acquisition functions for active learning (AL) for text classification. The Expected Loss Reduction (ELR) method focuses on a Bayesian estimate of the reduction in classification error, recently updated with Mean Objective Cost of Uncertainty (MOCU). We convert the ELR framework to estimate the increase in (strictly proper) scores like log probability or negative mean square error, which we call Bayesian Estimate of Mean Proper Scores (BEMPS). We also prove convergence results borrowing techniques used with MOCU. In order to allow better experimentation with the new acquisition functions, we develop a complementary batch AL algorithm, which encourages diversity in the vector of expected changes in scores for unlabelled data. To allow high performance text classifiers, we combine ensembling and dynamic validation set construction on pretrained language models. Extensive experimental evaluation then explores how these different acquisition functions perform. The results show that the use of mean square error and log probability with BEMPS yields robust acquisition functions, which consistently outperform the others tested.
We develop an algorithm to address unsupervised domain adaptation (UDA) in continual learning (CL) settings. The goal is to update a model continually to learn distributional shifts across sequentially arriving tasks with unlabeled data while retaining the knowledge about the past learned tasks. Existing UDA algorithms address the challenge of domain shift, but they require simultaneous access to the datasets of the source and the target domains. On the other hand, existing works on CL can handle tasks with labeled data. Our solution is based on consolidating the learned internal distribution for improved model generalization on new domains and benefitting from experience replay to overcome catastrophic forgetting.
Counterbalancing Learning and Strategic Incentives in Allocation Markets
Jamie Kang · Faidra Monachou · Moran Koren · Itai Ashlagi
Motivated by the high discard rate of donated organs in the United States, we study an allocation problem in the presence of learning and strategic incentives. We consider a setting where a benevolent social planner decides whether and how to allocate a single indivisible object to a queue of strategic agents. The object has a common true quality, good or bad, which is ex-ante unknown to everyone. Each agent holds an informative, yet noisy, private signal about the quality. To make a correct allocation decision the planner attempts to learn the object quality by truthfully eliciting agents' signals. Under the commonly applied sequential offering mechanism, we show that learning is hampered by the presence of strategic incentives as herding may emerge. This can result in incorrect allocation and welfare loss. To overcome these issues, we propose a novel class of incentive-compatible mechanisms. Our mechanism involves a batch-by-batch, dynamic voting process using a majority rule. We prove that the proposed voting mechanisms improve the probability of correct allocation whenever agents are sufficiently well informed. Particularly, we show that such an improvement can be achieved via a simple greedy algorithm. We quantify the improvement using simulations.
Bridging Offline Reinforcement Learning and Imitation Learning: A Tale of Pessimism
Paria Rashidinejad · Banghua Zhu · Cong Ma · Jiantao Jiao · Stuart Russell
Offline (or batch) reinforcement learning (RL) algorithms seek to learn an optimal policy from a fixed dataset without active data collection. Based on the composition of the offline dataset, two main methods are used: imitation learning which is suitable for expert datasets, and vanilla offline RL which often requires uniform coverage datasets. From a practical standpoint, datasets often deviate from these two extremes and the exact data composition is usually unknown. To bridge this gap, we present a new offline RL framework that smoothly interpolates between the two extremes of data composition, hence unifying imitation learning and vanilla offline RL. The new framework is centered around a weak version of the concentrability coefficient that measures the deviation of the behavior policy from the expert policy alone. Under this new framework, we ask: can one develop an algorithm that achieves a minimax optimal rate adaptive to unknown data composition? To address this question, we consider a lower confidence bound (LCB) algorithm developed based on pessimism in the face of uncertainty in offline RL. We study finite-sample properties of LCB as well as information-theoretic limits in multi-armed bandits, contextual bandits, and Markov decision processes (MDPs). Our analysis reveals surprising facts about optimality rates. In particular, in both contextual bandits and RL, LCB achieves a faster rate of $1/N$ for nearly-expert datasets compared to the usual rate of $1/\sqrt{N}$ in offline RL, where $N$ is the batch dataset sample size. In contextual bandits with at least two contexts, we prove that LCB is adaptively optimal for the entire data composition range, achieving a smooth transition from imitation learning to offline RL. We further show that LCB is almost adaptively optimal in MDPs.
Towards Efficient and Effective Adversarial Training
Gaurang Sriramanan · Sravanti Addepalli · Arya Baburaj · Venkatesh Babu R
The vulnerability of Deep Neural Networks to adversarial attacks has spurred immense interest towards improving their robustness. However, present state-of-the-art adversarial defenses involve the use of 10-step adversaries during training, which renders them computationally infeasible for application to large-scale datasets. While the recent single-step defenses show promising direction, their robustness is not on par with multi-step training methods. In this work, we bridge this performance gap by introducing a novel Nuclear-Norm regularizer on network predictions to enforce function smoothing in the vicinity of data samples. While prior works consider each data sample independently, the proposed regularizer uses the joint statistics of adversarial samples across a training minibatch to enhance optimization during both attack generation and training, obtaining state-of-the-art results amongst efficient defenses. We achieve further gains by incorporating exponential averaging of network weights over training iterations. We finally introduce a Hybrid training approach that combines the effectiveness of a two-step variant of the proposed defense with the efficiency of a single-step defense. We demonstrate superior results when compared to multi-step defenses such as TRADES and PGD-AT as well, at a significantly lower computational cost.
Evaluating Efficient Performance Estimators of Neural Architectures
Xuefei Ning · Changcheng Tang · Wenshuo Li · Zixuan Zhou · Shuang Liang · Huazhong Yang · Yu Wang
Conducting efficient performance estimations of neural architectures is a major challenge in neural architecture search (NAS). To reduce the architecture training costs in NAS, one-shot estimators (OSEs) amortize the architecture training costs by sharing the parameters of one supernet between all architectures. Recently, zero-shot estimators (ZSEs) that involve no training are proposed to further reduce the architecture evaluation cost. Despite the high efficiency of these estimators, the quality of such estimations has not been thoroughly studied. In this paper, we conduct an extensive and organized assessment of OSEs and ZSEs on five NAS benchmarks: NAS-Bench-101/201/301, and NDS ResNet/ResNeXt-A. Specifically, we employ a set of NAS-oriented criteria to study the behavior of OSEs and ZSEs, and reveal their biases and variances. After analyzing how and why the OSE estimations are unsatisfying, we explore how to mitigate the correlation gap of OSEs from three perspectives. Through our analysis, we give out suggestions for future application and development of efficient architecture performance estimators. Furthermore, the analysis framework proposed in our work could be utilized in future research to give a more comprehensive understanding of newly designed architecture performance estimators. The code is available at https://github.com/walkerning/aw_nas.
SEAL: Self-supervised Embodied Active Learning using Exploration and 3D Consistency
Devendra Singh Chaplot · Murtaza Dalal · Saurabh Gupta · Jitendra Malik · Russ Salakhutdinov
In this paper, we explore how we can build upon the data and models of Internet images and use them to adapt to robot vision without requiring any extra labels. We present a framework called Self-supervised Embodied Active Learning (SEAL). It utilizes perception models trained on internet images to learn an active exploration policy. The observations gathered by this exploration policy are labelled using 3D consistency and used to improve the perception model. We build and utilize 3D semantic maps to learn both action and perception in a completely self-supervised manner. The semantic map is used to compute an intrinsic motivation reward for training the exploration policy and for labelling the agent observations using spatio-temporal 3D consistency and label propagation. We demonstrate that the SEAL framework can be used to close the action-perception loop: it improves object detection and instance segmentation performance of a pretrained perception model by just moving around in training environments and the improved perception model can be used to improve Object Goal Navigation.
Training Feedback Spiking Neural Networks by Implicit Differentiation on the Equilibrium State
Mingqing Xiao · Qingyan Meng · Zongpeng Zhang · Yisen Wang · Zhouchen Lin
Spiking neural networks (SNNs) are brain-inspired models that enable energy-efficient implementation on neuromorphic hardware. However, the supervised training of SNNs remains a hard problem due to the discontinuity of the spiking neuron model. Most existing methods imitate the backpropagation framework and feedforward architectures for artificial neural networks, and use surrogate derivatives or compute gradients with respect to the spiking time to deal with the problem. These approaches either accumulate approximation errors or only propagate information limitedly through existing spikes, and usually require information propagation along time steps with large memory costs and biological implausibility. In this work, we consider feedback spiking neural networks, which are more brain-like, and propose a novel training method that does not rely on the exact reverse of the forward computation. First, we show that the average firing rates of SNNs with feedback connections would gradually evolve to an equilibrium state along time, which follows a fixed-point equation. Then by viewing the forward computation of feedback SNNs as a black-box solver for this equation, and leveraging the implicit differentiation on the equation, we can compute the gradient for parameters without considering the exact forward procedure. In this way, the forward and backward procedures are decoupled and therefore the problem of non-differentiable spiking functions is avoided. We also briefly discuss the biological plausibility of implicit differentiation, which only requires computing another equilibrium. Extensive experiments on MNIST, Fashion-MNIST, N-MNIST, CIFAR-10, and CIFAR-100 demonstrate the superior performance of our method for feedback models with fewer neurons and parameters in a small number of time steps. Our code is available at https://github.com/pkuxmq/IDE-FSNN.
TNASP: A Transformer-based NAS Predictor with a Self-evolution Framework
Shun Lu · Jixiang Li · Jianchao Tan · Sen Yang · Ji Liu
Predictor-based Neural Architecture Search (NAS) continues to be an important topic because it aims to mitigate the time-consuming search procedure of traditional NAS methods. A promising performance predictor determines the quality of final searched models in predictor-based NAS methods. Most existing predictor-based methodologies train model-based predictors under a proxy dataset setting, which may suffer from the accuracy decline and the generalization problem, mainly due to their poor abilities to represent spatial topology information of the graph structure data. Besides the poor encoding for spatial topology information, these works did not take advantage of the temporal information such as historical evaluations during training. Thus, we propose a Transformer-based NAS performance predictor, associated with a Laplacian matrix based positional encoding strategy, which better represents topology information and achieves better performance than previous state-of-the-art methods on NAS-Bench-101, NAS-Bench-201, and DARTS search space. Furthermore, we also propose a self-evolution framework that can fully utilize temporal information as guidance. This framework iteratively involves the evaluations of previously predicted results as constraints into current optimization iteration, thus further improving the performance of our predictor. Such framework is model-agnostic, thus can enhance performance on various backbone structures for the prediction task. Our proposed method helped us rank 2nd among all teams in CVPR 2021 NAS Competition Track 2: Performance Prediction Track.
Adversarial Attack Generation Empowered by Min-Max Optimization
Jingkang Wang · Tianyun Zhang · Sijia Liu · Pin-Yu Chen · Jiacen Xu · Makan Fardad · Bo Li
The worst-case training principle that minimizes the maximal adversarial loss, also known as adversarial training (AT), has shown to be a state-of-the-art approach for enhancing adversarial robustness. Nevertheless, min-max optimization beyond the purpose of AT has not been rigorously explored in the adversarial context. In this paper, we show how a general notion of min-max optimization over multiple domains can be leveraged to the design of different types of adversarial attacks. In particular, given a set of risk sources, minimizing the worst-case attack loss can be reformulated as a min-max problem by introducing domain weights that are maximized over the probability simplex of the domain set. We showcase this unified framework in three attack generation problems -- attacking model ensembles, devising universal perturbation under multiple inputs, and crafting attacks resilient to data transformations. Extensive experiments demonstrate that our approach leads to substantial attack improvement over the existing heuristic strategies as well as robustness improvement over state-of-the-art defense methods against multiple perturbation types. Furthermore, we find that the self-adjusted domain weights learned from min-max optimization can provide a holistic tool to explain the difficulty level of attack across domains.
Class-Disentanglement and Applications in Adversarial Detection and Defense
Kaiwen Yang · Tianyi Zhou · Yonggang Zhang · Xinmei Tian · Dacheng Tao
What is the minimum necessary information required by a neural net $D(\cdot)$ from an image $x$ to accurately predict its class? Extracting such information in the input space from $x$ can allocate the areas $D(\cdot)$ mainly attending to and shed novel insights to the detection and defense of adversarial attacks. In this paper, we propose ''class-disentanglement'' that trains a variational autoencoder $G(\cdot)$ to extract this class-dependent information as $x - G(x)$ via a trade-off between reconstructing $x$ by $G(x)$ and classifying $x$ by $D(x-G(x))$, where the former competes with the latter in decomposing $x$ so the latter retains only necessary information for classification in $x-G(x)$. We apply it to both clean images and their adversarial images and discover that the perturbations generated by adversarial attacks mainly lie in the class-dependent part $x-G(x)$. The decomposition results also provide novel interpretations to classification and attack models. Inspired by these observations, we propose to conduct adversarial detection and adversarial defense respectively on $x - G(x)$ and $G(x)$, which consistently outperform the results on the original $x$. In experiments, this simple approach substantially improves the detection and defense against different types of adversarial attacks.
Reinforcement Learning in Linear MDPs: Constant Regret and Representation Selection
Matteo Papini · Andrea Tirinzoni · Aldo Pacchiano · Marcello Restelli · Alessandro Lazaric · Matteo Pirotta
We study the role of the representation of state-action value functions in regret minimization in finite-horizon Markov Decision Processes (MDPs) with linear structure. We first derive a necessary condition on the representation, called universally spanning optimal features (UNISOFT), to achieve constant regret in any MDP with linear reward function. This result encompasses the well-known settings of low-rank MDPs and, more generally, zero inherent Bellman error (also known as the Bellman closure assumption). We then demonstrate that this condition is also sufficient for these classes of problems by deriving a constant regret bound for two optimistic algorithms (LSVI-UCB and ELEANOR). Finally, we propose an algorithm for representation selection and we prove that it achieves constant regret when one of the given representations, or a suitable combination of them, satisfies the UNISOFT condition.
Topological Detection of Trojaned Neural Networks
Songzhu Zheng · Yikai Zhang · Hubert Wagner · Mayank Goswami · Chao Chen
Deep neural networks are known to have security issues. One particular threat is the Trojan attack. It occurs when the attackers stealthily manipulate the model's behavior through Trojaned training samples, which can later be exploited. Guided by basic neuroscientific principles, we discover subtle -- yet critical -- structural deviation characterizing Trojaned models. In our analysis we use topological tools. They allow us to model high-order dependencies in the networks, robustly compare different networks, and localize structural abnormalities. One interesting observation is that Trojaned models develop short-cuts from shallow to deep layers. Inspired by these observations, we devise a strategy for robust detection of Trojaned models. Compared to standard baselines it displays better performance on multiple benchmarks.
A Law of Iterated Logarithm for Multi-Agent Reinforcement Learning
Gugan Chandrashekhar Thoppe · Bhumesh Kumar
In Multi-Agent Reinforcement Learning (MARL), multiple agents interact with a common environment, as also with each other, for solving a shared problem in sequential decision-making. It has wide-ranging applications in gaming, robotics, finance, communication, etc. In this work, we derive a novel law of iterated logarithm for a family of distributed nonlinear stochastic approximation schemes that is useful in MARL. In particular, our result describes the convergence rate on almost every sample path where the algorithm converges. This result is the first of its kind in the distributed setup and provides deeper insights than the existing ones, which only discuss convergence rates in the expected or the CLT sense. Importantly, our result holds under significantly weaker assumptions: neither the gossip matrix needs to be doubly stochastic nor the stepsizes square summable. As an application, we show that, for the stepsize $n^{-\gamma}$ with $\gamma \in (0, 1),$ the distributed TD(0) algorithm with linear function approximation has a convergence rate of $O(\sqrt{n^{-\gamma} \ln n })$ a.s.; for the $1/n$ type stepsize, the same is $O(\sqrt{n^{-1} \ln \ln n})$ a.s. These decay rates do not depend on the graph depicting the interactions among the different agents.
Particle Dual Averaging: Optimization of Mean Field Neural Network with Global Convergence Rate Analysis
Atsushi Nitanda · Denny Wu · Taiji Suzuki
We propose the particle dual averaging (PDA) method, which generalizes the dual averaging method in convex optimization to the optimization over probability distributions with quantitative runtime guarantee. The algorithm consists of an inner loop and outer loop: the inner loop utilizes the Langevin algorithm to approximately solve for a stationary distribution, which is then optimized in the outer loop. The method can be interpreted as an extension of the Langevin algorithm to naturally handle nonlinear functional on the probability space. An important application of the proposed method is the optimization of neural network in the mean field regime, which is theoretically attractive due to the presence of nonlinear feature learning, but quantitative convergence rate can be challenging to obtain. By adapting finite-dimensional convex optimization theory into the space of measures, we not only establish global convergence of PDA for two-layer mean field neural networks under more general settings and simpler analysis, but also provide quantitative polynomial runtime guarantee. Our theoretical results are supported by numerical simulations on neural networks with reasonable size.
Three Operator Splitting with Subgradients, Stochastic Gradients, and Adaptive Learning Rates
Alp Yurtsever · Alex Gu · Suvrit Sra
Three Operator Splitting (TOS) (Davis & Yin, 2017) can minimize the sum of multiple convex functions effectively when an efficient gradient oracle or proximal operator is available for each term. This requirement often fails in machine learning applications: (i) instead of full gradients only stochastic gradients may be available; and (ii) instead of proximal operators, using subgradients to handle complex penalty functions may be more efficient and realistic. Motivated by these concerns, we analyze three potentially valuable extensions of TOS. The first two permit using subgradients and stochastic gradients, and are shown to ensure a $\mathcal{O}(1/\sqrt{t})$ convergence rate. The third extension AdapTOS endows TOS with adaptive step-sizes. For the important setting of optimizing a convex loss over the intersection of convex sets AdapTOS attains universal convergence rates, i.e., the rate adapts to the unknown smoothness degree of the objective. We compare our proposed methods with competing methods on various applications.
A Convergence Analysis of Gradient Descent on Graph Neural Networks
Pranjal Awasthi · Abhimanyu Das · Sreenivas Gollapudi
Graph Neural Networks~(GNNs) are a powerful class of architectures for solving learning problems on graphs. While many variants of GNNs have been proposed in the literature and have achieved strong empirical performance, their theoretical properties are less well understood. In this work we study the convergence properties of the gradient descent algorithm when used to train GNNs. In particular, we consider the realizable setting where the data is generated from a network with unknown weights and our goal is to study conditions under which gradient descent on a GNN architecture can recover near optimal solutions. While such analysis has been performed in recent years for other architectures such as fully connected feed-forward networks, the message passing nature of the updates in a GNN poses a new challenge in understanding the nature of the gradient descent updates. We take a step towards overcoming this by proving that for the case of deep linear GNNs gradient descent provably recovers solutions up to error $\epsilon$ in $O(\text{log}(1/\epsilon))$ iterations, under natural assumptions on the data distribution. Furthermore, for the case of one-round GNNs with ReLU activations, we show that gradient descent provably recovers solutions up to error $\epsilon$ in $O(\frac{1}{\epsilon^2} \log(\frac{1}{\epsilon}))$ iterations.
While early research in neural architecture search (NAS) required extreme computational resources, the recent releases of tabular and surrogate benchmarks have greatly increased the speed and reproducibility of NAS research. However, two of the most popular benchmarks do not provide the full training information for each architecture. As a result, on these benchmarks it is not possible to evaluate many types of multi-fidelity algorithms, such as learning curve extrapolation, that require evaluating architectures at arbitrary epochs. In this work, we present a method using singular value decomposition and noise modeling to create surrogate benchmarks, NAS-Bench-111, NAS-Bench-311, and NAS-Bench-NLP11, that output the full training information for each architecture, rather than just the final validation accuracy. We demonstrate the power of using the full training information by introducing a learning curve extrapolation framework to modify single-fidelity algorithms, showing that it leads to improvements over popular single-fidelity algorithms which claimed to be state-of-the-art upon release.
How Modular should Neural Module Networks Be for Systematic Generalization?
Vanessa D'Amario · Tomotake Sasaki · Xavier Boix
Neural Module Networks (NMNs) aim at Visual Question Answering (VQA) via composition of modules that tackle a sub-task. NMNs are a promising strategy to achieve systematic generalization, i.e., overcoming biasing factors in the training distribution. However, the aspects of NMNs that facilitate systematic generalization are not fully understood. In this paper, we demonstrate that the degree of modularity of the NMN have large influence on systematic generalization. In a series of experiments on three VQA datasets (VQA-MNIST, SQOOP, and CLEVR-CoGenT), our results reveal that tuning the degree of modularity, especially at the image encoder stage, reaches substantially higher systematic generalization. These findings lead to new NMN architectures that outperform previous ones in terms of systematic generalization.
On the Stochastic Stability of Deep Markov Models
Jan Drgona · Sayak Mukherjee · Jiaxin Zhang · Frank Liu · Mahantesh Halappanavar
Deep Markov models (DMM) are generative models which are scalable and expressive generalization of Markov models for representation, learning, and inference problems. However, the fundamental stochastic stability guarantees of such models have not been thoroughly investigated. In this paper, we present a novel stability analysis method and provide sufficient conditions of DMM's stochastic stability. The proposed stability analysis is based on the contraction of probabilistic maps modeled by deep neural networks. We make connections between the spectral properties of neural network's weights and different types of used activation function on the stability and overall dynamic behavior of DMMs with Gaussian distributions. Based on the theory, we propose a few practical methods for designing constrained DMMs with guaranteed stability. We empirically substantiate our theoretical results via intuitive numerical experiments using the proposed stability constraints.
CHIP: CHannel Independence-based Pruning for Compact Neural Networks
Yang Sui · Miao Yin · Yi Xie · Huy Phan · Saman Aliari Zonouz · Bo Yuan
Filter pruning has been widely used for neural network compression because of its enabled practical acceleration. To date, most of the existing filter pruning works explore the importance of filters via using intra-channel information. In this paper, starting from an inter-channel perspective, we propose to perform efficient filter pruning using Channel Independence, a metric that measures the correlations among different feature maps. The less independent feature map is interpreted as containing less useful information$/$knowledge, and hence its corresponding filter can be pruned without affecting model capacity. We systematically investigate the quantification metric, measuring scheme and sensitiveness$/$reliability of channel independence in the context of filter pruning. Our evaluation results for different models on various datasets show the superior performance of our approach. Notably, on CIFAR-10 dataset our solution can bring $0.75\%$ and $0.94\%$ accuracy increase over baseline ResNet-56 and ResNet-110 models, respectively, and meanwhile the model size and FLOPs are reduced by $42.8\%$ and $47.4\%$ (for ResNet-56) and $48.3\%$ and $52.1\%$ (for ResNet-110), respectively. On ImageNet dataset, our approach can achieve $40.8\%$ and $44.8\%$ storage and computation reductions, respectively, with $0.15\%$ accuracy increase over the baseline ResNet-50 model. The code is available at https://github.com/Eclipsess/CHIP_NeurIPS2021.
Federated Split Task-Agnostic Vision Transformer for COVID-19 CXR Diagnosis
Sangjoon Park · Gwanghyun Kim · Jeongsol Kim · Boah Kim · Jong Chul Ye
Federated learning, which shares the weights of the neural network across clients, is gaining attention in the healthcare sector as it enables training on a large corpus of decentralized data while maintaining data privacy. For example, this enables neural network training for COVID-19 diagnosis on chest X-ray (CXR) images without collecting patient CXR data across multiple hospitals. Unfortunately, the exchange of the weights quickly consumes the network bandwidth if highly expressive network architecture is employed. So-called split learning partially solves this problem by dividing a neural network into a client and a server part, so that the client part of the network takes up less extensive computation resources and bandwidth. However, it is not clear how to find the optimal split without sacrificing the overall network performance. To amalgamate these methods and thereby maximize their distinct strengths, here we show that the Vision Transformer, a recently developed deep learning architecture with straightforward decomposable configuration, is ideally suitable for split learning without sacrificing performance. Even under the non-independent and identically distributed data distribution which emulates a real collaboration between hospitals using CXR datasets from multiple sources, the proposed framework was able to attain performance comparable to data-centralized training. In addition, the proposed framework along with heterogeneous multi-task clients also improves individual task performances including the diagnosis of COVID-19, eliminating the need for sharing large weights with innumerable parameters. Our results affirm the suitability of Transformer for collaborative learning in medical imaging and pave the way forward for future real-world implementations.
Multilingual models are parameter-efficient and especially effective in improving low-resource languages by leveraging crosslingual transfer. Despite recent advance in massive multilingual translation with ever-growing model and data, how to effectively train multilingual models has not been well understood. In this paper, we show that a common situation in multilingual training, data imbalance among languages, poses optimization tension between high resource and low resource languages where the found multilingual solution is often sub-optimal for low resources. We show that common training method which upsamples low resources can not robustly optimize population loss with risks of either underfitting high resource languages or overfitting low resource ones. Drawing on recent findings on the geometry of loss landscape and its effect on generalization, we propose a principled optimization algorithm, Curvature Aware Task Scaling (CATS), which adaptively rescales gradients from different tasks with a meta objective of guiding multilingual training to low-curvature neighborhoods with uniformly low loss for all languages. We ran experiments on common benchmarks (TED, WMT and OPUS-100) with varying degrees of data imbalance. CATS effectively improved multilingual optimization and as a result demonstrated consistent gains on low resources ($+0.8$ to $+2.2$ BLEU) without hurting high resources. In addition, CATS is robust to overparameterization and large batch size training, making it a promising training method for massive multilingual models that truly improve low resource languages.
Best of Both Worlds: Practical and Theoretically Optimal Submodular Maximization in Parallel
Yixin Chen · Tonmoy Dey · Alan Kuhnle
For the problem of maximizing a monotone, submodular function with respect to a cardinality constraint $k$ on a ground set of size $n$, we provide an algorithm that achieves the state-of-the-art in both its empirical performance and its theoretical properties, in terms of adaptive complexity, query complexity, and approximation ratio; that is, it obtains, with high probability, query complexity of $O(n)$ in expectation, adaptivity of $O(\log(n))$, and approximation ratio of nearly $1-1/e$. The main algorithm is assembled from two components which may be of independent interest. The first component of our algorithm, LINEARSEQ, is useful as a preprocessing algorithm to improve the query complexity of many algorithms. Moreover, a variant of LINEARSEQ is shown to have adaptive complexity of $O( \log (n / k) )$ which is smaller than that of any previous algorithm in the literature. The second component is a parallelizable thresholding procedure THRESHOLDSEQ for adding elements with gain above a constant threshold. Finally, we demonstrate that our main algorithm empirically outperforms, in terms of runtime, adaptive rounds, total queries, and objective values, the previous state-of-the-art algorithm FAST in a comprehensive evaluation with six submodular objective functions.
Permuton-induced Chinese Restaurant Process
Masahiro Nakano · Yasuhiro Fujiwara · Akisato Kimura · Takeshi Yamada · naonori ueda
This paper proposes the permuton-induced Chinese restaurant process (PCRP), a stochastic process on rectangular partitioning of a matrix. This distribution is suitable for use as a prior distribution in Bayesian nonparametric relational model to find hidden clusters in matrices and network data. Our main contribution is to introduce the notion of permutons into the well-known Chinese restaurant process (CRP) for sequence partitioning: a permuton is a probability measure on $[0,1]\times [0,1]$ and can be regarded as a geometric interpretation of the scaling limit of permutations. Specifically, we extend the model that the table order of CRPs has a random geometric arrangement on $[0,1]\times [0,1]$ drawn from the permuton. By analogy with the relationship between the stick-breaking process (SBP) and CRP for the infinite mixture model of a sequence, this model can be regarded as a multi-dimensional extension of CRP paired with the block-breaking process (BBP), which has been recently proposed as a multi-dimensional extension of SBP. While BBP always has an infinite number of redundant intermediate variables, PCRP can be composed of varying size intermediate variables in a data-driven manner depending on the size and quality of the observation data. Experiments show that PCRP can improve the prediction performance in relational data analysis by reducing the local optima and slow mixing problems compared with the conventional BNP models because the local transitions of PCRP in Markov chain Monte Carlo inference are more flexible than the previous models.
Rules have a number of desirable properties. It is easy to understand, infer new knowledge, and communicate with other inference systems. One weakness of the previous rule induction systems is that they only find rules within a knowledge base (KB) and therefore cannot generalize to more open and complex real-world rules. Recently, the language model (LM)-based rule generation are proposed to enhance the expressive power of the rules.In this paper, we revisit the differences between KB-based rule induction and LM-based rule generation. We argue that, while KB-based methods inducted rules by discovering data commonalitiess, the current LM-based methods are learning rules from rules''. This limits these methods to only produce
canned'' rules whose patterns are constrained by the annotated rules, while discarding the rich expressive power of LMs for free text.Therefore, in this paper, we propose the open rule induction problem, which aims to induce open rules utilizing the knowledge in LMs. Besides, we propose the Orion (\underline{o}pen \underline{r}ule \underline{i}nducti\underline{on}) system to automatically mine open rules from LMs without supervision of annotated rules. We conducted extensive experiments to verify the quality and quantity of the inducted open rules. Surprisingly, when applying the open rules in downstream tasks (i.e. relation extraction), these automatically inducted rules even outperformed the manually annotated rules.
Neural Bellman-Ford Networks: A General Graph Neural Network Framework for Link Prediction
Zhaocheng Zhu · Zuobai Zhang · Louis-Pascal Xhonneux · Jian Tang
Link prediction is a very fundamental task on graphs. Inspired by traditional path-based methods, in this paper we propose a general and flexible representation learning framework based on paths for link prediction. Specifically, we define the representation of a pair of nodes as the generalized sum of all path representations, with each path representation as the generalized product of the edge representations in the path. Motivated by the Bellman-Ford algorithm for solving the shortest path problem, we show that the proposed path formulation can be efficiently solved by the generalized Bellman-Ford algorithm. To further improve the capacity of the path formulation, we propose the Neural Bellman-Ford Network (NBFNet), a general graph neural network framework that solves the path formulation with learned operators in the generalized Bellman-Ford algorithm. The NBFNet parameterizes the generalized Bellman-Ford algorithm with 3 neural components, namely Indicator, Message and Aggregate functions, which corresponds to the boundary condition, multiplication operator, and summation operator respectively. The NBFNet covers many traditional path-based methods, and can be applied to both homogeneous graphs and multi-relational graphs (e.g., knowledge graphs) in both transductive and inductive settings. Experiments on both homogeneous graphs and knowledge graphs show that the proposed NBFNet outperforms existing methods by a large margin in both transductive and inductive settings, achieving new state-of-the-art results.
Revisiting Model Stitching to Compare Neural Representations
Yamini Bansal · Preetum Nakkiran · Boaz Barak
We revisit and extend model stitching (Lenc & Vedaldi 2015) as a methodology to study the internal representations of neural networks. Given two trained and frozen models $A$ and $B$, we consider a "stitched model" formed by connecting the bottom-layers of $A$ to the top-layers of $B$, with a simple trainable layer between them. We argue that model stitching is a powerful and perhaps under-appreciated tool, which reveals aspects of representations that measures such as centered kernel alignment (CKA) cannot. Through extensive experiments, we use model stitching to obtain quantitative verifications for intuitive statements such as "good networks learn similar representations", by demonstrating that good networks of the same architecture, but trained in very different ways (eg: supervised vs. self-supervised learning), can be stitched to each other without drop in performance. We also give evidence for the intuition that "more is better" by showing that representations learnt with (1) more data, (2) bigger width, or (3) more training time can be "plugged in" to weaker models to improve performance. Finally, our experiments reveal a new structural property of SGD which we call "stitching connectivity", akin to mode-connectivity: typical minima reached by SGD are all "stitching-connected" to each other.
Sageflow: Robust Federated Learning against Both Stragglers and Adversaries
Jungwuk Park · Dong-Jun Han · Minseok Choi · Jaekyun Moon
While federated learning (FL) allows efficient model training with local data at edge devices, among major issues still to be resolved are: slow devices known as stragglers and malicious attacks launched by adversaries. While the presence of both of these issues raises serious concerns in practical FL systems, no known schemes or combinations of schemes effectively address them at the same time. We propose Sageflow, staleness-aware grouping with entropy-based filtering and loss-weighted averaging, to handle both stragglers and adversaries simultaneously. Model grouping and weighting according to staleness (arrival delay) provides robustness against stragglers, while entropy-based filtering and loss-weighted averaging, working in a highly complementary fashion at each grouping stage, counter a wide range of adversary attacks. A theoretical bound is established to provide key insights into the convergence behavior of Sageflow. Extensive experimental results show that Sageflow outperforms various existing methods aiming to handle stragglers/adversaries.
When faced with distribution shift at test time, deep neural networks often make inaccurate predictions with unreliable uncertainty estimates.While improving the robustness of neural networks is one promising approach to mitigate this issue, an appealing alternate to robustifying networks against all possible test-time shifts is to instead directly adapt them to unlabeled inputs from the particular distribution shift we encounter at test time.However, this poses a challenging question: in the standard Bayesian model for supervised learning, unlabeled inputs are conditionally independent of model parameters when the labels are unobserved, so what can unlabeled data tell us about the model parameters at test-time? In this paper, we derive a Bayesian model that provides for a well-defined relationship between unlabeled inputs under distributional shift and model parameters, and show how approximate inference in this model can be instantiated with a simple regularized entropy minimization procedure at test-time. We evaluate our method on a variety of distribution shifts for image classification, including image corruptions, natural distribution shifts, and domain adaptation settings, and show that our method improves both accuracy and uncertainty estimation.
Finite Sample Analysis of Average-Reward TD Learning and $Q$-Learning
Sheng Zhang · Zhe Zhang · Siva Theja Maguluri
The focus of this paper is on sample complexity guarantees of average-reward reinforcement learning algorithms, which are known to be more challenging to study than their discounted-reward counterparts. To the best of our knowledge, we provide the first known finite sample guarantees using both constant and diminishing step sizes of (i) average-reward TD($\lambda$) with linear function approximation for policy evaluation and (ii) average-reward $Q$-learning in the tabular setting to find the optimal policy. A major challenge is that since the value functions are agnostic to an additive constant, the corresponding Bellman operators are no longer contraction mappings under any norm. We obtain the results for TD($\lambda$) by working in an appropriately defined subspace that ensures uniqueness of the solution. For $Q$-learning, we exploit the span seminorm contractive property of the Bellman operator, and construct a novel Lyapunov function obtained by infimal convolution of a generalized Moreau envelope and the indicator function of a set.
Offline Reinforcement Learning as One Big Sequence Modeling Problem
Michael Janner · Qiyang Li · Sergey Levine
Reinforcement learning (RL) is typically viewed as the problem of estimating single-step policies (for model-free RL) or single-step models (for model-based RL), leveraging the Markov property to factorize the problem in time. However, we can also view RL as a sequence modeling problem: predict a sequence of actions that leads to a sequence of high rewards. Viewed in this way, it is tempting to consider whether powerful, high-capacity sequence prediction models that work well in other supervised learning domains, such as natural-language processing, can also provide simple and effective solutions to the RL problem. To this end, we explore how RL can be reframed as "one big sequence modeling" problem, using state-of-the-art Transformer architectures to model distributions over sequences of states, actions, and rewards. Addressing RL as a sequence modeling problem significantly simplifies a range of design decisions: we no longer require separate behavior policy constraints, as is common in prior work on offline model-free RL, and we no longer require ensembles or other epistemic uncertainty estimators, as is common in prior work on model-based RL. All of these roles are filled by the same Transformer sequence model. In our experiments, we demonstrate the flexibility of this approach across imitation learning, goal-conditioned RL, and offline RL.
Maximum Likelihood Training of Score-Based Diffusion Models
Yang Song · Conor Durkan · Iain Murray · Stefano Ermon
Score-based diffusion models synthesize samples by reversing a stochastic process that diffuses data to noise, and are trained by minimizing a weighted combination of score matching losses. The log-likelihood of score-based diffusion models can be tractably computed through a connection to continuous normalizing flows, but log-likelihood is not directly optimized by the weighted combination of score matching losses. We show that for a specific weighting scheme, the objective upper bounds the negative log-likelihood, thus enabling approximate maximum likelihood training of score-based diffusion models. We empirically observe that maximum likelihood training consistently improves the likelihood of score-based diffusion models across multiple datasets, stochastic processes, and model architectures. Our best models achieve negative log-likelihoods of 2.83 and 3.76 bits/dim on CIFAR-10 and ImageNet $32\times 32$ without any data augmentation, on a par with state-of-the-art autoregressive models on these tasks.
Reward-Free Model-Based Reinforcement Learning with Linear Function Approximation
Weitong ZHANG · Dongruo Zhou · Quanquan Gu
We study the model-based reward-free reinforcement learning with linear function approximation for episodic Markov decision processes (MDPs). In this setting, the agent works in two phases. In the exploration phase, the agent interacts with the environment and collects samples without the reward. In the planning phase, the agent is given a specific reward function and uses samples collected from the exploration phase to learn a good policy. We propose a new provably efficient algorithm, called UCRL-RFE under the Linear Mixture MDP assumption, where the transition probability kernel of the MDP can be parameterized by a linear function over certain feature mappings defined on the triplet of state, action, and next state. We show that to obtain an $\epsilon$-optimal policy for arbitrary reward function, UCRL-RFE needs to sample at most $\tilde O(H^5d^2\epsilon^{-2})$ episodes during the exploration phase. Here, $H$ is the length of the episode, $d$ is the dimension of the feature mapping. We also propose a variant of UCRL-RFE using Bernstein-type bonus and show that it needs to sample at most $\tilde O(H^4d(H + d)\epsilon^{-2})$ to achieve an $\epsilon$-optimal policy. By constructing a special class of linear Mixture MDPs, we also prove that for any reward-free algorithm, it needs to sample at least $\tilde \Omega(H^2d\epsilon^{-2})$ episodes to obtain an $\epsilon$-optimal policy. Our upper bound matches the lower bound in terms of the dependence on $\epsilon$ and the dependence on $d$ if $H \ge d$.
Conditionally Parameterized, Discretization-Aware Neural Networks for Mesh-Based Modeling of Physical Systems
Jiayang Xu · Aniruddhe Pradhan · Karthikeyan Duraisamy
Simulations of complex physical systems are typically realized by discretizing partial differential equations (PDEs) on unstructured meshes. While neural networks have recently been explored for the surrogate and reduced order modeling of PDE solutions, they often ignore interactions or hierarchical relations between input features, and process them as concatenated mixtures. We generalize the idea of conditional parameterization -- using trainable functions of input parameters to generate the weights of a neural network, and extend them in a flexible way to encode critical information. Inspired by discretized numerical methods, choices of the parameters include physical quantities and mesh topology features. The functional relation between the modeled features and the parameters is built into the network architecture. The method is implemented on different networks and applied to frontier scientific machine learning tasks including the discovery of unmodeled physics, super-resolution of coarse fields, and the simulation of unsteady flows with chemical reactions. The results show that the conditionally-parameterized networks provide superior performance compared to their traditional counterparts. The CP-GNet - an architecture that can be trained on very few data snapshots - is proposed as the first deep learning model capable of standalone prediction of reacting flows on irregular meshes.
Real-world decision-making systems are often subject to uncertainties that have to be resolved through observational data. Therefore, we are frequently confronted with combinatorial optimization problems of which the objective function is unknown and thus has to be debunked using empirical evidence. In contrast to the common practice that relies on a learning-and-optimization strategy, we consider the regression between combinatorial spaces, aiming to infer high-quality optimization solutions from samples of input-solution pairs -- without the need to learn the objective function. Our main deliverable is a universal solver that is able to handle abstract undetermined stochastic combinatorial optimization problems. For learning foundations, we present learning-error analysis under the PAC-Bayesian framework using a new margin-based analysis. In empirical studies, we demonstrate our design using proof-of-concept experiments, and compare it with other methods that are potentially applicable. Overall, we obtain highly encouraging experimental results for several classic combinatorial problems on both synthetic and real-world datasets.
Complexity Lower Bounds for Nonconvex-Strongly-Concave Min-Max Optimization
Haochuan Li · Yi Tian · Jingzhao Zhang · Ali Jadbabaie
We provide a first-order oracle complexity lower bound for finding stationary points of min-max optimization problems where the objective function is smooth, nonconvex in the minimization variable, and strongly concave in the maximization variable. We establish a lower bound of $\Omega\left(\sqrt{\kappa}\epsilon^{-2}\right)$ for deterministic oracles, where $\epsilon$ defines the level of approximate stationarity and $\kappa$ is the condition number. Our lower bound matches the best existing upper bound in the $\epsilon$ and $\kappa$ dependence up to logarithmic factors. For stochastic oracles, we provide a lower bound of $\Omega\left(\sqrt{\kappa}\epsilon^{-2} + \kappa^{1/3}\epsilon^{-4}\right)$. It suggests that there is a gap between the best existing upper bound $\mathcal{O}(\kappa^3 \epsilon^{-4})$ and our lower bound in the condition number dependence.
Breaking the Dilemma of Medical Image-to-image Translation
Lingke Kong · Chenyu Lian · Detian Huang · zhenjiang li · Yanle Hu · Qichao Zhou
Supervised Pix2Pix and unsupervised Cycle-consistency are two modes that dominate the field of medical image-to-image translation. However, neither modes are ideal. The Pix2Pix mode has excellent performance. But it requires paired and well pixel-wise aligned images, which may not always be achievable due to respiratory motion or anatomy change between times that paired images are acquired. The Cycle-consistency mode is less stringent with training data and works well on unpaired or misaligned images. But its performance may not be optimal. In order to break the dilemma of the existing modes, we propose a new unsupervised mode called RegGAN for medical image-to-image translation. It is based on the theory of "loss-correction". In RegGAN, the misaligned target images are considered as noisy labels and the generator is trained with an additional registration network to fit the misaligned noise distribution adaptively. The goal is to search for the common optimal solution to both image-to-image translation and registration tasks. We incorporated RegGAN into a few state-of-the-art image-to-image translation methods and demonstrated that RegGAN could be easily combined with these methods to improve their performances. Such as a simple CycleGAN in our mode surpasses latest NICEGAN even though using less network parameters. Based on our results, RegGAN outperformed both Pix2Pix on aligned data and Cycle-consistency on misaligned or unpaired data. RegGAN is insensitive to noises which makes it a better choice for a wide range of scenarios, especially for medical image-to-image translation tasks in which well pixel-wise aligned data are not available. Code and dataset are available at https://github.com/Kid-Liet/Reg-GAN.
Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr\"om Method
Yifan Chen · Qi Zeng · Heng Ji · Yun Yang
Transformers are expensive to train due to the quadratic time and space complexity in the self-attention mechanism. On the other hand, although kernel machines suffer from the same computation bottleneck in pairwise dot products, several approximation schemes have been successfully incorporated to considerably reduce their computational cost without sacrificing too much accuracy. In this work, we leverage the computation methods for kernel machines to alleviate the high computational cost and introduce Skyformer, which replaces the softmax structure with a Gaussian kernel to stabilize the model training and adapts the Nyström method to a non-positive semidefinite matrix to accelerate the computation. We further conduct theoretical analysis by showing that the matrix approximation error of our proposed method is small in the spectral norm. Experiments on Long Range Arena benchmark show that the proposed method is sufficient in getting comparable or even better performance than the full self-attention while requiring fewer computation resources.
On the Convergence and Sample Efficiency of Variance-Reduced Policy Gradient Method
Junyu Zhang · Chengzhuo Ni · zheng Yu · Csaba Szepesvari · Mengdi Wang
Policy gradient (PG) gives rise to a rich class of reinforcement learning (RL) methods. Recently, there has been an emerging trend to augment the existing PG methods such as REINFORCE by the \emph{variance reduction} techniques. However, all existing variance-reduced PG methods heavily rely on an uncheckable importance weight assumption made for every single iteration of the algorithms. In this paper, a simple gradient truncation mechanism is proposed to address this issue. Moreover, we design a Truncated Stochastic Incremental Variance-Reduced Policy Gradient (TSIVR-PG) method, which is able to maximize not only a cumulative sum of rewards but also a general utility function over a policy's long-term visiting distribution. We show an $\tilde{\mathcal{O}}(\epsilon^{-3})$ sample complexity for TSIVR-PG to find an $\epsilon$-stationary policy. By assuming the \emph{overparameterization} of policy and exploiting the \emph{hidden convexity} of the problem, we further show that TSIVR-PG converges to global $\epsilon$-optimal policy with $\tilde{\mathcal{O}}(\epsilon^{-2})$ samples.
Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN
Zhenyu Xie · Zaiyu Huang · Fuwei Zhao · Haoye Dong · Michael Kampffmeyer · Xiaodan Liang
Image-based virtual try-on is one of the most promising applications of human-centric image generation due to its tremendous real-world potential. Yet, as most try-on approaches fit in-shop garments onto a target person, they require the laborious and restrictive construction of a paired training dataset, severely limiting their scalability. While a few recent works attempt to transfer garments directly from one person to another, alleviating the need to collect paired datasets, their performance is impacted by the lack of paired (supervised) information. In particular, disentangling style and spatial information of the garment becomes a challenge, which existing methods either address by requiring auxiliary data or extensive online optimization procedures, thereby still inhibiting their scalability. To achieve a scalable virtual try-on system that can transfer arbitrary garments between a source and a target person in an unsupervised manner, we thus propose a texture-preserving end-to-end network, the PAtch-routed SpaTially-Adaptive GAN (PASTA-GAN), that facilitates real-world unpaired virtual try-on. Specifically, to disentangle the style and spatial information of each garment, PASTA-GAN consists of an innovative patch-routed disentanglement module for successfully retaining garment texture and shape characteristics. Guided by the source person's keypoints, the patch-routed disentanglement module first decouples garments into normalized patches, thus eliminating the inherent spatial information of the garment, and then reconstructs the normalized patches to the warped garment complying with the target person pose. Given the warped garment, PASTA-GAN further introduces novel spatially-adaptive residual blocks that guide the generator to synthesize more realistic garment details. Extensive comparisons with paired and unpaired approaches demonstrate the superiority of PASTA-GAN, highlighting its ability to generate high-quality try-on images when faced with a large variety of garments(e.g. vests, shirts, pants), taking a crucial step towards real-world scalable try-on.
Derivative-Free Policy Optimization for Linear Risk-Sensitive and Robust Control Design: Implicit Regularization and Sample Complexity
Kaiqing Zhang · Xiangyuan Zhang · Bin Hu · Tamer Basar
Direct policy search serves as one of the workhorses in modern reinforcement learning (RL), and its applications in continuous control tasks have recently attracted increasing attention. In this work, we investigate the convergence theory of policy gradient (PG) methods for learning the linear risk-sensitive and robust controller. In particular, we develop PG methods that can be implemented in a derivative-free fashion by sampling system trajectories, and establish both global convergence and sample complexity results in the solutions of two fundamental settings in risk-sensitive and robust control: the finite-horizon linear exponential quadratic Gaussian, and the finite-horizon linear-quadratic disturbance attenuation problems. As a by-product, our results also provide the first sample complexity for the global convergence of PG methods on solving zero-sum linear-quadratic dynamic games, a nonconvex-nonconcave minimax optimization problem that serves as a baseline setting in multi-agent reinforcement learning (MARL) with continuous spaces. One feature of our algorithms is that during the learning phase, a certain level of robustness/risk-sensitivity of the controller is preserved, which we termed as the implicit regularization property, and is an essential requirement in safety-critical control systems.
The Limitations of Large Width in Neural Networks: A Deep Gaussian Process Perspective
Geoff Pleiss · John Cunningham
Large width limits have been a recent focus of deep learning research: modulo computational practicalities, do wider networks outperform narrower ones? Answering this question has been challenging, as conventional networks gain representational power with width, potentially masking any negative effects. Our analysis in this paper decouples capacity and width via the generalization of neural networks to Deep Gaussian Processes (Deep GP), a class of nonparametric hierarchical models that subsume neural nets. In doing so, we aim to understand how width affects (standard) neural networks once they have sufficient capacity for a given modeling task. Our theoretical and empirical results on Deep GP suggest that large width can be detrimental to hierarchical models. Surprisingly, we prove that even nonparametric Deep GP converge to Gaussian processes, effectively becoming shallower without any increase in representational power. The posterior, which corresponds to a mixture of data-adaptable basis functions, becomes less data-dependent with width. Our tail analysis demonstrates that width and depth have opposite effects: depth accentuates a model’s non-Gaussianity, while width makes models increasingly Gaussian. We find there is a “sweet spot” that maximizes test performance before the limiting GP behavior prevents adaptability, occurring at width = 1 or width = 2 for nonparametric Deep GP. These results make strong predictions about the same phenomenon in conventional neural networks trained with L2 regularization (analogous to a Gaussian prior on parameters): we show that such neural networks may need up to 500 − 1000 hidden units for sufficient capacity - depending on the dataset - but further width degrades performance.
Exact marginal prior distributions of finite Bayesian neural networks
Jacob Zavatone-Veth · Cengiz Pehlevan
Bayesian neural networks are theoretically well-understood only in the infinite-width limit, where Gaussian priors over network weights yield Gaussian priors over network outputs. Recent work has suggested that finite Bayesian networks may outperform their infinite counterparts, but their non-Gaussian output priors have been characterized only though perturbative approaches. Here, we derive exact solutions for the function space priors for individual input examples of a class of finite fully-connected feedforward Bayesian neural networks. For deep linear networks, the prior has a simple expression in terms of the Meijer $G$-function. The prior of a finite ReLU network is a mixture of the priors of linear networks of smaller widths, corresponding to different numbers of active units in each layer. Our results unify previous descriptions of finite network priors in terms of their tail decay and large-width behavior.
Spatiotemporal Joint Filter Decomposition in 3D Convolutional Neural Networks
Zichen Miao · Ze Wang · Xiuyuan Cheng · Qiang Qiu
In this paper, we introduce spatiotemporal joint filter decomposition to decouple spatial and temporal learning, while preserving spatiotemporal dependency in a video. A 3D convolutional filter is now jointly decomposed over a set of spatial and temporal filter atoms respectively. In this way, a 3D convolutional layer becomes three: a temporal atom layer, a spatial atom layer, and a joint coefficient layer, all three remaining convolutional. One obvious arithmetic manipulation allowed in our joint decomposition is to swap spatial or temporal atoms with a set of atoms that have the same number but different sizes, while keeping the remaining unchanged. For example, as shown later, we can now achieve tempo-invariance by simply dilating temporal atoms only. To illustrate this useful atom-swapping property, we further demonstrate how such a decomposition permits the direct learning of 3D CNNs with full-size videos through iterations of two consecutive sub-stages of learning: In the temporal stage, full-temporal downsampled-spatial data are used to learn temporal atoms and joint coefficients while fixing spatial atoms. In the spatial stage, full-spatial downsampled-temporal data are used for spatial atoms and joint coefficients while fixing temporal atoms. We show empirically on multiple action recognition datasets that, the decoupled spatiotemporal learning significantly reduces the model memory footprints, and allows deep 3D CNNs to model high-spatial long-temporal dependency with limited computational resources while delivering comparable performance.
On Effective Scheduling of Model-based Reinforcement Learning
Hang Lai · Jian Shen · Weinan Zhang · Yimin Huang · Xing Zhang · Ruiming Tang · Yong Yu · Zhenguo Li
Model-based reinforcement learning has attracted wide attention due to its superior sample efficiency. Despite its impressive success so far, it is still unclear how to appropriately schedule the important hyperparameters to achieve adequate performance, such as the real data ratio for policy optimization in Dyna-style model-based algorithms. In this paper, we first theoretically analyze the role of real data in policy training, which suggests that gradually increasing the ratio of real data yields better performance. Inspired by the analysis, we propose a framework named AutoMBPO to automatically schedule the real data ratio as well as other hyperparameters in training model-based policy optimization (MBPO) algorithm, a representative running case of model-based methods. On several continuous control tasks, the MBPO instance trained with hyperparameters scheduled by AutoMBPO can significantly surpass the original one, and the real data ratio schedule found by AutoMBPO shows consistency with our theoretical analysis.
In the natural world, life has found innumerable ways to survive and often thrive. Between and even within species, each individual is in some manner unique, and this diversity lends adaptability and robustness to life. In this work, we aim to learn a space of diverse and high-reward policies in a given environment. To this end, we introduce a generative model of policies for reinforcement learning, which maps a low-dimensional latent space to an agent policy space. Our method enables learning an entire population of agent policies, without requiring the use of separate policy parameters. Just as real world populations can adapt and evolve via natural selection, our method is able to adapt to changes in our environment solely by selecting for policies in latent space. We test our generative model’s capabilities in a variety of environments, including an open-ended grid-world and a two-player soccer environment. Code, visualizations, and additional experiments can be found at https://kennyderek.github.io/adap/.
Deep Self-Dissimilarities as Powerful Visual Fingerprints
Idan Kligvasser · Tamar Shaham · Yuval Bahat · Tomer Michaeli
Features extracted from deep layers of classification networks are widely used as image descriptors. Here, we exploit an unexplored property of these features: their internal dissimilarity. While small image patches are known to have similar statistics across image scales, it turns out that the internal distribution of deep features varies distinctively between scales. We show how this deep self dissimilarity (DSD) property can be used as a powerful visual fingerprint. Particularly, we illustrate that full-reference and no-reference image quality measures derived from DSD are highly correlated with human preference. In addition, incorporating DSD as a loss function in training of image restoration networks, leads to results that are at least as photo-realistic as those obtained by GAN based methods, while not requiring adversarial training.
Sample Complexity Bounds for Active Ranking from Multi-wise Comparisons
Wenbo Ren · Jia Liu · Ness Shroff
We study the sample complexity (i.e., the number of comparisons needed) bounds for actively ranking a set of $n$ items from multi-wise comparisons. Here, a multi-wise comparison takes $m$ items as input and returns a (noisy) result about the best item (the winner feedback) or the order of these items (the full-ranking feedback). We consider two basic ranking problems: top-$k$ items selection and full ranking. Unlike previous works that study ranking from multi-wise comparisons, in this paper, we do not require any parametric model or assumption and work on the fundamental setting where each comparison returns the correct result with probability $1$ or a certain probability larger than $\frac{1}{2}$. This paper helps understand whether and to what degree utilizing multi-wise comparisons can reduce the sample complexity for the ranking problems compared to ranking from pairwise comparisons. Specifically, under the winner feedback setting, one can reduce the sample complexity for top-$k$ selection up to an $m$ factor and that for full ranking up to a $\log{m}$ factor. Under the full-ranking feedback setting, one can reduce the sample complexity for top-$k$ selection up to an $m$ factor and that for full ranking up to an $m\log{m}$ factor. We also conduct numerical simulations to confirm our theoretical results.
Learning Dynamic Graph Representation of Brain Connectome with Spatio-Temporal Attention
Byung-Hoon Kim · Jong Chul Ye · Jae-Jin Kim
Functional connectivity (FC) between regions of the brain can be assessed by the degree of temporal correlation measured with functional neuroimaging modalities. Based on the fact that these connectivities build a network, graph-based approaches for analyzing the brain connectome have provided insights into the functions of the human brain. The development of graph neural networks (GNNs) capable of learning representation from graph structured data has led to increased interest in learning the graph representation of the brain connectome. Although recent attempts to apply GNN to the FC network have shown promising results, there is still a common limitation that they usually do not incorporate the dynamic characteristics of the FC network which fluctuates over time. In addition, a few studies that have attempted to use dynamic FC as an input for the GNN reported a reduction in performance compared to static FC methods, and did not provide temporal explainability. Here, we propose STAGIN, a method for learning dynamic graph representation of the brain connectome with spatio-temporal attention. Specifically, a temporal sequence of brain graphs is input to the STAGIN to obtain the dynamic graph representation, while novel READOUT functions and the Transformer encoder provide spatial and temporal explainability with attention, respectively. Experiments on the HCP-Rest and the HCP-Task datasets demonstrate exceptional performance of our proposed method. Analysis of the spatio-temporal attention also provide concurrent interpretation with the neuroscientific knowledge, which further validates our method. Code is available at https://github.com/egyptdj/stagin
RoMA: Robust Model Adaptation for Offline Model-based Optimization
Sihyun Yu · Sungsoo Ahn · Le Song · Jinwoo Shin
We consider the problem of searching an input maximizing a black-box objective function given a static dataset of input-output queries. A popular approach to solving this problem is maintaining a proxy model, e.g., a deep neural network (DNN), that approximates the true objective function. Here, the main challenge is how to avoid adversarially optimized inputs during the search, i.e., the inputs where the DNN highly overestimates the true objective function. To handle the issue, we propose a new framework, coined robust model adaptation (RoMA), based on gradient-based optimization of inputs over the DNN. Specifically, it consists of two steps: (a) a pre-training strategy to robustly train the proxy model and (b) a novel adaptation procedure of the proxy model to have robust estimates for a specific set of candidate solutions. At a high level, our scheme utilizes the local smoothness prior to overcome the brittleness of the DNN. Experiments under various tasks show the effectiveness of RoMA compared with previous methods, obtaining state-of-the-art results, e.g., RoMA outperforms all at 4 out of 6 tasks and achieves runner-up results at the remaining tasks.
Temporal abstraction in reinforcement learning (RL), offers the promise of improving generalization and knowledge transfer in complex environments, by propagating information more efficiently over time. Although option learning was initially formulated in a way that allows updating many options simultaneously, using off-policy, intra-option learning (Sutton, Precup & Singh, 1999) , many of the recent hierarchical reinforcement learning approaches only update a single option at a time: the option currently executing. We revisit and extend intra-option learning in the context of deep reinforcement learning, in order to enable updating all options consistent with current primitive action choices, without introducing any additional estimates. Our method can therefore be naturally adopted in most hierarchical RL frameworks. When we combine our approach with the option-critic algorithm for option discovery, we obtain significant improvements in performance and data-efficiency across a wide variety of domains.
Diverse Message Passing for Attribute with Heterophily
Liang Yang · Mengzhe Li · Liyang Liu · bingxin niu · Chuan Wang · Xiaochun Cao · Yuanfang Guo
Most of the existing GNNs can be modeled via the Uniform Message Passing framework. This framework considers all the attributes of each node in its entirety, shares the uniform propagation weights along each edge, and focuses on the uniform weight learning. The design of this framework possesses two prerequisites, the simplification of homophily and heterophily to the node-level property and the ignorance of attribute differences. Unfortunately, different attributes possess diverse characteristics. In this paper, the network homophily rate defined with respect to the node labels is extended to attribute homophily rate by taking the attributes as weak labels. Based on this attribute homophily rate, we propose a Diverse Message Passing (DMP) framework, which specifies every attribute propagation weight on each edge. Besides, we propose two specific strategies to significantly reduce the computational complexity of DMP to prevent the overfitting issue. By investigating the spectral characteristics, existing spectral GNNs are actually equivalent to a degenerated version of DMP. From the perspective of numerical optimization, we provide a theoretical analysis to demonstrate DMP's powerful representation ability and the ability of alleviating the over-smoothing issue. Evaluations on various real networks demonstrate the superiority of our DMP on handling the networks with heterophily and alleviating the over-smoothing issue, compared to the existing state-of-the-arts.
Greedy Approximation Algorithms for Active Sequential Hypothesis Testing
Kyra Gan · Su Jia · Andrew Li
In the problem of \emph{active sequential hypothesis testing} (ASHT), a learner seeks to identify the \emph{true} hypothesis from among a known set of hypotheses. The learner is given a set of actions and knows the random distribution of the outcome of any action under any true hypothesis. Given a target error $\delta>0$, the goal is to sequentially select the fewest number of actions so as to identify the true hypothesis with probability at least $1 - \delta$. Motivated by applications in which the number of hypotheses or actions is massive (e.g., genomics-based cancer detection), we propose efficient (greedy, in fact) algorithms and provide the first approximation guarantees for ASHT, under two types of adaptivity. Both of our guarantees are independent of the number of actions and logarithmic in the number of hypotheses. We numerically evaluate the performance of our algorithms using both synthetic and real-world DNA mutation data, demonstrating that our algorithms outperform previously proposed heuristic policies by large margins.
Stability and Deviation Optimal Risk Bounds with Convergence Rate $O(1/n)$
Yegor Klochkov · Nikita Zhivotovskiy
The sharpest known high probability generalization bounds for uniformly stable algorithms (Feldman, Vondrak, NeurIPS 2018, COLT, 2019), (Bousquet, Klochkov, Zhivotovskiy, COLT, 2020) contain a generally inevitable sampling error term of order $\Theta(1/\sqrt{n})$. When applied to excess risk bounds, this leads to suboptimal results in several standard stochastic convex optimization problems. We show that if the so-called Bernstein condition is satisfied, the term $\Theta(1/\sqrt{n})$ can be avoided, and high probability excess risk bounds of order up to $O(1/n)$ are possible via uniform stability. Using this result, we show a high probability excess risk bound with the rate $O(\log n/n)$ for strongly convex and Lipschitz losses valid for \emph{any} empirical risk minimization method. This resolves a question of Shalev-Shwartz, Shamir, Srebro, and Sridharan (COLT, 2009). We discuss how $O(\log n/n)$ high probability excess risk bounds are possible for projected gradient descent in the case of strongly convex and Lipschitz losses without the usual smoothness assumption.
The transformer architectures, based on self-attention mechanism and convolution-free design, recently found superior performance and booming applications in computer vision. However, the discontinuous patch-wise tokenization process implicitly introduces jagged artifacts into attention maps, arising the traditional problem of aliasing for vision transformers. Aliasing effect occurs when discrete patterns are used to produce high frequency or continuous information, resulting in the indistinguishable distortions. Recent researches have found that modern convolution networks still suffer from this phenomenon. In this work, we analyze the uncharted problem of aliasing in vision transformer and explore to incorporate anti-aliasing properties. Specifically, we propose a plug-and-play Aliasing-Reduction Module (ARM) to alleviate the aforementioned issue. We investigate the effectiveness and generalization of the proposed method across multiple tasks and various vision transformer families. This lightweight design consistently attains a clear boost over several famous structures. Furthermore, our module also improves data efficiency and robustness of vision transformers.
Neural Regression, Representational Similarity, Model Zoology & Neural Taskonomy at Scale in Rodent Visual Cortex
Colin Conwell · David Mayo · Andrei Barbu · Michael Buice · George Alvarez · Boris Katz
How well do deep neural networks fare as models of mouse visual cortex? A majority of research to date suggests results far more mixed than those produced in the modeling of primate visual cortex. Here, we perform a large-scale benchmarking of dozens of deep neural network models in mouse visual cortex with both representational similarity analysis and neural regression. Using the Allen Brain Observatory's 2-photon calcium-imaging dataset of activity in over 6,000 reliable rodent visual cortical neurons recorded in response to natural scenes, we replicate previous findings and resolve previous discrepancies, ultimately demonstrating that modern neural networks can in fact be used to explain activity in the mouse visual cortex to a more reasonable degree than previously suggested. Using our benchmark as an atlas, we offer preliminary answers to overarching questions about levels of analysis (e.g. do models that better predict the representations of individual neurons also predict representational similarity across neural populations?); questions about the properties of models that best predict the visual system overall (e.g. is convolution or category-supervision necessary to better predict neural activity?); and questions about the mapping between biological and artificial representations (e.g. does the information processing hierarchy in deep nets match the anatomical hierarchy of mouse visual cortex?). Along the way, we catalogue a number of models (including vision transformers, MLP-Mixers, normalization free networks, Taskonomy encoders and self-supervised models) outside the traditional circuit of convolutional object recognition. Taken together, our results provide a reference point for future ventures in the deep neural network modeling of mouse visual cortex, hinting at novel combinations of mapping method, architecture, and task to more fully characterize the computational motifs of visual representation in a species so central to neuroscience, but with a perceptual physiology and ecology markedly different from the ones we study in primates.
This paper presents a topological learning-theoretic perspective on causal inference by introducing a series of topologies defined on general spaces of structural causal models (SCMs). As an illustration of the framework we prove a topological causal hierarchy theorem, showing that substantive assumption-free causal inference is possible only in a meager set of SCMs. Thanks to a known correspondence between open sets in the weak topology and statistically verifiable hypotheses, our results show that inductive assumptions sufficient to license valid causal inferences are statistically unverifiable in principle. Similar to no-free-lunch theorems for statistical inference, the present results clarify the inevitability of substantial assumptions for causal inference. An additional benefit of our topological approach is that it easily accommodates SCMs with infinitely many variables. We finally suggest that our framework may be helpful for the positive project of exploring and assessing alternative causal-inductive assumptions.
Preconditioned Gradient Descent for Over-Parameterized Nonconvex Matrix Factorization
Jialun Zhang · Salar Fattahi · Richard Y Zhang
In practical instances of nonconvex matrix factorization, the rank of the true solution $r^{\star}$ is often unknown, so the rank $r$of the model can be over-specified as $r>r^{\star}$. This over-parameterized regime of matrix factorization significantly slows down the convergence of local search algorithms, from a linear rate with $r=r^{\star}$ to a sublinear rate when $r>r^{\star}$. We propose an inexpensive preconditioner for the matrix sensing variant of nonconvex matrix factorization that restores the convergence rate of gradient descent back to linear, even in the over-parameterized case, while also making it agnostic to possible ill-conditioning in the ground truth. Classical gradient descent in a neighborhood of the solution slows down due to the need for the model matrix factor to become singular. Our key result is that this singularity can be corrected by $\ell_{2}$ regularization with a specific range of values for the damping parameter. In fact, a good damping parameter can be inexpensively estimated from the current iterate. The resulting algorithm, which we call preconditioned gradient descent or PrecGD, is stable under noise, and converges linearly to an information theoretically optimal error bound. Our numerical experiments find that PrecGD works equally well in restoring the linear convergence of other variants of nonconvex matrix factorization in the over-parameterized regime.
We consider the problem of explaining the predictions of an arbitrary blackbox model $f$: given query access to $f$ and an instance $x$, output a small set of $x$'s features that in conjunction essentially determines $f(x)$. We design an efficient algorithm with provable guarantees on the succinctness and precision of the explanations that it returns. Prior algorithms were either efficient but lacked such guarantees, or achieved such guarantees but were inefficient. We obtain our algorithm via a connection to the problem of {\sl implicitly} learning decision trees. The implicit nature of this learning task allows for efficient algorithms even when the complexity of~$f$ necessitates an intractably large surrogate decision tree. We solve the implicit learning problem by bringing together techniques from learning theory, local computation algorithms, and complexity theory. Our approach of “explaining by implicit learning” shares elements of two previously disparate methods for post-hoc explanations, global and local explanations, and we make the case that it enjoys advantages of both.
We consider the problem of quantifying uncertainty for the estimation error of the leading eigenvector from Oja's algorithm for streaming principal component analysis, where the data are generated IID from some unknown distribution. By combining classical tools from the U-statistics literature with recent results on high-dimensional central limit theorems for quadratic forms of random vectors and concentration of matrix products, we establish a weighted $\chi^2$ approximation result for the $\sin^2$ error between the population eigenvector and the output of Oja’s algorithm. Since estimating the covariance matrix associated with the approximating distribution requires knowledge of unknown model parameters, we propose a multiplier bootstrap algorithm that may be updated in an online manner. We establish conditions under which the bootstrap distribution is close to the corresponding sampling distribution with high probability, thereby establishing the bootstrap as a consistent inferential method in an appropriate asymptotic regime.
Sub-Linear Memory: How to Make Performers SLiM
Valerii Likhosherstov · Krzysztof Choromanski · Jared Quincy Davis · Xingyou Song · Adrian Weller
Transformer architectures have become very popular yet the original implementation requires $O(L^2)$ in serial time and memory as functions of input length $L$. Recent works proposed various linear self-attention mechanisms, scaling only as $O(L)$ for serial computation. We conduct a thorough complexity analysis of Performers, a class which includes most recent linear Transformer mechanisms. We note a remarkable computational flexibility: the gradient computation can be performed with no approximations using sublinear memory as a function of $L$ (in addition to negligible storage for the input sequence), at a cost of greater time complexity in the parallel setting. In the extreme case, a Performer consumes only $O(1)$ memory, and still requires $O(L)$ time. Due to complete backward-compatibility, this discovered time-memory tradeoff can be used for fine-tuning on low-memory devices in a decentralized fashion without any server computations.
Nested Counterfactual Identification from Arbitrary Surrogate Experiments
Juan Correa · Sanghack Lee · Elias Bareinboim
The Ladder of Causation describes three qualitatively different types of activities an agent may be interested in engaging in, namely, seeing (observational), doing (interventional), and imagining (counterfactual) (Pearl and Mackenzie, 2018). The inferential challenge imposed by the causal hierarchy is that data is collected by an agent observing or intervening in a system (layers 1 and 2), while its goal may be to understand what would have happened had it taken a different course of action, contrary to what factually ended up happening (layer 3). While there exists a solid understanding of the conditions under which cross-layer inferences are allowed from observations to interventions, the results are somewhat scarcer when targeting counterfactual quantities. In this paper, we study the identification of nested counterfactuals from an arbitrary combination of observations and experiments. Specifically, building on a more explicit definition of nested counterfactuals, we prove the counterfactual unnesting theorem (CUT), which allows one to map arbitrary nested counterfactuals to unnested ones. For instance, applications in mediation and fairness analysis usually evoke notions of direct, indirect, and spurious effects, which naturally require nesting. Second, we introduce a sufficient and necessary graphical condition for counterfactual identification from an arbitrary combination of observational and experimental distributions. Lastly, we develop an efficient and complete algorithm for identifying nested counterfactuals; failure of the algorithm returning an expression for a query implies it is not identifiable.
HRFormer: High-Resolution Vision Transformer for Dense Predict
YUHUI YUAN · Rao Fu · Lang Huang · Weihong Lin · Chao Zhang · Xilin Chen · Jingdong Wang
We present a High-Resolution Transformer (HRFormer) that learns high-resolution representations for dense prediction tasks, in contrast to the original Vision Transformer that produces low-resolution representations and has high memory and computational cost. We take advantage of the multi-resolution parallel design introduced in high-resolution convolutional networks (HRNet [45]), along with local-window self-attention that performs self-attention over small non-overlapping image windows [21], for improving the memory and computation efficiency. In addition, we introduce a convolution into the FFN to exchange information across the disconnected image windows. We demonstrate the effectiveness of the HighResolution Transformer on both human pose estimation and semantic segmentation tasks, e.g., HRFormer outperforms Swin transformer [27] by 1.3 AP on COCO pose estimation with 50% fewer parameters and 30% fewer FLOPs. Code is available at: https://github.com/HRNet/HRFormer
Forster Decomposition and Learning Halfspaces with Noise
Ilias Diakonikolas · Daniel Kane · Christos Tzamos
A Forster transform is an operation that turns a multivariate distribution into one with good anti-concentration properties. While a Forster transform does not always exist, we show that any distribution can be efficiently decomposed as a disjoint mixture of few distributions for which a Forster transform exists and can be computed efficiently. As the main application of this result, we obtain the first polynomial-time algorithm for distribution-independent PAC learning of halfspaces in the Massart noise model with strongly polynomial sample complexity, i.e., independent of the bit complexity of the examples. Previous algorithms for this learning problem incurred sample complexity scaling polynomially with the bit complexity, even though such a dependence is not information-theoretically necessary.
Proper Value Equivalence
Christopher Grimm · Andre Barreto · Greg Farquhar · David Silver · Satinder Singh
One of the main challenges in model-based reinforcement learning (RL) is to decide which aspects of the environment should be modeled. The value-equivalence (VE) principle proposes a simple answer to this question: a model should capture the aspects of the environment that are relevant for value-based planning. Technically, VE distinguishes models based on a set of policies and a set of functions: a model is said to be VE to the environment if the Bellman operators it induces for the policies yield the correct result when applied to the functions. As the number of policies and functions increase, the set of VE models shrinks, eventually collapsing to a single point corresponding to a perfect model. A fundamental question underlying the VE principle is thus how to select the smallest sets of policies and functions that are sufficient for planning. In this paper we take an important step towards answering this question. We start by generalizing the concept of VE to order-$k$ counterparts defined with respect to $k$ applications of the Bellman operator. This leads to a family of VE classes that increase in size as $k \rightarrow \infty$. In the limit, all functions become value functions, and we have a special instantiation of VE which we call proper VE or simply PVE. Unlike VE, the PVE class may contain multiple models even in the limit when all value functions are used. Crucially, all these models are sufficient for planning, meaning that they will yield an optimal policy despite the fact that they may ignore many aspects of the environment. We construct a loss function for learning PVE models and argue that popular algorithms such as MuZero can be understood as minimizing an upper bound for this loss. We leverage this connection to propose a modification to MuZero and show that it can lead to improved performance in practice.
When Is Generalizable Reinforcement Learning Tractable?
Dhruv Malik · Yuanzhi Li · Pradeep Ravikumar
Agents trained by reinforcement learning (RL) often fail to generalize beyond the environment they were trained in, even when presented with new scenarios that seem similar to the training environment. We study the query complexity required to train RL agents that generalize to multiple environments. Intuitively, tractable generalization is only possible when the environments are similar or close in some sense. To capture this, we introduce Weak Proximity, a natural structural condition that requires the environments to have highly similar transition and reward functions and share a policy providing optimal value. Despite such shared structure, we prove that tractable generalization is impossible in the worst case. This holds even when each individual environment can be efficiently solved to obtain an optimal linear policy, and when the agent possesses a generative model. Our lower bound applies to the more complex task of representation learning for efficient generalization to multiple environments. On the positive side, we introduce Strong Proximity, a strengthened condition which we prove is sufficient for efficient generalization.
Combining Latent Space and Structured Kernels for Bayesian Optimization over Combinatorial Spaces
Aryan Deshwal · Jana Doppa
We consider the problem of optimizing combinatorial spaces (e.g., sequences, trees, and graphs) using expensive black-box function evaluations. For example, optimizing molecules for drug design using physical lab experiments. Bayesian optimization (BO) is an efficient framework for solving such problems by intelligently selecting the inputs with high utility guided by a learned surrogate model. A recent BO approach for combinatorial spaces is through a reduction to BO over continuous spaces by learning a latent representation of structures using deep generative models (DGMs). The selected input from the continuous space is decoded into a discrete structure for performing function evaluation. However, the surrogate model over the latent space only uses the information learned by the DGM, which may not have the desired inductive bias to approximate the target black-box function. To overcome this drawback, this paper proposes a principled approach referred as LADDER. The key idea is to define a novel structure-coupled kernel that explicitly integrates the structural information from decoded structures with the learned latent space representation for better surrogate modeling. Our experiments on real-world benchmarks show that LADDER significantly improves over the BO over latent space method, and performs better or similar to state-of-the-art methods.
Low-dimensional Structure in the Space of Language Representations is Reflected in Brain Responses
Richard Antonello · Javier Turek · Vy Vo · Alexander Huth
How related are the representations learned by neural language models, translation models, and language tagging tasks? We answer this question by adapting an encoder-decoder transfer learning method from computer vision to investigate the structure among 100 different feature spaces extracted from hidden representations of various networks trained on language tasks.This method reveals a low-dimensional structure where language models and translation models smoothly interpolate between word embeddings, syntactic and semantic tasks, and future word embeddings. We call this low-dimensional structure a language representation embedding because it encodes the relationships between representations needed to process language for a variety of NLP tasks. We find that this representation embedding can predict how well each individual feature space maps to human brain responses to natural language stimuli recorded using fMRI. Additionally, we find that the principal dimension of this structure can be used to create a metric which highlights the brain's natural language processing hierarchy. This suggests that the embedding captures some part of the brain's natural language representation structure.
Locally Valid and Discriminative Prediction Intervals for Deep Learning Models
Zhen Lin · Shubhendu Trivedi · Jimeng Sun
Crucial for building trust in deep learning models for critical real-world applications is efficient and theoretically sound uncertainty quantification, a task that continues to be challenging. Useful uncertainty information is expected to have two key properties: It should be valid (guaranteeing coverage) and discriminative (more uncertain when the expected risk is high). Moreover, when combined with deep learning (DL) methods, it should be scalable and affect the DL model performance minimally. Most existing Bayesian methods lack frequentist coverage guarantees and usually affect model performance. The few available frequentist methods are rarely discriminative and/or violate coverage guarantees due to unrealistic assumptions. Moreover, many methods are expensive or require substantial modifications to the base neural network. Building upon recent advances in conformal prediction [13, 33] and leveraging the classical idea of kernel regression, we propose Locally Valid and Discriminative prediction intervals (LVD), a simple, efficient, and lightweight method to construct discriminative prediction intervals (PIs) for almost any DL model. With no assumptions on the data distribution, such PIs also offer finite-sample local coverage guarantees (contrasted to the simpler marginal coverage). We empirically verify, using diverse datasets, that besides being the only locally valid method for DL, LVD also exceeds or matches the performance (including coverage rate and prediction accuracy) of existing uncertainty quantification methods, while offering additional benefits in scalability and flexibility.
Stability & Generalisation of Gradient Descent for Shallow Neural Networks without the Neural Tangent Kernel
Dominic Richards · Ilja Kuzborskij
We revisit on-average algorithmic stability of Gradient Descent (GD) for training overparameterised shallow neural networks and prove new generalisation and excess risk bounds without the Neural Tangent Kernel (NTK) or Polyak-Łojasiewicz (PL) assumptions. In particular, we show oracle type bounds which reveal that the generalisation and excess risk of GD is controlled by an interpolating network with the shortest GD path from initialisation (in a sense, an interpolating network with the smallest relative norm). While this was known for kernelised interpolants, our proof applies directly to networks trained by GD without intermediate kernelisation. At the same time, by relaxing oracle inequalities developed here we recover existing NTK-based risk bounds in a straightforward way, which demonstrates that our analysis is tighter. Finally, unlike most of the NTK-based analyses we focus on regression with label noise and show that GD with early stopping is consistent
Raw Nav-merge Seismic Data to Subsurface Properties with MLP based Multi-Modal Information Unscrambler
Aditya Desai · Zhaozhuo Xu · Menal Gupta · Anu Chandran · Antoine Vial-Aussavy · Anshumali Shrivastava
Traditional seismic inversion (SI) maps the hundreds of terabytes of raw-field data to subsurface properties in gigabytes. This inversion process is expensive, requiring over a year of human and computational effort. Recently, data-driven approaches equipped with Deep learning (DL) are envisioned to improve SI efficiency. However, these improvements are restricted to data with highly reduced scale and complexity. To extend these approaches to real-scale seismic data, researchers need to process raw nav-merge seismic data into an image and perform convolution. We argue that this convolution-based way of SI is not only computationally expensive but also conceptually problematic. Seismic data is not naturally an image and need not be processed as images. In this work, we go beyond convolution and propose a novel SI method. We solve the scalability of SI by proposing a new auxiliary learning paradigm for SI (Aux-SI). This paradigm breaks the SI into local inversion tasks, which predicts each small chunk of subsurface properties using surrounding seismic data. Aux-SI combines these local predictions to obtain the entire subsurface model. However, even this local inversion is still challenging due to: (1) high-dimensional, spatially irregular multi-modal seismic data, (2) there is no concrete spatial mapping (or alignment) between subsurface properties and raw data. To handle these challenges, we propose an all-MLP architecture, Multi-Modal Information Unscrambler (MMI-Unscrambler), that unscrambles seismic information by ingesting all available multi-modal data. The experiment shows that MMI-Unscrambler outperforms both SOTA U-Net and Transformer models on simulation data. We also scale MMI-Unscrambler to raw-field nav-merge data on Gulf-of-Mexico to obtain a geologically sound velocity model with an SSIM score of 0.8. To the best of our knowledge, this is the first successful demonstration of the DL approach on SI for real, large-scale, and complicated raw field data.
We show that diffusion models can achieve image sample quality superior to the current state-of-the-art generative models. We achieve this on unconditional image synthesis by finding a better architecture through a series of ablations. For conditional image synthesis, we further improve sample quality with classifier guidance: a simple, compute-efficient method for trading off diversity for fidelity using gradients from a classifier. We achieve an FID of 2.97 on ImageNet 128$\times$128, 4.59 on ImageNet 256$\times$256, and 7.72 on ImageNet 512$\times$512, and we match BigGAN-deep even with as few as 25 forward passes per sample, all while maintaining better coverage of the distribution. Finally, we find that classifier guidance combines well with upsampling diffusion models, further improving FID to 3.94 on ImageNet 256$\times$256 and 3.85 on ImageNet 512$\times$512.
On Empirical Risk Minimization with Dependent and Heavy-Tailed Data
Abhishek Roy · Krishnakumar Balasubramanian · Murat Erdogdu
In this work, we establish risk bounds for Empirical Risk Minimization (ERM) with both dependent and heavy-tailed data-generating processes. We do so by extending the seminal works~\cite{pmlr-v35-mendelson14, mendelson2018learning} on the analysis of ERM with heavy-tailed but independent and identically distributed observations, to the strictly stationary exponentially $\beta$-mixing case. We allow for the interaction between the noise and inputs to be even polynomially heavy-tailed, which covers a significantly large class of heavy-tailed models beyond what is analyzed in the learning theory literature. We illustrate our theoretical results by obtaining rates of convergence for high-dimensional linear regression with dependent and heavy-tailed data.
Gone Fishing: Neural Active Learning with Fisher Embeddings
Jordan Ash · Surbhi Goel · Akshay Krishnamurthy · Sham Kakade
There is an increasing need for effective active learning algorithms that are compatible with deep neural networks. This paper motivates and revisits a classic, Fisher-based active selection objective, and proposes BAIT, a practical, tractable, and high-performing algorithm that makes it viable for use with neural models. BAIT draws inspiration from the theoretical analysis of maximum likelihood estimators (MLE) for parametric models. It selects batches of samples by optimizing a bound on the MLE error in terms of the Fisher information, which we show can be implemented efficiently at scale by exploiting linear-algebraic structure especially amenable to execution on modern hardware. Our experiments demonstrate that BAIT outperforms the previous state of the art on both classification and regression problems, and is flexible enough to be used with a variety of model architectures.
Why Spectral Normalization Stabilizes GANs: Analysis and Improvements
Zinan Lin · Vyas Sekar · Giulia Fanti
Spectral normalization (SN) is a widely-used technique for improving the stability and sample quality of Generative Adversarial Networks (GANs). However, current understanding of SN's efficacy is limited. In this work, we show that SN controls two important failure modes of GAN training: exploding and vanishing gradients. Our proofs illustrate a (perhaps unintentional) connection with the successful LeCun initialization. This connection helps to explain why the most popular implementation of SN for GANs requires no hyper-parameter tuning, whereas stricter implementations of SN have poor empirical performance out-of-the-box. Unlike LeCun initialization which only controls gradient vanishing at the beginning of training, SN preserves this property throughout training. Building on this theoretical understanding, we propose a new spectral normalization technique: Bidirectional Scaled Spectral Normalization (BSSN), which incorporates insights from later improvements to LeCun initialization: Xavier initialization and Kaiming initialization. Theoretically, we show that BSSN gives better gradient control than SN. Empirically, we demonstrate that it outperforms SN in sample quality and training stability on several benchmark datasets.
Efficient Active Learning for Gaussian Process Classification by Error Reduction
Guang Zhao · Edward Dougherty · Byung-Jun Yoon · Francis Alexander · Xiaoning Qian
Active learning sequentially selects the best instance for labeling by optimizing an acquisition function to enhance data/label efficiency. The selection can be either from a discrete instance set (pool-based scenario) or a continuous instance space (query synthesis scenario). In this work, we study both active learning scenarios for Gaussian Process Classification (GPC). The existing active learning strategies that maximize the Estimated Error Reduction (EER) aim at reducing the classification error after training with the new acquired instance in a one-step-look-ahead manner. The computation of EER-based acquisition functions is typically prohibitive as it requires retraining the GPC with every new query. Moreover, as the EER is not smooth, it can not be combined with gradient-based optimization techniques to efficiently explore the continuous instance space for query synthesis. To overcome these critical limitations, we develop computationally efficient algorithms for EER-based active learning with GPC. We derive the joint predictive distribution of label pairs as a one-dimensional integral, as a result of which the computation of the acquisition function avoids retraining the GPC for each query, remarkably reducing the computational overhead. We also derive the gradient chain rule to efficiently calculate the gradient of the acquisition function, which leads to the first query synthesis active learning algorithm implementing EER-based strategies. Our experiments clearly demonstrate the computational efficiency of the proposed algorithms. We also benchmark our algorithms on both synthetic and real-world datasets, which show superior performance in terms of sampling efficiency compared to the existing state-of-the-art algorithms.
Non-Asymptotic Analysis for Two Time-scale TDC with General Smooth Function Approximation
Yue Wang · Shaofeng Zou · Yi Zhou
Temporal-difference learning with gradient correction (TDC) is a two time-scale algorithm for policy evaluation in reinforcement learning. This algorithm was initially proposed with linear function approximation, and was later extended to the one with general smooth function approximation. The asymptotic convergence for the on-policy setting with general smooth function approximation was established in [Bhatnagar et al., 2009], however, the non-asymptotic convergence analysis remains unsolved due to challenges in the non-linear and two-time-scale update structure, non-convex objective function and the projection onto a time-varying tangent plane. In this paper, we develop novel techniques to address the above challenges and explicitly characterize the non-asymptotic error bound for the general off-policy setting with i.i.d. or Markovian samples, and show that it converges as fast as $\mathcal O(1/\sqrt T)$ (up to a factor of $\mathcal O(\log T)$). Our approach can be applied to a wide range of value-based reinforcement learning algorithms with general smooth function approximation.
How does a Neural Network's Architecture Impact its Robustness to Noisy Labels?
Jingling Li · Mozhi Zhang · Keyulu Xu · John Dickerson · Jimmy Ba
Noisy labels are inevitable in large real-world datasets. In this work, we explore an area understudied by previous works --- how the network's architecture impacts its robustness to noisy labels. We provide a formal framework connecting the robustness of a network to the alignments between its architecture and target/noise functions. Our framework measures a network's robustness via the predictive power in its representations --- the test performance of a linear model trained on the learned representations using a small set of clean labels. We hypothesize that a network is more robust to noisy labels if its architecture is more aligned with the target function than the noise. To support our hypothesis, we provide both theoretical and empirical evidence across various neural network architectures and different domains. We also find that when the network is well-aligned with the target function, its predictive power in representations could improve upon state-of-the-art (SOTA) noisy-label-training methods in terms of test accuracy and even outperform sophisticated methods that use clean labels.
Parameterized Knowledge Transfer for Personalized Federated Learning
Jie Zhang · Song Guo · Xiaosong Ma · Haozhao Wang · Wenchao Xu · Feijie Wu
In recent years, personalized federated learning (pFL) has attracted increasing attention for its potential in dealing with statistical heterogeneity among clients. However, the state-of-the-art pFL methods rely on model parameters aggregation at the server side, which require all models to have the same structure and size, and thus limits the application for more heterogeneous scenarios. To deal with such model constraints, we exploit the potentials of heterogeneous model settings and propose a novel training framework to employ personalized models for different clients. Specifically, we formulate the aggregation procedure in original pFL into a personalized group knowledge transfer training algorithm, namely, KT-pFL, which enables each client to maintain a personalized soft prediction at the server side to guide the others' local training. KT-pFL updates the personalized soft prediction of each client by a linear combination of all local soft predictions using a knowledge coefficient matrix, which can adaptively reinforce the collaboration among clients who own similar data distribution. Furthermore, to quantify the contributions of each client to others' personalized training, the knowledge coefficient matrix is parameterized so that it can be trained simultaneously with the models. The knowledge coefficient matrix and the model parameters are alternatively updated in each round following the gradient descent way. Extensive experiments on various datasets (EMNIST, Fashion_MNIST, CIFAR-10) are conducted under different settings (heterogeneous models and data distributions). It is demonstrated that the proposed framework is the first federated learning paradigm that realizes personalized model training via parameterized group knowledge transfer while achieving significant performance gain comparing with state-of-the-art algorithms.
Online Learning in Periodic Zero-Sum Games
Tanner Fiez · Ryann Sim · Stratis Skoulakis · Georgios Piliouras · Lillian Ratliff
A seminal result in game theory is von Neumann's minmax theorem, which states that zero-sum games admit an essentially unique equilibrium solution. Classical learning results build on this theorem to show that online no-regret dynamics converge to an equilibrium in a time-average sense in zero-sum games. In the past several years, a key research direction has focused on characterizing the transient behavior of such dynamics. General results in this direction show that broad classes of online learning dynamics are cyclic, and formally Poincar\'{e} recurrent, in zero-sum games. We analyze the robustness of these online learning behaviors in the case of periodic zero-sum games with a time-invariant equilibrium. This model generalizes the usual repeated game formulation while also being a realistic and natural model of a repeated competition between players that depends on exogenous environmental variations such as time-of-day effects, week-to-week trends, and seasonality. Interestingly, time-average convergence may fail even in the simplest such settings, in spite of the equilibrium being fixed. In contrast, using novel analysis methods, we show that Poincar\'{e} recurrence provably generalizes despite the complex, non-autonomous nature of these dynamical systems.
Dynaboard: An Evaluation-As-A-Service Platform for Holistic Next-Generation Benchmarking
Zhiyi Ma · Kawin Ethayarajh · Tristan Thrush · Somya Jain · Ledell Wu · Robin Jia · Christopher Potts · Adina Williams · Douwe Kiela
We introduce Dynaboard, an evaluation-as-a-service framework for hosting benchmarks and conducting holistic model comparison, integrated with the Dynabench platform. Our platform evaluates NLP models directly instead of relying on self-reported metrics or predictions on a single dataset. Under this paradigm, models are submitted to be evaluated in the cloud, circumventing the issues of reproducibility, accessibility, and backwards compatibility that often hinder benchmarking in NLP. This allows users to interact with uploaded models in real time to assess their quality, and permits the collection of additional metrics such as memory use, throughput, and robustness, which -- despite their importance to practitioners -- have traditionally been absent from leaderboards. On each task, models are ranked according to the Dynascore, a novel utility-based aggregation of these statistics, which users can customize to better reflect their preferences, placing more/less weight on a particular axis of evaluation or dataset. As state-of-the-art NLP models push the limits of traditional benchmarks, Dynaboard offers a standardized solution for a more diverse and comprehensive evaluation of model quality.
(Distributionally) robust optimization has gained momentum in machine learning community recently, due to its promising applications in developing generalizable learning paradigms. In this paper, we derive generalization bounds for robust optimization and Wasserstein robust optimization for Lipschitz and piecewise Hölder smooth loss functions under both stochastic and adversarial setting, assuming that the underlying data distribution satisfies transportation-information inequalities. The proofs are built on new generalization bounds for variation regularization (such as Lipschitz or gradient regularization) and its connection with robustness.
Increasingly, copious amounts of consumer data are used to learn high-revenue mechanisms via machine learning. Existing research on mechanism design via machine learning assumes that there is a distribution over the buyers' values for the items for sale and that the learning algorithm's input is a training set sampled from this distribution. This setup makes the strong assumption that no noise is introduced during data collection. In order to help place mechanism design via machine learning on firm foundations, we investigate the extent to which this learning process is robust to noise. Optimizing revenue using noisy data is challenging because revenue functions are extremely volatile: an infinitesimal change in the buyers' values can cause a steep drop in revenue. Nonetheless, we provide guarantees when arbitrarily correlated noise is added to the training set; we only require that the noise has bounded magnitude or is sub-Gaussian. We conclude with an application of our guarantees to multi-task mechanism design, where there are multiple distributions over buyers' values and the goal is to learn a high-revenue mechanism per distribution. To our knowledge, we are the first to study mechanism design via machine learning with noisy data as well as multi-task mechanism design.
Exploiting Data Sparsity in Secure Cross-Platform Social Recommendation
Jinming Cui · Chaochao Chen · Lingjuan Lyu · Carl Yang · Wang Li
Social recommendation has shown promising improvements over traditional systems since it leverages social correlation data as an additional input. Most existing work assumes that all data are available to the recommendation platform. However, in practice, user-item interaction data (e.g.,rating) and user-user social data are usually generated by different platforms, and both of which contain sensitive information. Therefore, "How to perform secure and efficient social recommendation across different platforms, where the data are highly-sparse in nature" remains an important challenge. In this work, we bring secure computation techniques into social recommendation, and propose S3Rec, a sparsity-aware secure cross-platform social recommendation framework. As a result, our model can not only improve the recommendation performance of the rating platform by incorporating the sparse social data on the social platform, but also protect data privacy of both platforms. Moreover, to further improve model training efficiency, we propose two secure sparse matrix multiplication protocols based on homomorphic encryption and private information retrieval. Our experiments on two benchmark datasets demonstrate the effectiveness of S3Rec.
Emergent Discrete Communication in Semantic Spaces
Mycal Tucker · Huao Li · Siddharth Agrawal · Dana Hughes · Katia Sycara · Michael Lewis · Julie A Shah
Neural agents trained in reinforcement learning settings can learn to communicate among themselves via discrete tokens, accomplishing as a team what agents would be unable to do alone. However, the current standard of using one-hot vectors as discrete communication tokens prevents agents from acquiring more desirable aspects of communication such as zero-shot understanding. Inspired by word embedding techniques from natural language processing, we propose neural agent architectures that enables them to communicate via discrete tokens derived from a learned, continuous space. We show in a decision theoretic framework that our technique optimizes communication over a wide range of scenarios, whereas one-hot tokens are only optimal under restrictive assumptions. In self-play experiments, we validate that our trained agents learn to cluster tokens in semantically-meaningful ways, allowing them communicate in noisy environments where other techniques fail. Lastly, we demonstrate both that agents using our method can effectively respond to novel human communication and that humans can understand unlabeled emergent agent communication, outperforming the use of one-hot communication.
Implicit Finite-Horizon Approximation and Efficient Optimal Algorithms for Stochastic Shortest Path
Liyu Chen · Mehdi Jafarnia-Jahromi · Rahul Jain · Haipeng Luo
We introduce a generic template for developing regret minimization algorithms in the Stochastic Shortest Path (SSP) model, which achieves minimax optimal regret as long as certain properties are ensured. The key of our analysis is a new technique called implicit finite-horizon approximation, which approximates the SSP model by a finite-horizon counterpart only in the analysis without explicit implementation. Using this template, we develop two new algorithms: the first one is model-free (the first in the literature to our knowledge) and minimax optimal under strictly positive costs; the second one is model-based and minimax optimal even with zero-cost state-action pairs, matching the best existing result from [Tarbouriech et al., 2021b]. Importantly, both algorithms admit highly sparse updates, making them computationally more efficient than all existing algorithms. Moreover, both can be made completely parameter-free.
Lower and Upper Bounds on the Pseudo-Dimension of Tensor Network Models
Behnoush Khavari · Guillaume Rabusseau
Tensor network methods have been a key ingredient of advances in condensed matter physics and have recently sparked interest in the machine learning community for their ability to compactly represent very high-dimensional objects. Tensor network methods can for example be used to efficiently learn linear models in exponentially large feature spaces [Stoudenmire and Schwab, 2016]. In this work, we derive upper and lower bounds on the VC dimension and pseudo-dimension of a large class of tensor network models for classification, regression and completion. Our upper bounds hold for linear models parameterized by arbitrary tensor network structures, and we derive lower bounds for common tensor decomposition models~(CP, Tensor Train, Tensor Ring and Tucker) showing the tightness of our general upper bound. These results are used to derive a generalization bound which can be applied to classification with low rank matrices as well as linear classifiers based on any of the commonly used tensor decomposition models. As a corollary of our results, we obtain a bound on the VC dimension of the matrix product state classifier introduced in [Stoudenmire and Schwab, 2016] as a function of the so-called bond dimension~(i.e. tensor train rank), which answers an open problem listed by Cirac, Garre-Rubio and Pérez-García in [Cirac et al., 2019].
What Makes Multi-Modal Learning Better than Single (Provably)
Yu Huang · Chenzhuang Du · Zihui Xue · Xuanyao Chen · Hang Zhao · Longbo Huang
The world provides us with data of multiple modalities. Intuitively, models fusing data from different modalities outperform their uni-modal counterparts, since more information is aggregated. Recently, joining the success of deep learning, there is an influential line of work on deep multi-modal learning, which has remarkable empirical results on various applications. However, theoretical justifications in this field are notably lacking. Can multi-modal learning provably perform better than uni-modal?In this paper, we answer this question under a most popular multi-modal fusion framework, which firstly encodes features from different modalities into a common latent space and seamlessly maps the latent representations into the task space. We prove that learning with multiple modalities achieves a smaller population risk than only using its subset of modalities. The main intuition is that the former has a more accurate estimate of the latent space representation. To the best of our knowledge, this is the first theoretical treatment to capture important qualitative phenomena observed in real multi-modal applications from the generalization perspective. Combining with experiment results, we show that multi-modal learning does possess an appealing formal guarantee.
Selective Sampling for Online Best-arm Identification
Romain Camilleri · Zhihan Xiong · Maryam Fazel · Lalit Jain · Kevin Jamieson
This work considers the problem of selective-sampling for best-arm identification. Given a set of potential options $\mathcal{Z}\subset\mathbb{R}^d$, a learner aims to compute with probability greater than $1-\delta$, $\arg\max_{z\in \mathcal{Z}} z^{\top}\theta_{\ast}$ where $\theta_{\ast}$ is unknown. At each time step, a potential measurement $x_t\in \mathcal{X}\subset\mathbb{R}^d$ is drawn IID and the learner can either choose to take the measurement, in which case they observe a noisy measurement of $x^{\top}\theta_{\ast}$, or to abstain from taking the measurement and wait for a potentially more informative point to arrive in the stream. Hence the learner faces a fundamental trade-off between the number of labeled samples they take and when they have collected enough evidence to declare the best arm and stop sampling. The main results of this work precisely characterize this trade-off between labeled samples and stopping time and provide an algorithm that nearly-optimally achieves the minimal label complexity given a desired stopping time. In addition, we show that the optimal decision rule has a simple geometric form based on deciding whether a point is in an ellipse or not. Finally, our framework is general enough to capture binary classification improving upon previous works.
Multi-task Learning of Order-Consistent Causal Graphs
Xinshi Chen · Haoran Sun · Caleb Ellington · Eric Xing · Le Song
We consider the problem of discovering $K$ related Gaussian directed acyclic graphs (DAGs), where the involved graph structures share a consistent causal order and sparse unions of supports. Under the multi-task learning setting, we propose a $l_1/l_2$-regularized maximum likelihood estimator (MLE) for learning $K$ linear structural equation models. We theoretically show that the joint estimator, by leveraging data across related tasks, can achieve a better sample complexity for recovering the causal order (or topological order) than separate estimations. Moreover, the joint estimator is able to recover non-identifiable DAGs, by estimating them together with some identifiable DAGs. Lastly, our analysis also shows the consistency of union support recovery of the structures. To allow practical implementation, we design a continuous optimization problem whose optimizer is the same as the joint estimator and can be approximated efficiently by an iterative algorithm. We validate the theoretical analysis and the effectiveness of the joint estimator in experiments.
Optimal prediction of Markov chains with and without spectral gap
Yanjun Han · Soham Jana · Yihong Wu
We study the following learning problem with dependent data: Given a trajectory of length $n$ from a stationary Markov chain with $k$ states, the goal is to predict the distribution of the next state. For $3 \leq k \leq O(\sqrt{n})$, the optimal prediction risk in the Kullback-Leibler divergence is shown to be $\Theta(\frac{k^2}{n}\log \frac{n}{k^2})$, in contrast to the optimal rate of $\Theta(\frac{\log \log n}{n})$ for $k=2$ previously shown in Falahatgar et al in 2016. These nonparametric rates can be attributed to the memory in the data, as the spectral gap of the Markov chain can be arbitrarily small. To quantify the memory effect, we study irreducible reversible chains with a prescribed spectral gap. In addition to characterizing the optimal prediction risk for two states, we show that, as long as the spectral gap is not excessively small, the prediction risk in the Markov model is $O(\frac{k^2}{n})$, which coincides with that of an iid model with the same number of parameters.
Continuous Doubly Constrained Batch Reinforcement Learning
Rasool Fakoor · Jonas Mueller · Kavosh Asadi · Pratik Chaudhari · Alexander Smola
Reliant on too many experiments to learn good actions, current Reinforcement Learning (RL) algorithms have limited applicability in real-world settings, which can be too expensive to allow exploration. We propose an algorithm for batch RL, where effective policies are learned using only a fixed offline dataset instead of online interactions with the environment. The limited data in batch RL produces inherent uncertainty in value estimates of states/actions that were insufficiently represented in the training data. This leads to particularly severe extrapolation when our candidate policies diverge from one that generated the data. We propose to mitigate this issue via two straightforward penalties: a policy-constraint to reduce this divergence and a value-constraint that discourages overly optimistic estimates. Over a comprehensive set of $32$ continuous-action batch RL benchmarks, our approach compares favorably to state-of-the-art methods, regardless of how the offline data were collected.
Tensor decompositions of higher-order correlations by nonlinear Hebbian plasticity
Gabriel Ocker · Michael Buice
Biological synaptic plasticity exhibits nonlinearities that are not accounted for by classic Hebbian learning rules. Here, we introduce a simple family of generalized nonlinear Hebbian learning rules. We study the computations implemented by their dynamics in the simple setting of a neuron receiving feedforward inputs. These nonlinear Hebbian rules allow a neuron to learn tensor decompositions of its higher- order input correlations. The particular input correlation decomposed and the form of the decomposition depend on the location of nonlinearities in the plasticity rule. For simple, biologically motivated parameters, the neuron learns eigenvectors of higher-order input correlation tensors. We prove that tensor eigenvectors are attractors and determine their basins of attraction. We calculate the volume of those basins, showing that the dominant eigenvector has the largest basin of attraction. We then study arbitrary learning rules and find that any learning rule that admits a finite Taylor expansion into the neural input and output also has stable equilibria at generalized eigenvectors of higher-order input correlation tensors. Nonlinearities in synaptic plasticity thus allow a neuron to encode higher-order input correlations in a simple fashion.
Shifted Chunk Transformer for Spatio-Temporal Representational Learning
Xuefan Zha · Wentao Zhu · Lv Xun · Sen Yang · Ji Liu
Spatio-temporal representational learning has been widely adopted in various fields such as action recognition, video object segmentation, and action anticipation.Previous spatio-temporal representational learning approaches primarily employ ConvNets or sequential models, e.g., LSTM, to learn the intra-frame and inter-frame features. Recently, Transformer models have successfully dominated the study of natural language processing (NLP), image classification, etc. However, the pure-Transformer based spatio-temporal learning can be prohibitively costly on memory and computation to extract fine-grained features from a tiny patch. To tackle the training difficulty and enhance the spatio-temporal learning, we construct a shifted chunk Transformer with pure self-attention blocks. Leveraging the recent efficient Transformer design in NLP, this shifted chunk Transformer can learn hierarchical spatio-temporal features from a local tiny patch to a global videoclip. Our shifted self-attention can also effectively model complicated inter-frame variances. Furthermore, we build a clip encoder based on Transformer to model long-term temporal dependencies. We conduct thorough ablation studies to validate each component and hyper-parameters in our shifted chunk Transformer, and it outperforms previous state-of-the-art approaches on Kinetics-400, Kinetics-600,UCF101, and HMDB51.
Replacing Rewards with Examples: Example-Based Policy Search via Recursive Classification
Ben Eysenbach · Sergey Levine · Russ Salakhutdinov
Reinforcement learning (RL) algorithms assume that users specify tasks by manually writing down a reward function. However, this process can be laborious and demands considerable technical expertise. Can we devise RL algorithms that instead enable users to specify tasks simply by providing examples of successful outcomes? In this paper, we derive a control algorithm that maximizes the future probability of these successful outcome examples. Prior work has approached similar problems with a two-stage process, first learning a reward function and then optimizing this reward function using another reinforcement learning algorithm. In contrast, our method directly learns a value function from transitions and successful outcomes, without learning this intermediate reward function. Our method therefore requires fewer hyperparameters to tune and lines of code to debug. We show that our method satisfies a new data-driven Bellman equation, where examples take the place of the typical reward function term. Experiments show that our approach outperforms prior methods that learn explicit reward functions.
Evidential Softmax for Sparse Multimodal Distributions in Deep Generative Models
Phil Chen · Masha Itkina · Ransalu Senanayake · Mykel J Kochenderfer
Many applications of generative models rely on the marginalization of their high-dimensional output probability distributions. Normalization functions that yield sparse probability distributions can make exact marginalization more computationally tractable. However, sparse normalization functions usually require alternative loss functions for training since the log-likelihood is undefined for sparse probability distributions. Furthermore, many sparse normalization functions often collapse the multimodality of distributions. In this work, we present ev-softmax, a sparse normalization function that preserves the multimodality of probability distributions. We derive its properties, including its gradient in closed-form, and introduce a continuous family of approximations to ev-softmax that have full support and can be trained with probabilistic loss functions such as negative log-likelihood and Kullback-Leibler divergence. We evaluate our method on a variety of generative models, including variational autoencoders and auto-regressive architectures. Our method outperforms existing dense and sparse normalization techniques in distributional accuracy. We demonstrate that ev-softmax successfully reduces the dimensionality of probability distributions while maintaining multimodality.
We give relative error coresets for training linear classifiers with a broad class of loss functions, including the logistic loss and hinge loss. Our construction achieves $(1\pm \epsilon)$ relative error with $\tilde O(d \cdot \mu_y(X)^2/\epsilon^2)$ points, where $\mu_y(X)$ is a natural complexity measure of the data matrix $X \in \mathbb{R}^{n \times d}$ and label vector $y \in \{-1,1\}^n$, introduced by Munteanu et al. 2018. Our result is based on subsampling data points with probabilities proportional to their $\ell_1$ $Lewis$ $weights$. It significantly improves on existing theoretical bounds and performs well in practice, outperforming uniform subsampling along with other importance sampling methods. Our sampling distribution does not depend on the labels, so can be used for active learning. It also does not depend on the specific loss function, so a single coreset can be used in multiple training scenarios.
Hyperparameter Tuning is All You Need for LISTA
Xiaohan Chen · Jialin Liu · Zhangyang Wang · Wotao Yin
Learned Iterative Shrinkage-Thresholding Algorithm (LISTA) introduces the concept of unrolling an iterative algorithm and training it like a neural network. It has had great success on sparse recovery. In this paper, we show that adding momentum to intermediate variables in the LISTA network achieves a better convergence rate and, in particular, the network with instance-optimal parameters is superlinearly convergent. Moreover, our new theoretical results lead to a practical approach of automatically and adaptively calculating the parameters of a LISTA network layer based on its previous layers. Perhaps most surprisingly, such an adaptive-parameter procedure reduces the training of LISTA to tuning only three hyperparameters from data: a new record set in the context of the recent advances on trimming down LISTA complexity. We call this new ultra-light weight network HyperLISTA. Compared to state-of-the-art LISTA models, HyperLISTA achieves almost the same performance on seen data distributions and performs better when tested on unseen distributions (specifically, those with different sparsity levels and nonzero magnitudes). Code is available: https://github.com/VITA-Group/HyperLISTA.
A Geometric Structure of Acceleration and Its Role in Making Gradients Small Fast
Jongmin Lee · Chanwoo Park · Ernest Ryu
Since Nesterov's seminal 1983 work, many accelerated first-order optimization methods have been proposed, but their analyses lacks a common unifying structure. In this work, we identify a geometric structure satisfied by a wide range of first-order accelerated methods. Using this geometric insight, we present several novel generalizations of accelerated methods. Most interesting among them is a method that reduces the squared gradient norm with $\mathcal{O}(1/K^4)$ rate in the prox-grad setup, faster than the $\mathcal{O}(1/K^3)$ rates of Nesterov's FGM or Kim and Fessler's FPGM-m.
Fast Federated Learning in the Presence of Arbitrary Device Unavailability
Xinran Gu · Kaixuan Huang · Jingzhao Zhang · Longbo Huang
Federated learning (FL) coordinates with numerous heterogeneous devices to collaboratively train a shared model while preserving user privacy. Despite its multiple advantages, FL faces new challenges. One challenge arises when devices drop out of the training process. In this case, the convergence of popular FL algorithms such as FedAvg is severely influenced by the straggling devices. To tackle this challenge, we study federated learning algorithms in the presence of arbitrary device unavailability and propose an algorithm named Memory-augmented Impatient Federated Averaging (MIFA). Our algorithm efficiently avoids excessive latency induced by inactive devices, and corrects the gradient bias using the memorized latest updates from them. We prove that MIFA achieves minimax optimal convergence rates on non-i.i.d. data for both strongly convex and non-convex smooth functions. We also provide an explicit characterization of the improvement over baseline algorithms through a case study, and validate the results by numerical experiments on real-world datasets.
SQALER: Scaling Question Answering by Decoupling Multi-Hop and Logical Reasoning
Mattia Atzeni · Jasmina Bogojeska · Andreas Loukas
State-of-the-art approaches to reasoning and question answering over knowledge graphs (KGs) usually scale with the number of edges and can only be applied effectively on small instance-dependent subgraphs. In this paper, we address this issue by showing that multi-hop and more complex logical reasoning can be accomplished separately without losing expressive power. Motivated by this insight, we propose an approach to multi-hop reasoning that scales linearly with the number of relation types in the graph, which is usually significantly smaller than the number of edges or nodes. This produces a set of candidate solutions that can be provably refined to recover the solution to the original problem. Our experiments on knowledge-based question answering show that our approach solves the multi-hop MetaQA dataset, achieves a new state-of-the-art on the more challenging WebQuestionsSP, is orders of magnitude more scalable than competitive approaches, and can achieve compositional generalization out of the training distribution.
FL-WBC: Enhancing Robustness against Model Poisoning Attacks in Federated Learning from a Client Perspective
Jingwei Sun · Ang Li · Louis DiValentin · Amin Hassanzadeh · Yiran Chen · Hai Li
Federated learning (FL) is a popular distributed learning framework that trains a global model through iterative communications between a central server and edge devices. Recent works have demonstrated that FL is vulnerable to model poisoning attacks. Several server-based defense approaches (e.g. robust aggregation), have been proposed to mitigate such attacks. However, we empirically show that under extremely strong attacks, these defensive methods fail to guarantee the robustness of FL. More importantly, we observe that as long as the global model is polluted, the impact of attacks on the global model will remain in subsequent rounds even if there are no subsequent attacks. In this work, we propose a client-based defense, named White Blood Cell for Federated Learning (FL-WBC), which can mitigate model poisoning attacks that have already polluted the global model. The key idea of FL-WBC is to identify the parameter space where long-lasting attack effect on parameters resides and perturb that space during local training. Furthermore, we derive a certified robustness guarantee against model poisoning attacks and a convergence guarantee to FedAvg after applying our FL-WBC. We conduct experiments on FasionMNIST and CIFAR10 to evaluate the defense against state-of-the-art model poisoning attacks. The results demonstrate that our method can effectively mitigate model poisoning attack impact on the global model within 5 communication rounds with nearly no accuracy drop under both IID and Non-IID settings. Our defense is also complementary to existing server-based robust aggregation approaches and can further improve the robustness of FL under extremely strong attacks.
Pretraining Representations for Data-Efficient Reinforcement Learning
Max Schwarzer · Nitarshan Rajkumar · Michael Noukhovitch · Ankesh Anand · Laurent Charlin · R Devon Hjelm · Philip Bachman · Aaron Courville
Data efficiency is a key challenge for deep reinforcement learning. We address this problem by using unlabeled data to pretrain an encoder which is then finetuned on a small amount of task-specific data. To encourage learning representations which capture diverse aspects of the underlying MDP, we employ a combination of latent dynamics modelling and unsupervised goal-conditioned RL. When limited to 100k steps of interaction on Atari games (equivalent to two hours of human experience), our approach significantly surpasses prior work combining offline representation pretraining with task-specific finetuning, and compares favourably with other pretraining methods that require orders of magnitude more data. Our approach shows particular promise when combined with larger models as well as more diverse, task-aligned observational data -- approaching human-level performance and data-efficiency on Atari in our best setting.
Universal Approximation Using Well-Conditioned Normalizing Flows
Holden Lee · Chirag Pabbaraju · Anish Prasad Sevekari · Andrej Risteski
Normalizing flows are a widely used class of latent-variable generative models with a tractable likelihood. Affine-coupling models [Dinh et al., 2014, 2016] are a particularly common type of normalizing flows, for which the Jacobian of the latent-to-observable-variable transformation is triangular, allowing the likelihood to be computed in linear time. Despite the widespread usage of affine couplings, the special structure of the architecture makes understanding their representational power challenging. The question of universal approximation was only recently resolved by three parallel papers [Huang et al., 2020, Zhang et al., 2020, Koehler et al., 2020] – who showed reasonably regular distributions can be approximated arbitrarily well using affine couplings – albeit with networks with a nearly-singular Jacobian. As ill-conditioned Jacobians are an obstacle for likelihood-based training, the fundamental question remains: which distributions can be approximated using well-conditioned affine coupling flows? In this paper, we show that any log-concave distribution can be approximated using well-conditioned affine-coupling flows. In terms of proof techniques, we uncover and leverage deep connections between affine coupling architectures, underdamped Langevin dynamics (a stochastic differential equation often used to sample from Gibbs measures) and Hénon maps (a structured dynamical system that appears in the study of symplectic diffeomorphisms). In terms of informing practice, we approximate a padded version of the input distribution with iid Gaussians – a strategy which Koehler et al. [2020] empirically observed to result in better-conditioned flows, but had hitherto no theoretical grounding. Our proof can thus be seen as providing theoretical evidence for the benefits of Gaussian padding when training normalizing flows.
Gradient Descent on Two-layer Nets: Margin Maximization and Simplicity Bias
Kaifeng Lyu · Zhiyuan Li · Runzhe Wang · Sanjeev Arora
The generalization mystery of overparametrized deep nets has motivated efforts to understand how gradient descent (GD) converges to low-loss solutions that generalize well. Real-life neural networks are initialized from small random values and trained with cross-entropy loss for classification (unlike the "lazy" or "NTK" regime of training where analysis was more successful), and a recent sequence of results (Lyu and Li, 2020; Chizat and Bach, 2020; Ji and Telgarsky, 2020) provide theoretical evidence that GD may converge to the "max-margin" solution with zero loss, which presumably generalizes well. However, the global optimality of margin is proved only in some settings where neural nets are infinitely or exponentially wide. The current paper is able to establish this global optimality for two-layer Leaky ReLU nets trained with gradient flow on linearly separable and symmetric data, regardless of the width. The analysis also gives some theoretical justification for recent empirical findings (Kalimeris et al., 2019) on the so-called simplicity bias of GD towards linear or other "simple" classes of solutions, especially early in training. On the pessimistic side, the paper suggests that such results are fragile. A simple data manipulation can make gradient flow converge to a linear classifier with suboptimal margin.
MST: Masked Self-Supervised Transformer for Visual Representation
Zhaowen Li · Zhiyang Chen · Fan Yang · Wei Li · Yousong Zhu · Chaoyang Zhao · Rui Deng · Liwei Wu · Rui Zhao · Ming Tang · Jinqiao Wang
Transformer has been widely used for self-supervised pre-training in Natural Language Processing (NLP) and achieved great success. However, it has not been fully explored in visual self-supervised learning. Meanwhile, previous methods only consider the high-level feature and learning representation from a global perspective, which may fail to transfer to the downstream dense prediction tasks focusing on local features. In this paper, we present a novel Masked Self-supervised Transformer approach named MST, which can explicitly capture the local context of an image while preserving the global semantic information. Specifically, inspired by the Masked Language Modeling (MLM) in NLP, we propose a masked token strategy based on the multi-head self-attention map, which dynamically masks some tokens of local patches without damaging the crucial structure for self-supervised learning. More importantly, the masked tokens together with the remaining tokens are further recovered by a global image decoder, which preserves the spatial information of the image and is more friendly to the downstream dense prediction tasks. The experiments on multiple datasets demonstrate the effectiveness and generality of the proposed method. For instance, MST achieves Top-1 accuracy of 76.9% with DeiT-S only using 300-epoch pre-training by linear evaluation, which outperforms supervised methods with the same epoch by 0.4% and its comparable variant DINO by 1.0%. For dense prediction tasks, MST also achieves 42.7% mAP on MS COCO object detection and 74.04% mIoU on Cityscapes segmentation only with 100-epoch pre-training.
Demystifying and Generalizing BinaryConnect
Tim Dockhorn · Yaoliang Yu · Eyyüb Sari · Mahdi Zolnouri · Vahid Partovi Nia
BinaryConnect (BC) and its many variations have become the de facto standard for neural network quantization. However, our understanding of the inner workings of BC is still quite limited. We attempt to close this gap in four different aspects: (a) we show that existing quantization algorithms, including post-training quantization, are surprisingly similar to each other; (b) we argue for proximal maps as a natural family of quantizers that is both easy to design and analyze; (c) we refine the observation that BC is a special case of dual averaging, which itself is a special case of the generalized conditional gradient algorithm; (d) consequently, we propose ProxConnect (PC) as a generalization of BC and we prove its convergence properties by exploiting the established connections. We conduct experiments on CIFAR-10 and ImageNet, and verify that PC achieves competitive performance.
Representing Long-Range Context for Graph Neural Networks with Global Attention
Zhanghao Wu · Paras Jain · Matthew Wright · Azalia Mirhoseini · Joseph Gonzalez · Ion Stoica
Graph neural networks are powerful architectures for structured datasets. However, current methods struggle to represent long-range dependencies. Scaling the depth or width of GNNs is insufficient to broaden receptive fields as larger GNNs encounter optimization instabilities such as vanishing gradients and representation oversmoothing, while pooling-based approaches have yet to become as universally useful as in computer vision. In this work, we propose the use of Transformer-based self-attention to learn long-range pairwise relationships, with a novel “readout” mechanism to obtain a global graph embedding. Inspired by recent computer vision results that find position-invariant attention performant in learning long-range relationships, our method, which we call GraphTrans, applies a permutation-invariant Transformer module after a standard GNN module. This simple architecture leads to state-of-the-art results on several graph classification tasks, outperforming methods that explicitly encode graph structure. Our results suggest that purely-learning-based approaches without graph structure may be suitable for learning high-level, long-range relationships on graphs. Code for GraphTrans is available at https://github.com/ucbrise/graphtrans.
Learning Student-Friendly Teacher Networks for Knowledge Distillation
Dae Young Park · Moon-Hyun Cha · changwook jeong · Daesin Kim · Bohyung Han
We propose a novel knowledge distillation approach to facilitate the transfer of dark knowledge from a teacher to a student. Contrary to most of the existing methods that rely on effective training of student models given pretrained teachers, we aim to learn the teacher models that are friendly to students and, consequently, more appropriate for knowledge transfer. In other words, at the time of optimizing a teacher model, the proposed algorithm learns the student branches jointly to obtain student-friendly representations. Since the main goal of our approach lies in training teacher models and the subsequent knowledge distillation procedure is straightforward, most of the existing knowledge distillation methods can adopt this technique to improve the performance of diverse student models in terms of accuracy and convergence speed. The proposed algorithm demonstrates outstanding accuracy in several well-known knowledge distillation techniques with various combinations of teacher and student models even in the case that their architectures are heterogeneous and there is no prior knowledge about student models at the time of training teacher networks
We introduce channel permutations as a method to maximize the accuracy of N:M sparse networks. N:M sparsity requires N out of M consecutive elements to be zero and has been shown to maintain accuracy for many models and tasks with a simple prune and fine-tune workflow. By permuting weight matrices along their channel dimension and adjusting the surrounding layers appropriately, we demonstrate accuracy recovery for even small, parameter-efficient networks, without affecting inference run-time. We also present both a quality metric to simplify judging permutations as well as efficient methods to search for high-quality permutations, including two optimizations to escape local minima. Finally, we share an ablation study to show the importance of each part of our search algorithm, experimental results showing correlation between our quality metric and final network accuracy, improved sparse network accuracy using our techniques with insignificant overhead to training time, and the transformation of unstructured to structured sparse workloads. Code to use these techniques when generating a 2:4 sparse network is available at https://github.com/NVIDIA/apex/tree/master/apex/contrib/sparsity.
Progressive Coordinate Transforms for Monocular 3D Object Detection
Li Wang · Li Zhang · Yi Zhu · Zhi Zhang · Tong He · Mu Li · Xiangyang Xue
Recognizing and localizing objects in the 3D space is a crucial ability for an AI agent to perceive its surrounding environment. While significant progress has been achieved with expensive LiDAR point clouds, it poses a great challenge for 3D object detection given only a monocular image. While there exist different alternatives for tackling this problem, it is found that they are either equipped with heavy networks to fuse RGB and depth information or empirically ineffective to process millions of pseudo-LiDAR points. With in-depth examination, we realize that these limitations are rooted in inaccurate object localization. In this paper, we propose a novel and lightweight approach, dubbed {\em Progressive Coordinate Transforms} (PCT) to facilitate learning coordinate representations. Specifically, a localization boosting mechanism with confidence-aware loss is introduced to progressively refine the localization prediction. In addition, semantic image representation is also exploited to compensate for the usage of patch proposals. Despite being lightweight and simple, our strategy allows us to establish a new state-of-the-art among the monocular 3D detectors on the competitive KITTI benchmark. At the same time, our proposed PCT shows great generalization to most coordinate-based 3D detection frameworks.
For high-dimensional hierarchical models, consider exchangeability of effects across covariates instead of across datasets
Brian Trippe · Hilary Finucane · Tamara Broderick
Hierarchical Bayesian methods enable information sharing across regression problems on multiple groups of data. While standard practice is to model regression parameters (effects) as (1) exchangeable across the groups and (2) correlated to differing degrees across covariates, we show that this approach exhibits poor statistical performance when the number of covariates exceeds the number of groups. For instance, in statistical genetics, we might regress dozens of traits (defining groups) for thousands of individuals (responses) on up to millions of genetic variants (covariates). When an analyst has more covariates than groups, we argue that it is often preferable to instead model effects as (1) exchangeable across covariates and (2) correlated to differing degrees across groups. To this end, we propose a hierarchical model expressing our alternative perspective. We devise an empirical Bayes estimator for learning the degree of correlation between groups. We develop theory that demonstrates that our method outperforms the classic approach when the number of covariates dominates the number of groups, and corroborate this result empirically on several high-dimensional multiple regression and classification problems.
Bilevel optimization has been widely applied in many important machine learning applications such as hyperparameter optimization and meta-learning. Recently, several momentum-based algorithms have been proposed to solve bilevel optimization problems faster. However, those momentum-based algorithms do not achieve provably better computational complexity than $\mathcal{\widetilde O}(\epsilon^{-2})$ of the SGD-based algorithm. In this paper, we propose two new algorithms for bilevel optimization, where the first algorithm adopts momentum-based recursive iterations, and the second algorithm adopts recursive gradient estimations in nested loops to decrease the variance. We show that both algorithms achieve the complexity of $\mathcal{\widetilde O}(\epsilon^{-1.5})$, which outperforms all existing algorithms by the order of magnitude. Our experiments validate our theoretical results and demonstrate the superior empirical performance of our algorithms in hyperparameter applications.
Leveraging Spatial and Temporal Correlations in Sparsified Mean Estimation
Divyansh Jhunjhunwala · Ankur Mallick · Advait Gadhikar · Swanand Kadhe · Gauri Joshi
We study the problem of estimating at a central server the mean of a set of vectors distributed across several nodes (one vector per node). When the vectors are high-dimensional, the communication cost of sending entire vectors may be prohibitive, and it may be imperative for them to use sparsification techniques. While most existing work on sparsified mean estimation is agnostic to the characteristics of the data vectors, in many practical applications such as federated learning, there may be spatial correlations (similarities in the vectors sent by different nodes) or temporal correlations (similarities in the data sent by a single node over different iterations of the algorithm) in the data vectors. We leverage these correlations by simply modifying the decoding method used by the server to estimate the mean. We provide an analysis of the resulting estimation error as well as experiments for PCA, K-Means and Logistic Regression, which show that our estimators consistently outperform more sophisticated and expensive sparsification methods.
Class-Incremental Learning via Dual Augmentation
Fei Zhu · Zhen Cheng · Xu-yao Zhang · Cheng-lin Liu
Deep learning systems typically suffer from catastrophic forgetting of past knowledge when acquiring new skills continually. In this paper, we emphasize two dilemmas, representation bias and classifier bias in class-incremental learning, and present a simple and novel approach that employs explicit class augmentation (classAug) and implicit semantic augmentation (semanAug) to address the two biases, respectively. On the one hand, we propose to address the representation bias by learning transferable and diverse representations. Specifically, we investigate the feature representations in incremental learning based on spectral analysis and present a simple technique called classAug, to let the model see more classes during training for learning representations transferable across classes. On the other hand, to overcome the classifier bias, semanAug implicitly involves the simultaneous generating of an infinite number of instances of old classes in the deep feature space, which poses tighter constraints to maintain the decision boundary of previously learned classes. Without storing any old samples, our method can perform comparably with representative data replay based approaches.
We consider Bayesian optimization of the output of a network of functions, where each function takes as input the output of its parent nodes, and where the network takes significant time to evaluate. Such problems arise, for example, in reinforcement learning, engineering design, and manufacturing. While the standard Bayesian optimization approach observes only the final output, our approach delivers greater query efficiency by leveraging information that the former ignores: intermediate output within the network. This is achieved by modeling the nodes of the network using Gaussian processes and choosing the points to evaluate using, as our acquisition function, the expected improvement computed with respect to the implied posterior on the objective. Although the non-Gaussian nature of this posterior prevents computing our acquisition function in closed form, we show that it can be efficiently maximized via sample average approximation. In addition, we prove that our method is asymptotically consistent, meaning that it finds a globally optimal solution as the number of evaluations grows to infinity, thus generalizing previously known convergence results for the expected improvement. Notably, this holds even though our method might not evaluate the domain densely, instead leveraging problem structure to leave regions unexplored. Finally, we show that our approach dramatically outperforms standard Bayesian optimization methods in several synthetic and real-world problems.
Look at What I’m Doing: Self-Supervised Spatial Grounding of Narrations in Instructional Videos
Reuben Tan · Bryan Plummer · Kate Saenko · Hailin Jin · Bryan Russell
We introduce the task of spatially localizing narrated interactions in videos. Key to our approach is the ability to learn to spatially localize interactions with self-supervision on a large corpus of videos with accompanying transcribed narrations. To achieve this goal, we propose a multilayer cross-modal attention network that enables effective optimization of a contrastive loss during training. We introduce a divided strategy that alternates between computing inter- and intra-modal attention across the visual and natural language modalities, which allows effective training via directly contrasting the two modalities' representations. We demonstrate the effectiveness of our approach by self-training on the HowTo100M instructional video dataset and evaluating on a newly collected dataset of localized described interactions in the YouCook2 dataset. We show that our approach outperforms alternative baselines, including shallow co-attention and full cross-modal attention. We also apply our approach to grounding phrases in images with weak supervision on Flickr30K and show that stacking multiple attention layers is effective and, when combined with a word-to-region loss, achieves state of the art on recall-at-one and pointing hand accuracies.
Controlled Text Generation as Continuous Optimization with Multiple Constraints
Sachin Kumar · Eric Malmi · Aliaksei Severyn · Yulia Tsvetkov
As large-scale language model pretraining pushes the state-of-the-art in text generation, recent work has turned to controlling attributes of the text such models generate. While modifying the pretrained models via fine-tuning remains the popular approach, it incurs a significant computational cost and can be infeasible due to a lack of appropriate data. As an alternative, we propose \textsc{MuCoCO}---a flexible and modular algorithm for controllable inference from pretrained models. We formulate the decoding process as an optimization problem that allows for multiple attributes we aim to control to be easily incorporated as differentiable constraints. By relaxing this discrete optimization to a continuous one, we make use of Lagrangian multipliers and gradient-descent-based techniques to generate the desired text. We evaluate our approach on controllable machine translation and style transfer with multiple sentence-level attributes and observe significant improvements over baselines.
Topic Modeling Revisited: A Document Graph-based Neural Network Perspective
Dazhong Shen · Chuan Qin · Chao Wang · Zheng Dong · Hengshu Zhu · Hui Xiong
Most topic modeling approaches are based on the bag-of-words assumption, where each word is required to be conditionally independent in the same document. As a result, both of the generative story and the topic formulation have totally ignored the semantic dependency among words, which is important for improving the semantic comprehension and model interpretability. To this end, in this paper, we revisit the task of topic modeling by transforming each document into a directed graph with word dependency as edges between word nodes, and develop a novel approach, namely Graph Neural Topic Model (GNTM). Specifically, in GNTM, a well-defined probabilistic generative story is designed to model both the graph structure and word sets with multinomial distributions on the vocabulary and word dependency edge set as the topics. Meanwhile, a Neural Variational Inference (NVI) approach is proposed to learn our model with graph neural networks to encode the document graphs. Besides, we theoretically demonstrate that Latent Dirichlet Allocation (LDA) can be derived from GNTM as a special case with similar objective functions. Finally, extensive experiments on four benchmark datasets have clearly demonstrated the effectiveness and interpretability of GNTM compared with state-of-the-art baselines.
Robust Compressed Sensing MRI with Deep Generative Priors
Ajil Jalal · Marius Arvinte · Giannis Daras · Eric Price · Alex Dimakis · Jon Tamir
The CSGM framework (Bora-Jalal-Price-Dimakis'17) has shown that deepgenerative priors can be powerful tools for solving inverse problems.However, to date this framework has been empirically successful only oncertain datasets (for example, human faces and MNIST digits), and itis known to perform poorly on out-of-distribution samples. In thispaper, we present the first successful application of the CSGMframework on clinical MRI data. We train a generative prior on brainscans from the fastMRI dataset, and show that posterior sampling viaLangevin dynamics achieves high quality reconstructions. Furthermore,our experiments and theory show that posterior sampling is robust tochanges in the ground-truth distribution and measurement process.Our code and models are available at: \url{https://github.com/utcsilab/csgm-mri-langevin}.
Detecting Errors and Estimating Accuracy on Unlabeled Data with Self-training Ensembles
Jiefeng Chen · Frederick Liu · Besim Avci · Xi Wu · Yingyu Liang · Somesh Jha
When a deep learning model is deployed in the wild, it can encounter test data drawn from distributions different from the training data distribution and suffer drop in performance. For safe deployment, it is essential to estimate the accuracy of the pre-trained model on the test data. However, the labels for the test inputs are usually not immediately available in practice, and obtaining them can be expensive. This observation leads to two challenging tasks: (1) unsupervised accuracy estimation, which aims to estimate the accuracy of a pre-trained classifier on a set of unlabeled test inputs; (2) error detection, which aims to identify mis-classified test inputs. In this paper, we propose a principled and practically effective framework that simultaneously addresses the two tasks. The proposed framework iteratively learns an ensemble of models to identify mis-classified data points and performs self-training to improve the ensemble with the identified points. Theoretical analysis demonstrates that our framework enjoys provable guarantees for both accuracy estimation and error detection under mild conditions readily satisfied by practical deep learning models. Along with the framework, we proposed and experimented with two instantiations and achieved state-of-the-art results on 59 tasks. For example, on iWildCam, one instantiation reduces the estimation error for unsupervised accuracy estimation by at least 70% and improves the F1 score for error detection by at least 4.7% compared to existing methods.
Existing observational approaches for learning human preferences, such as inverse reinforcement learning, usually make strong assumptions about the observability of the human's environment. However, in reality, people make many important decisions under uncertainty. To better understand preference learning in these cases, we study the setting of inverse decision theory (IDT), a previously proposed framework where a human is observed making non-sequential binary decisions under uncertainty. In IDT, the human's preferences are conveyed through their loss function, which expresses a tradeoff between different types of mistakes. We give the first statistical analysis of IDT, providing conditions necessary to identify these preferences and characterizing the sample complexity—the number of decisions that must be observed to learn the tradeoff the human is making to a desired precision. Interestingly, we show that it is actually easier to identify preferences when the decision problem is more uncertain. Furthermore, uncertain decision problems allow us to relax the unrealistic assumption that the human is an optimal decision maker but still identify their exact preferences; we give sample complexities in this suboptimal case as well. Our analysis contradicts the intuition that partial observability should make preference learning more difficult. It also provides a first step towards understanding and improving preference learning methods for uncertain and suboptimal humans.
Probability Paths and the Structure of Predictions over Time
Zhiyuan Jerry Lin · Hao Sheng · Sharad Goel
In settings ranging from weather forecasts to political prognostications to financial projections, probability estimates of future binary outcomes often evolve over time. For example, the estimated likelihood of rain on a specific day changes by the hour as new information becomes available. Given a collection of such probability paths, we introduce a Bayesian framework -- which we call the Gaussian latent information martingale, or GLIM -- for modeling the structure of dynamic predictions over time. Suppose, for example, that the likelihood of rain in a week is 50%, and consider two hypothetical scenarios. In the first, one expects the forecast to be equally likely to become either 25% or 75% tomorrow; in the second, one expects the forecast to stay constant for the next several days. A time-sensitive decision-maker might select a course of action immediately in the latter scenario, but may postpone their decision in the former, knowing that new information is imminent. We model these trajectories by assuming predictions update according to a latent process of information flow, which is inferred from historical data. In contrast to general methods for time series analysis, this approach preserves important properties of probability paths such as the martingale structure and appropriate amount of volatility and better quantifies future uncertainties around probability paths. We show that GLIM outperforms three popular baseline methods, producing better estimated posterior probability path distributions measured by three different metrics. By elucidating the dynamic structure of predictions over time, we hope to help individuals make more informed choices.
Unlike standard prediction tasks, survival analysis requires modeling right censored data, which must be treated with care. While deep neural networks excel in traditional supervised learning, it remains unclear how to best utilize these models in survival analysis. A key question asks which data-generating assumptions of traditional survival models should be retained and which should be made more flexible via the function-approximating capabilities of neural networks. Rather than estimating the survival function targeted by most existing methods, we introduce a Deep Extended Hazard (DeepEH) model to provide a flexible and general framework for deep survival analysis. The extended hazard model includes the conventional Cox proportional hazards and accelerated failure time models as special cases, so DeepEH subsumes the popular Deep Cox proportional hazard (DeepSurv) and Deep Accelerated Failure Time (DeepAFT) models. We additionally provide theoretical support for the proposed DeepEH model by establishing consistency and convergence rate of the survival function estimator, which underscore the attractive feature that deep learning is able to detect low-dimensional structure of data in high-dimensional space. Numerical experiments also provide evidence that the proposed methods outperform existing statistical and deep learning approaches to survival analysis.
A nonparametric method for gradual change problems with statistical guarantees
Lizhen Nie · Dan Nicolae
We consider the detection and localization of gradual changes in the distribution of a sequence of time-ordered observations. Existing literature focuses mostly on the simpler abrupt setting which assumes a discontinuity jump in distribution, and is unrealistic for some applied settings. We propose a general method for detecting and localizing gradual changes that does not require any specific data generating model, any particular data type, or any prior knowledge about which features of the distribution are subject to change. Despite relaxed assumptions, the proposed method possesses proven theoretical guarantees for both detection and localization.
Active 3D Shape Reconstruction from Vision and Touch
Edward Smith · David Meger · Luis Pineda · Roberto Calandra · Jitendra Malik · Adriana Romero Soriano · Michal Drozdzal
Humans build 3D understandings of the world through active object exploration, using jointly their senses of vision and touch. However, in 3D shape reconstruction, most recent progress has relied on static datasets of limited sensory data such as RGB images, depth maps or haptic readings, leaving the active exploration of the shape largely unexplored. In active touch sensing for 3D reconstruction, the goal is to actively select the tactile readings that maximize the improvement in shape reconstruction accuracy. However, the development of deep learning-based active touch models is largely limited by the lack of frameworks for shape exploration. In this paper, we focus on this problem and introduce a system composed of: 1) a haptic simulator leveraging high spatial resolution vision-based tactile sensors for active touching of 3D objects; 2) a mesh-based 3D shape reconstruction model that relies on tactile or visuotactile signals; and 3) a set of data-driven solutions with either tactile or visuotactile priors to guide the shape exploration. Our framework enables the development of the first fully data-driven solutions to active touch on top of learned models for object understanding. Our experiments show the benefits of such solutions in the task of 3D shape understanding where our models consistently outperform natural baselines. We provide our framework as a tool to foster future research in this direction.
Why Do Pretrained Language Models Help in Downstream Tasks? An Analysis of Head and Prompt Tuning
Colin Wei · Sang Michael Xie · Tengyu Ma
Pretrained language models have achieved state-of-the-art performance when adapted to a downstream NLP task. However, theoretical analysis of these models is scarce and challenging since the pretraining and downstream tasks can be very different. We propose an analysis framework that links the pretraining and downstream tasks with an underlying latent variable generative model of text -- the downstream classifier must recover a function of the posterior distribution over the latent variables. We analyze head tuning (learning a classifier on top of the frozen pretrained model) and prompt tuning in this setting. The generative model in our analysis is either a Hidden Markov Model (HMM) or an HMM augmented with a latent memory component, motivated by long-term dependencies in natural language. We show that 1) under certain non-degeneracy conditions on the HMM, simple classification heads can solve the downstream task, 2) prompt tuning obtains downstream guarantees with weaker non-degeneracy conditions, and 3) our recovery guarantees for the memory-augmented HMM are stronger than for the vanilla HMM because task-relevant information is easier to recover from the long-term memory. Experiments on synthetically generated data from HMMs back our theoretical findings.
We address an inherent difficulty in welfare-theoretic fair machine learning (ML), by proposing an equivalently-axiomatically justified alternative setting, and studying the resulting computational and statistical learning questions. Welfare metrics quantify overall wellbeing across a population of groups, and welfare-based objectives and constraints have recently been proposed to incentivize fair ML methods to satisfy their diverse needs. However, many ML problems are cast as loss minimization tasks, rather than utility maximization, and thus require nontrivial modeling to construct utility functions. We define a complementary metric, termed malfare, measuring overall societal harm, with axiomatic justification via the standard axioms of cardinal welfare, and cast fair ML as malfare minimization over the risk values (expected losses) of each group. Surprisingly, the axioms of cardinal welfare (malfare) dictate that this is not equivalent to simply defining utility as negative loss and maximizing welfare. Building upon these concepts, we define fair-PAC learning, where a fair-PAC learner is an algorithm that learns an ε-δ malfare-optimal model with bounded sample complexity, for any data distribution and (axiomatically justified) malfare concept. Finally, we show conditions under which many standard PAC-learners may be converted to fair-PAC learners, which places fair-PAC learning on firm theoretical ground, as it yields statistical — and in some cases computational — efficiency guarantees for many well-studied ML models. Fair-PAC learning is also practically relevant, as it democratizes fair ML by providing concrete training algorithms with rigorous generalization guarantees.
Neural Symplectic Form: Learning Hamiltonian Equations on General Coordinate Systems
Yuhan Chen · Takashi Matsubara · Takaharu Yaguchi
In recent years, substantial research on the methods for learning Hamiltonian equations has been conducted. Although these approaches are very promising, the commonly used representation of the Hamilton equation uses the generalized momenta, which are generally unknown. Therefore, the training data must be represented in this unknown coordinate system, and this causes difficulty in applying the model to real data. Meanwhile, Hamiltonian equations also have a coordinate-free expression that is expressed by using the symplectic 2-form. In this study, we propose a model that learns the symplectic form from data using neural networks, thereby providing a method for learning Hamiltonian equations from data represented in general coordinate systems, which are not limited to the generalized coordinates and the generalized momenta. Consequently, the proposed method is capable not only of modeling target equations of both Hamiltonian and Lagrangian formalisms but also of extracting unknown Hamiltonian structures hidden in the data. For example, many polynomial ordinary differential equations such as the Lotka-Volterra equation are known to admit non-trivial Hamiltonian structures, and our numerical experiments show that such structures can be certainly learned from data. Technically, each symplectic 2-form is associated with a skew-symmetric matrix, but not all skew-symmetric matrices define the symplectic 2-form. In the proposed method, using the fact that symplectic 2-forms are derived as the exterior derivative of certain differential 1-forms, we model the differential 1-form by neural networks, thereby improving the efficiency of learning.
Sample-Efficient Reinforcement Learning Is Feasible for Linearly Realizable MDPs with Limited Revisiting
Gen Li · Yuxin Chen · Yuejie Chi · Yuantao Gu · Yuting Wei
Low-complexity models such as linear function representation play a pivotal role in enabling sample-efficient reinforcement learning (RL). The current paper pertains to a scenario with value-based linear representation, which postulates linear realizability of the optimal Q-function (also called the ``linear $Q^{\star}$ problem''). While linear realizability alone does not allow for sample-efficient solutions in general, the presence of a large sub-optimality gap is a potential game changer, depending on the sampling mechanism in use. Informally, sample efficiency is achievable with a large sub-optimality gap when a generative model is available, but is unfortunately infeasible when we turn to standard online RL settings. We make progress towards understanding this linear $Q^{\star}$ problem by investigating a new sampling protocol, which draws samples in an online/exploratory fashion but allows one to backtrack and revisit previous states. This protocol is more flexible than the standard online RL setting, while being practically relevant and far more restrictive than the generative model. We develop an algorithm tailored to this setting, achieving a sample complexity that scales polynomially with the feature dimension, the horizon, and the inverse sub-optimality gap, but not the size of the state/action space. Our findings underscore the fundamental interplay between sampling protocols and low-complexity function representation in RL.
Point clouds and sets are input data-types which pose unique problems to deep learning. Since sets can have variable cardinality and are unchanged by permutation, the input space for these problems naturally form infinite-dimensional non-Euclidean spaces. Despite these mathematical difficulties, PointNet (Qi et al. 2017) and Deep Sets (Zaheer et al. 2017) introduced foundational neural network architectures to address these problems. In this paper we present a unified framework to study the expressive power of such networks as well as their extensions beyond point clouds (partially addressing a conjecture on the extendibility of DeepSets along the way). To this end, we demonstrate the crucial role that the Hausdorff and Wasserstein metrics play and prove new cardinality-agnostic universality results to characterize exactly which functions can be approximated by these models. In particular, these results imply that PointNet generally cannot approximate averages of continuous functions over sets (e.g. center-of-mass or higher moments) implying that DeepSets is strictly more expressive than PointNet in the constant cardinality setting. Moreover, we obtain explicit lower-bounds on the approximation error and present a simple method to produce arbitrarily many examples of this failure-mode. Counterintuitively, we also prove that in the unbounded cardinality setting that any function which can be uniformly approximated by both PointNet and normalized-DeepSets must be constant. Finally, we also prove theorems on the Lipschitz properties of PointNet and normalized-DeepSets which shed insight into exploitable inductive bias in these networks.
Formalizing the Generalization-Forgetting Trade-off in Continual Learning
Krishnan Raghavan · Prasanna Balaprakash
We formulate the continual learning (CL) problem via dynamic programming and model the trade-off between catastrophic forgetting and generalization as a two-player sequential game. In this approach, player 1 maximizes the cost due to lack of generalization whereas player 2 minimizes the cost due to catastrophic forgetting. We show theoretically that a balance point between the two players exists for each task and that this point is stable (once the balance is achieved, the two players stay at the balance point). Next, we introduce balanced continual learning (BCL), which is designed to attain balance between generalization and forgetting and empirically demonstrate that BCL is comparable to or better than the state of the art.
Sliced Mutual Information: A Scalable Measure of Statistical Dependence
Ziv Goldfeld · Kristjan Greenewald
Mutual information (MI) is a fundamental measure of statistical dependence, with a myriad of applications to information theory, statistics, and machine learning. While it possesses many desirable structural properties, the estimation of high-dimensional MI from samples suffers from the curse of dimensionality. Motivated by statistical scalability to high dimensions, this paper proposes sliced MI (SMI) as a surrogate measure of dependence. SMI is defined as an average of MI terms between one-dimensional random projections. We show that it preserves many of the structural properties of classic MI, while gaining scalable computation and efficient estimation from samples. Furthermore, and in contrast to classic MI, SMI can grow as a result of deterministic transformations. This enables leveraging SMI for feature extraction by optimizing it over processing functions of raw data to identify useful representations thereof. Our theory is supported by numerical studies of independence testing and feature extraction, which demonstrate the potential gains SMI offers over classic MI for high-dimensional inference.
Recent advances in deep neural networks allowed artificial agents to derive their own emergent languages that promote interaction, coordination, and collaboration within a group. Just as we humans have succeeded in creating a shared language that allows us to interact within a large group, can the emergent communication within an artificial group converge to a shared, agreed language? This research provides an analytical study of the shared emergent language within the group communication settings of different sizes and connectivities. As the group size increases up to hundreds, agents start to speak dissimilar languages, but the rate at which they successfully communicate is maintained. We observe the emergence of different dialects when we restrict the group communication to have local connectivities only. Finally, we provide optimization results of group communication graphs when the number of agents one can communicate with is restricted or when we penalize communication between distant agent pairs. The optimized communication graphs show superior communication success rates compared to graphs with same number of links as well as the emergence of hub nodes and scale-free networks.
Regret Minimization Experience Replay in Off-Policy Reinforcement Learning
Xu-Hui Liu · Zhenghai Xue · Jingcheng Pang · Shengyi Jiang · Feng Xu · Yang Yu
In reinforcement learning, experience replay stores past samples for further reuse. Prioritized sampling is a promising technique to better utilize these samples. Previous criteria of prioritization include TD error, recentness and corrective feedback, which are mostly heuristically designed. In this work, we start from the regret minimization objective, and obtain an optimal prioritization strategy for Bellman update that can directly maximize the return of the policy. The theory suggests that data with higher hindsight TD error, better on-policiness and more accurate Q value should be assigned with higher weights during sampling. Thus most previous criteria only consider this strategy partially. We not only provide theoretical justifications for previous criteria, but also propose two new methods to compute the prioritization weight, namely ReMERN and ReMERT. ReMERN learns an error network, while ReMERT exploits the temporal ordering of states. Both methods outperform previous prioritized sampling algorithms in challenging RL benchmarks, including MuJoCo, Atari and Meta-World.
Breaking the Sample Complexity Barrier to Regret-Optimal Model-Free Reinforcement Learning
Gen Li · Laixi Shi · Yuxin Chen · Yuantao Gu · Yuejie Chi
Achieving sample efficiency in online episodic reinforcement learning (RL) requires optimally balancing exploration and exploitation. When it comes to a finite-horizon episodic Markov decision process with $S$ states, $A$ actions and horizon length $H$, substantial progress has been achieved towards characterizing the minimax-optimal regret, which scales on the order of $\sqrt{H^2SAT}$ (modulo log factors) with $T$ the total number of samples. While several competing solution paradigms have been proposed to minimize regret, they are either memory-inefficient, or fall short of optimality unless the sample size exceeds an enormous threshold (e.g., $S^6A^4 \,\mathrm{poly}(H)$ for existing model-free methods).To overcome such a large sample size barrier to efficient RL, we design a novel model-free algorithm, with space complexity $O(SAH)$, that achieves near-optimal regret as soon as the sample size exceeds the order of $SA\,\mathrm{poly}(H)$. In terms of this sample size requirement (also referred to the initial burn-in cost), our method improves --- by at least a factor of $S^5A^3$ --- upon any prior memory-efficient algorithm that is asymptotically regret-optimal. Leveraging the recently introduced variance reduction strategy (also called {\em reference-advantage decomposition}), the proposed algorithm employs an {\em early-settled} reference update rule, with the aid of two Q-learning sequences with upper and lower confidence bounds. The design principle of our early-settled variance reduction method might be of independent interest to other RL settings that involve intricate exploration-exploitation trade-offs.
Practical, Provably-Correct Interactive Learning in the Realizable Setting: The Power of True Believers
Julian Katz-Samuels · Blake Mason · Kevin Jamieson · Rob Nowak
We consider interactive learning in the realizable setting and develop a general framework to handle problems ranging from best arm identification to active classification. We begin our investigation with the observation that agnostic algorithms \emph{cannot} be minimax-optimal in the realizable setting. Hence, we design novel computationally efficient algorithms for the realizable setting that match the minimax lower bound up to logarithmic factors and are general-purpose, accommodating a wide variety of function classes including kernel methods, H{\"o}lder smooth functions, and convex functions. The sample complexities of our algorithms can be quantified in terms of well-known quantities like the extended teaching dimension and haystack dimension. However, unlike algorithms based directly on those combinatorial quantities, our algorithms are computationally efficient. To achieve computational efficiency, our algorithms sample from the version space using Monte Carlo ``hit-and-run'' algorithms instead of maintaining the version space explicitly. Our approach has two key strengths. First, it is simple, consisting of two unifying, greedy algorithms. Second, our algorithms have the capability to seamlessly leverage prior knowledge that is often available and useful in practice. In addition to our new theoretical results, we demonstrate empirically that our algorithms are competitive with Gaussian process UCB methods.
Deep Markov Factor Analysis: Towards Concurrent Temporal and Spatial Analysis of fMRI Data
Amirreza Farnoosh · Sarah Ostadabbas
Factor analysis methods have been widely used in neuroimaging to transfer high dimensional imaging data into low dimensional, ideally interpretable representations. However, most of these methods overlook the highly nonlinear and complex temporal dynamics of neural processes when factorizing their imaging data. In this paper, we present deep Markov factor analysis (DMFA), a generative model that employs Markov property in a chain of low dimensional temporal embeddings together with spatial inductive assumptions, all related through neural networks, to capture temporal dynamics in functional magnetic resonance imaging (fMRI) data, and tackle their high spatial dimensionality, respectively. Augmented with a discrete latent, DMFA is able to cluster fMRI data in its low dimensional temporal embedding with regard to subject and cognitive state variability, therefore, enables validation of a variety of fMRI-driven neuroscientific hypotheses. Experimental results on both synthetic and real fMRI data demonstrate the capacity of DMFA in revealing interpretable clusters and capturing nonlinear temporal dependencies in these high dimensional imaging data.
We study the problem of active learning with the added twist that the learner is assisted by a helpful teacher. We consider the following natural interaction protocol: At each round, the learner proposes a query asking for the label of an instance $x^q$, the teacher provides the requested label $\{x^q, y^q\}$ along with explanatory information to guide the learning process. In this paper, we view this information in the form of an additional contrastive example ($\{x^c, y^c\}$) where $x^c$ is picked from a set constrained by $x^q$ (e.g., dissimilar instances with the same label). Our focus is to design a teaching algorithm that can provide an informative sequence of contrastive examples to the learner to speed up the learning process. We show that this leads to a challenging sequence optimization problem where the algorithm's choices at a given round depend on the history of interactions. We investigate an efficient teaching algorithm that adaptively picks these contrastive examples. We derive strong performance guarantees for our algorithm based on two problem-dependent parameters and further show that for specific types of active learners (e.g., a generalized binary search learner), the proposed teaching algorithm exhibits strong approximation guarantees. Finally, we illustrate our bounds and demonstrate the effectiveness of our teaching framework via two numerical case studies.
Manipulating SGD with Data Ordering Attacks
I Shumailov · Zakhar Shumaylov · Dmitry Kazhdan · Yiren Zhao · Nicolas Papernot · Murat Erdogdu · Ross J Anderson
Machine learning is vulnerable to a wide variety of attacks. It is now well understood that by changing the underlying data distribution, an adversary can poison the model trained with it or introduce backdoors. In this paper we present a novel class of training-time attacks that require no changes to the underlying dataset or model architecture, but instead only change the order in which data are supplied to the model. In particular, we find that the attacker can either prevent the model from learning, or poison it to learn behaviours specified by the attacker. Furthermore, we find that even a single adversarially-ordered epoch can be enough to slow down model learning, or even to reset all of the learning progress. Indeed, the attacks presented here are not specific to the model or dataset, but rather target the stochastic nature of modern learning procedures. We extensively evaluate our attacks on computer vision and natural language benchmarks to find that the adversary can disrupt model training and even introduce backdoors.
Structure learning in polynomial time: Greedy algorithms, Bregman information, and exponential families
Goutham Rajendran · Bohdan Kivva · Ming Gao · Bryon Aragam
Greedy algorithms have long been a workhorse for learning graphical models, and more broadly for learning statistical models with sparse structure. In the context of learning directed acyclic graphs, greedy algorithms are popular despite their worst-case exponential runtime. In practice, however, they are very efficient. We provide new insight into this phenomenon by studying a general greedy score-based algorithm for learning DAGs. Unlike edge-greedy algorithms such as the popular GES and hill-climbing algorithms, our approach is vertex-greedy and requires at most a polynomial number of score evaluations. We then show how recent polynomial-time algorithms for learning DAG models are a special case of this algorithm, thereby illustrating how these order-based algorithms can be rigourously interpreted as score-based algorithms. This observation suggests new score functions and optimality conditions based on the duality between Bregman divergences and exponential families, which we explore in detail. Explicit sample and computational complexity bounds are derived. Finally, we provide extensive experiments suggesting that this algorithm indeed optimizes the score in a variety of settings.
Taming Communication and Sample Complexities in Decentralized Policy Evaluation for Cooperative Multi-Agent Reinforcement Learning
Xin Zhang · Zhuqing Liu · Jia Liu · Zhengyuan Zhu · Songtao Lu
Cooperative multi-agent reinforcement learning (MARL) has received increasing attention in recent years and has found many scientific and engineering applications. However, a key challenge arising from many cooperative MARL algorithm designs (e.g., the actor-critic framework) is the policy evaluation problem, which can only be conducted in a {\em decentralized} fashion. In this paper, we focus on decentralized MARL policy evaluation with nonlinear function approximation, which is often seen in deep MARL. We first show that the empirical decentralized MARL policy evaluation problem can be reformulated as a decentralized nonconvex-strongly-concave minimax saddle point problem. We then develop a decentralized gradient-based descent ascent algorithm called GT-GDA that enjoys a convergence rate of $\mathcal{O}(1/T)$. To further reduce the sample complexity, we propose two decentralized stochastic optimization algorithms called GT-SRVR and GT-SRVRI, which enhance GT-GDA by variance reduction techniques. We show that all algorithms all enjoy an $\mathcal{O}(1/T)$ convergence rate to a stationary point of the reformulated minimax problem. Moreover, the fast convergence rates of GT-SRVR and GT-SRVRI imply $\mathcal{O}(\epsilon^{-2})$ communication complexity and $\mathcal{O}(m\sqrt{n}\epsilon^{-2})$ sample complexity, where $m$ is the number of agents and $n$ is the length of trajectories. To our knowledge, this paper is the first work that achieves both $\mathcal{O}(\epsilon^{-2})$ sample complexity and $\mathcal{O}(\epsilon^{-2})$ communication complexity in decentralized policy evaluation for cooperative MARL. Our extensive experiments also corroborate the theoretical performance of our proposed decentralized policy evaluation algorithms.
Agnostic Reinforcement Learning with Low-Rank MDPs and Rich Observations
Ayush Sekhari · Christoph Dann · Mehryar Mohri · Yishay Mansour · Karthik Sridharan
There have been many recent advances on provably efficient Reinforcement Learning (RL) in problems with rich observation spaces. However, all these works share a strong realizability assumption about the optimal value function of the true MDP. Such realizability assumptions are often too strong to hold in practice. In this work, we consider the more realistic setting of agnostic RL with rich observation spaces and a fixed class of policies $\Pi$ that may not contain any near-optimal policy. We provide an algorithm for this setting whose error is bounded in terms of the rank $d$ of the underlying MDP. Specifically, our algorithm enjoys a sample complexity bound of $\widetilde{O}\left((H^{4d} K^{3d} \log |\Pi|)/\epsilon^2\right)$ where $H$ is the length of episodes, $K$ is the number of actions and $\epsilon>0$ is the desired sub-optimality. We also provide a nearly matching lower bound for this agnostic setting that shows that the exponential dependence on rank is unavoidable, without further assumptions.
ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs
Zhanqiu Zhang · Jie Wang · Jiajun Chen · Shuiwang Ji · Feng Wu
Query embedding (QE)---which aims to embed entities and first-order logical (FOL) queries in low-dimensional spaces---has shown great power in multi-hop reasoning over knowledge graphs. Recently, embedding entities and queries with geometric shapes becomes a promising direction, as geometric shapes can naturally represent answer sets of queries and logical relationships among them. However, existing geometry-based models have difficulty in modeling queries with negation, which significantly limits their applicability. To address this challenge, we propose a novel query embedding model, namely \textbf{Con}e \textbf{E}mbeddings (ConE), which is the first geometry-based QE model that can handle all the FOL operations, including conjunction, disjunction, and negation. Specifically, ConE represents entities and queries as Cartesian products of two-dimensional cones, where the intersection and union of cones naturally model the conjunction and disjunction operations. By further noticing that the closure of complement of cones remains cones, we design geometric complement operators in the embedding space for the negation operations. Experiments demonstrate that ConE significantly outperforms existing state-of-the-art methods on benchmark datasets.
Fine-Grained Zero-Shot Learning with DNA as Side Information
Sarkhan Badirli · Zeynep Akata · George Mohler · Christine Picard · Mehmet M Dundar
Fine-grained zero-shot learning task requires some form of side-information to transfer discriminative information from seen to unseen classes. As manually annotated visual attributes are extremely costly and often impractical to obtain for a large number of classes, in this study we use DNA as a side information for the first time for fine-grained zero-shot classification of species. Mitochondrial DNA plays an important role as a genetic marker in evolutionary biology and has been used to achieve near perfect accuracy in species classification of living organisms. We implement a simple hierarchical Bayesian model that uses DNA information to establish the hierarchy in the image space and employs local priors to define surrogate classes for unseen ones. On the benchmark CUB dataset we show that DNA can be equally promising, yet in general a more accessible alternative than word vectors as a side information. This is especially important as obtaining robust word representations for fine-grained species names is not a practicable goal when information about these species in free-form text is limited. On a newly compiled fine-grained insect dataset that uses DNA information from over a thousand species we show that the Bayesian approach outperforms state-of-the-art by a wide margin.
As an important step towards visual reasoning, visual grounding (e.g., phrase localization, referring expression comprehension / segmentation) has been widely explored. Previous approaches to referring expression comprehension (REC) or segmentation (RES) either suffer from limited performance, due to a two-stage setup, or require the designing of complex task-specific one-stage architectures. In this paper, we propose a simple one-stage multi-task framework for visual grounding tasks. Specifically, we leverage a transformer architecture, where two modalities are fused in a visual-lingual encoder. In the decoder, the model learns to generate contextualized lingual queries which are then decoded and used to directly regress the bounding box and produce a segmentation mask for the corresponding referred regions. With this simple but highly contextualized model, we outperform state-of-the-art methods by a large margin on both REC and RES tasks. We also show that a simple pre-training schedule (on an external dataset) further improves the performance. Extensive experiments and ablations illustrate that our model benefits greatly from contextualized information and multi-task training.
Chasing Sparsity in Vision Transformers: An End-to-End Exploration
Tianlong Chen · Yu Cheng · Zhe Gan · Lu Yuan · Lei Zhang · Zhangyang Wang
Vision transformers (ViTs) have recently received explosive popularity, but their enormous model sizes and training costs remain daunting. Conventional post-training pruning often incurs higher training budgets. In contrast, this paper aims to trim down both the training memory overhead and the inference complexity, without sacrificing the achievable accuracy. We carry out the first-of-its-kind comprehensive exploration, on taking a unified approach of integrating sparsity in ViTs "from end to end''. Specifically, instead of training full ViTs, we dynamically extract and train sparse subnetworks, while sticking to a fixed small parameter budget. Our approach jointly optimizes model parameters and explores connectivity throughout training, ending up with one sparse network as the final output. The approach is seamlessly extended from unstructured to structured sparsity, the latter by considering to guide the prune-and-grow of self-attention heads inside ViTs. We further co-explore data and architecture sparsity for additional efficiency gains by plugging in a novel learnable token selector to adaptively determine the currently most vital patches. Extensive results on ImageNet with diverse ViT backbones validate the effectiveness of our proposals which obtain significantly reduced computational cost and almost unimpaired generalization. Perhaps most surprisingly, we find that the proposed sparse (co-)training can sometimes \textit{improve the ViT accuracy} rather than compromising it, making sparsity a tantalizing "free lunch''. For example, our sparsified DeiT-Small at ($5\%$, $50\%$) sparsity for (data, architecture), improves $\mathbf{0.28\%}$ top-1 accuracy, and meanwhile enjoys $\mathbf{49.32\%}$ FLOPs and $\mathbf{4.40\%}$ running time savings. Our codes are available at https://github.com/VITA-Group/SViTE.
Multi-Step Budgeted Bayesian Optimization with Unknown Evaluation Costs
Raul Astudillo · Daniel Jiang · Maximilian Balandat · Eytan Bakshy · Peter Frazier
Bayesian optimization (BO) is a sample-efficient approach to optimizing costly-to-evaluate black-box functions. Most BO methods ignore how evaluation costs may vary over the optimization domain. However, these costs can be highly heterogeneous and are often unknown in advance in many practical settings, such as hyperparameter tuning of machine learning algorithms or physics-based simulation optimization. Moreover, those few existing methods that acknowledge cost heterogeneity do not naturally accommodate a budget constraint on the total evaluation cost. This combination of unknown costs and a budget constraint introduces a new dimension to the exploration-exploitation trade-off, where learning about the cost incurs a cost itself. Existing methods do not reason about the various trade-offs of this problem in a principled way, leading often to poor performance. We formalize this claim by proving that the expected improvement and the expected improvement per unit of cost, arguably the two most widely used acquisition functions in practice, can be arbitrarily inferior with respect to the optimal non-myopic policy. To overcome the shortcomings of existing approaches, we propose the budgeted multi-step expected improvement, a non-myopic acquisition function that generalizes classical expected improvement to the setting of heterogeneous and unknown evaluation costs. We show that our acquisition function outperforms existing methods in a variety of synthetic and real problems.
Data-Efficient GAN Training Beyond (Just) Augmentations: A Lottery Ticket Perspective
Tianlong Chen · Yu Cheng · Zhe Gan · Jingjing Liu · Zhangyang Wang
Training generative adversarial networks (GANs) with limited real image data generally results in deteriorated performance and collapsed models. To conquer this challenge, we are inspired by the latest observation, that one can discover independently trainable and highly sparse subnetworks (a.k.a., lottery tickets) from GANs. Treating this as an inductive prior, we suggest a brand-new angle towards data-efficient GAN training: by first identifying the lottery ticket from the original GAN using the small training set of real images; and then focusing on training that sparse subnetwork by re-using the same set. We find our coordinated framework to offer orthogonal gains to existing real image data augmentation methods, and we additionally present a new feature-level augmentation that can be applied together with them. Comprehensive experiments endorse the effectiveness of our proposed framework, across various GAN architectures (SNGAN, BigGAN, and StyleGAN-V2) and diverse datasets (CIFAR-10, CIFAR-100, Tiny-ImageNet, ImageNet, and multiple few-shot generation datasets). Codes are available at: https://github.com/VITA-Group/Ultra-Data-Efficient-GAN-Training.
Improved Learning Rates of a Functional Lasso-type SVM with Sparse Multi-Kernel Representation
shaogao lv · Junhui Wang · Jiankun Liu · Yong Liu
In this paper, we provide theoretical results of estimation bounds and excess risk upper bounds for support vector machine (SVM) with sparse multi-kernel representation. These convergence rates for multi-kernel SVM are established by analyzing a Lasso-type regularized learning scheme within composite multi-kernel spaces. It is shown that the oracle rates of convergence of classifiers depend on the complexity of multi-kernels, the sparsity, a Bernstein condition and the sample size, which significantly improves on previous results even for the additive or linear cases. In summary, this paper not only provides unified theoretical results for multi-kernel SVMs, but also enriches the literature on high-dimensional nonparametric classification.
A Surrogate Objective Framework for Prediction+Programming with Soft Constraints
Kai Yan · Jie Yan · Chuan Luo · Liting Chen · Qingwei Lin · Dongmei Zhang
Prediction+optimization is a common real-world paradigm where we have to predict problem parameters before solving the optimization problem. However, the criteria by which the prediction model is trained are often inconsistent with the goal of the downstream optimization problem. Recently, decision-focused prediction approaches, such as SPO+ and direct optimization, have been proposed to fill this gap. However, they cannot directly handle the soft constraints with the max operator required in many real-world objectives. This paper proposes a novel analytically differentiable surrogate objective framework for real-world linear and semi-definite negative quadratic programming problems with soft linear and non-negative hard constraints. This framework gives the theoretical bounds on constraints’ multipliers, and derives the closed-form solution with respect to predictive parameters and thus gradients for any variable in the problem. We evaluate our method in three applications extended with soft constraints: synthetic linear programming, portfolio optimization, and resource provisioning, demonstrating that our method outperforms traditional two-staged methods and other decision-focused approaches
Riemannian space forms, such as the Euclidean space, sphere and hyperbolic space, are popular and powerful representation spaces in machine learning. For instance, hyperbolic geometry is appropriate to represent graphs without cycles and has been used to extend Graph Neural Networks. Recently, some pseudo-Riemannian space forms that generalize both hyperbolic and spherical geometries have been exploited to learn a specific type of nonparametric embedding called ultrahyperbolic. The lack of geodesic between every pair of ultrahyperbolic points makes the task of learning parametric models (e.g., neural networks) difficult. This paper introduces a method to learn parametric models in ultrahyperbolic space. We experimentally show the relevance of our approach in the tasks of graph and node classification.
Calibrating Predictions to Decisions: A Novel Approach to Multi-Class Calibration
Shengjia Zhao · Michael Kim · Roshni Sahoo · Tengyu Ma · Stefano Ermon
When facing uncertainty, decision-makers want predictions they can trust. A machine learning provider can convey confidence to decision-makers by guaranteeing their predictions are distribution calibrated--- amongst the inputs that receive a predicted vector of class probabilities q, the actual distribution over classes is given by q. For multi-class prediction problems, however, directly optimizing predictions under distribution calibration tends to be infeasible, requiring sample complexity that grows exponentially in the number of classes C. In this work, we introduce a new notion---decision calibration---that requires the predicted distribution and true distribution over classes to be ``indistinguishable'' to downstream decision-makers. This perspective gives a new characterization of distribution calibration: a predictor is distribution calibrated if and only if it is decision calibrated with respect to all decision-makers. Our main result shows that under a mild restriction, unlike distribution calibration, decision calibration is actually feasible. We design a recalibration algorithm that provably achieves decision calibration efficiently, provided that the decision-makers have a bounded number of actions (e.g., polynomial in C). We validate our recalibration algorithm empirically: compared to existing methods, decision calibration improves decision-making on skin lesion and ImageNet classification with modern neural network predictors.
Energy-based models (EBMs) offer flexible distribution parametrization. However, due to the intractable partition function, they are typically trained via contrastive divergence for maximum likelihood estimation. In this paper, we propose pseudo-spherical contrastive divergence (PS-CD) to generalize maximum likelihood learning of EBMs. PS-CD is derived from the maximization of a family of strictly proper homogeneous scoring rules, which avoids the computation of the intractable partition function and provides a generalized family of learning objectives that include contrastive divergence as a special case. Moreover, PS-CD allows us to flexibly choose various learning objectives to train EBMs without additional computational cost or variational minimax optimization. Theoretical analysis on the proposed method and extensive experiments on both synthetic data and commonly used image datasets demonstrate the effectiveness and modeling flexibility of PS-CD, as well as its robustness to data contamination, thus showing its superiority over maximum likelihood and $f$-EBMs.
A Variational Perspective on Diffusion-Based Generative Models and Score Matching
Chin-Wei Huang · Jae Hyun Lim · Aaron Courville
Discrete-time diffusion-based generative models and score matching methods have shown promising results in modeling high-dimensional image data. Recently, Song et al. (2021) show that diffusion processes that transform data into noise can be reversed via learning the score function, i.e. the gradient of the log-density of the perturbed data. They propose to plug the learned score function into an inverse formula to define a generative diffusion process. Despite the empirical success, a theoretical underpinning of this procedure is still lacking. In this work, we approach the (continuous-time) generative diffusion directly and derive a variational framework for likelihood estimation, which includes continuous-time normalizing flows as a special case, and can be seen as an infinitely deep variational autoencoder. Under this framework, we show that minimizing the score-matching loss is equivalent to maximizing a lower bound of the likelihood of the plug-in reverse SDE proposed by Song et al. (2021), bridging the theoretical gap.
Does Preprocessing Help Training Over-parameterized Neural Networks?
Zhao Song · Shuo Yang · Ruizhe Zhang
Deep neural networks have achieved impressive performance in many areas. Designing a fast and provable method for training neural networks is a fundamental question in machine learning. The classical training method requires paying $\Omega(mnd)$ cost for both forward computation and backward computation, where $m$ is the width of the neural network, and we are given $n$ training points in $d$-dimensional space. In this paper, we propose two novel preprocessing ideas to bypass this $\Omega(mnd)$ barrier:* First, by preprocessing the initial weights of the neural networks, we can train the neural network in $\widetilde{O}(m^{1-\Theta(1/d)} n d)$ cost per iteration.* Second, by preprocessing the input data points, we can train neural network in $\widetilde{O} (m^{4/5} nd )$ cost per iteration.From the technical perspective, our result is a sophisticated combination of tools in different fields, greedy-type convergence analysis in optimization, sparsity observation in practical work, high-dimensional geometric search in data structure, concentration and anti-concentration in probability. Our results also provide theoretical insights for a large number of previously established fast training methods.In addition, our classical algorithm can be generalized to the Quantum computation model. Interestingly, we can get a similar sublinear cost per iteration but avoid preprocessing initial weights or input data points.
Sample-Efficient Reinforcement Learning for Linearly-Parameterized MDPs with a Generative Model
Bingyan Wang · Yuling Yan · Jianqing Fan
The curse of dimensionality is a widely known issue in reinforcement learning (RL). In the tabular setting where the state space $\mathcal{S}$ and the action space $\mathcal{A}$ are both finite, to obtain a near optimal policy with sampling access to a generative model, the minimax optimal sample complexity scales linearly with $|\mathcal{S}|\times|\mathcal{A}|$, which can be prohibitively large when $\mathcal{S}$ or $\mathcal{A}$ is large. This paper considers a Markov decision process (MDP) that admits a set of state-action features, which can linearly express (or approximate) its probability transition kernel. We show that a model-based approach (resp.$~$Q-learning) provably learns an $\varepsilon$-optimal policy (resp.$~$Q-function) with high probability as soon as the sample size exceeds the order of $\frac{K}{(1-\gamma)^{3}\varepsilon^{2}}$ (resp.$~$$\frac{K}{(1-\gamma)^{4}\varepsilon^{2}}$), up to some logarithmic factor. Here $K$ is the feature dimension and $\gamma\in(0,1)$ is the discount factor of the MDP. Both sample complexity bounds are provably tight, and our result for the model-based approach matches the minimax lower bound. Our results show that for arbitrarily large-scale MDP, both the model-based approach and Q-learning are sample-efficient when $K$ is relatively small, and hence the title of this paper.
Change Point Detection via Multivariate Singular Spectrum Analysis
Arwa Alanqary · Abdullah Alomar · Devavrat Shah
The objective of change point detection (CPD) is to detect significant and abrupt changes in the dynamics of the underlying system of interest through multivariate time series observations. In this work, we develop and analyze an algorithm for CPD that is inspired by a variant of the classical singular spectrum analysis (SSA) approach for time series by combining it with the classical cumulative sum (CUSUM) statistic from sequential hypothesis testing. In particular, we model the underlying dynamics of multivariate time series observations through the spatio-temporal model introduced recently in the multivariate SSA (mSSA) literature. The change point in such a setting corresponds to a change in the underlying spatio-temporal model. As the primary contributions of this work, we develop an algorithm based on CUSUM-statistic to detect such change points in an online fashion. We extend the analysis of CUSUM statistics, traditionally done for the setting of independent observations, to the dependent setting of (multivariate) time series under the spatio-temporal model. Specifically, for a given parameter $h > 0$, our method achieves the following desirable trade-off: when a change happens, it detects it within $O(h)$ time delay on average, while in the absence of change, it does not declare false detection for at least $\exp(\Omega(h))$ time length on average. We conduct empirical experiments using benchmark and synthetic datasets. We find that the proposed method performs competitively or outperforms the state-of-the-art change point detection methods across datasets.
Matrix trace estimation is ubiquitous in machine learning applications and has traditionally relied on Hutchinson's method, which requires $O(\log(1/\delta)/\epsilon^2)$ matrix-vector product queries to achieve a $(1 \pm \epsilon)$-multiplicative approximation to $\text{trace}(A)$ with failure probability $\delta$ on positive-semidefinite input matrices $A$. Recently, the Hutch++ algorithm was proposed, which reduces the number of matrix-vector queries from $O(1/\epsilon^2)$ to the optimal $O(1/\epsilon)$, and the algorithm succeeds with constant probability. However, in the high probability setting, the non-adaptive Hutch++ algorithm suffers an extra $O(\sqrt{\log(1/\delta)})$ multiplicative factor in its query complexity. Non-adaptive methods are important, as they correspond to sketching algorithms, which are mergeable, highly parallelizable, and provide low-memory streaming algorithms as well as low-communication distributed protocols. In this work, we close the gap between non-adaptive and adaptive algorithms, showing that even non-adaptive algorithms can achieve $O(\sqrt{\log(1/\delta)}/\epsilon + \log(1/\delta))$ matrix-vector products. In addition, we prove matching lower bounds demonstrating that, up to a $\log \log(1/\delta)$ factor, no further improvement in the dependence on $\delta$ or $\epsilon$ is possible by any non-adaptive algorithm. Finally, our experiments demonstrate the superior performance of our sketch over the adaptive Hutch++ algorithm, which is less parallelizable, as well as over the non-adaptive Hutchinson's method.
Training models with discrete latent variables is challenging due to the high variance of unbiased gradient estimators. While low-variance reparameterization gradients of a continuous relaxation can provide an effective solution, a continuous relaxation is not always available or tractable. Dong et al. (2020) and Yin et al. (2020) introduced a performant estimator that does not rely on continuous relaxations; however, it is limited to binary random variables. We introduce a novel derivation of their estimator based on importance sampling and statistical couplings, which we extend to the categorical setting. Motivated by the construction of a stick-breaking coupling, we introduce gradient estimators based on reparameterizing categorical variables as sequences of binary variables and Rao-Blackwellization. In systematic experiments, we show that our proposed categorical gradient estimators provide state-of-the-art performance, whereas even with additional Rao-Blackwellization previous estimators (Yin et al., 2019) underperform a simpler REINFORCE with a leave-one-out-baseline estimator (Kool et al., 2019).
We propose a novel second-order optimization framework for training the emerging deep continuous-time models, specifically the Neural Ordinary Differential Equations (Neural ODEs). Since their training already involves expensive gradient computation by solving a backward ODE, deriving efficient second-order methods becomes highly nontrivial. Nevertheless, inspired by the recent Optimal Control (OC) interpretation of training deep networks, we show that a specific continuous-time OC methodology, called Differential Programming, can be adopted to derive backward ODEs for higher-order derivatives at the same O(1) memory cost. We further explore a low-rank representation of the second-order derivatives and show that it leads to efficient preconditioned updates with the aid of Kronecker-based factorization. The resulting method – named SNOpt – converges much faster than first-order baselines in wall-clock time, and the improvement remains consistent across various applications, e.g. image classification, generative flow, and time-series prediction. Our framework also enables direct architecture optimization, such as the integration time of Neural ODEs, with second-order feedback policies, strengthening the OC perspective as a principled tool of analyzing optimization in deep learning. Our code is available at https://github.com/ghliu/snopt.
Estimating High Order Gradients of the Data Distribution by Denoising
Chenlin Meng · Yang Song · Wenzhe Li · Stefano Ermon
The first order derivative of a data density can be estimated efficiently by denoising score matching, and has become an important component in many applications, such as image generation and audio synthesis. Higher order derivatives provide additional local information about the data distribution and enable new applications. Although they can be estimated via automatic differentiation of a learned density model, this can amplify estimation errors and is expensive in high dimensional settings. To overcome these limitations, we propose a method to directly estimate high order derivatives (scores) of a data density from samples. We first show that denoising score matching can be interpreted as a particular case of Tweedie’s formula. By leveraging Tweedie’s formula on higher order moments, we generalize denoising score matching to estimate higher order derivatives. We demonstrate empirically that models trained with the proposed method can approximate second order derivatives more efficiently and accurately than via automatic differentiation. We show that our models can be used to quantify uncertainty in denoising and to improve the mixing speed of Langevin dynamics via Ozaki discretization for sampling synthetic data and natural images.
Collapsed Variational Bounds for Bayesian Neural Networks
Marcin Tomczak · Siddharth Swaroop · Andrew Foong · Richard Turner
Recent interest in learning large variational Bayesian Neural Networks (BNNs) has been partly hampered by poor predictive performance caused by underfitting, and their performance is known to be very sensitive to the prior over weights. Current practice often fixes the prior parameters to standard values or tunes them using heuristics or cross-validation. In this paper, we treat prior parameters in a distributional way by extending the model and collapsing the variational bound with respect to their posteriors. This leads to novel and tighter Evidence Lower Bounds (ELBOs) for performing variational inference (VI) in BNNs. Our experiments show that the new bounds significantly improve the performance of Gaussian mean-field VI applied to BNNs on a variety of data sets, demonstrating that mean-field VI works well even in deep models. We also find that the tighter ELBOs can be good optimization targets for learning the hyperparameters of hierarchical priors.
Batch Multi-Fidelity Bayesian Optimization with Deep Auto-Regressive Networks
Shibo Li · Robert Kirby · Shandian Zhe
Bayesian optimization (BO) is a powerful approach for optimizing black-box, expensive-to-evaluate functions. To enable a flexible trade-off between the cost and accuracy, many applications allow the function to be evaluated at different fidelities. In order to reduce the optimization cost while maximizing the benefit-cost ratio, in this paper we propose Batch Multi-fidelity Bayesian Optimization with Deep Auto-Regressive Networks (BMBO-DARN). We use a set of Bayesian neural networks to construct a fully auto-regressive model, which is expressive enough to capture strong yet complex relationships across all the fidelities, so as to improve the surrogate learning and optimization performance. Furthermore, to enhance the quality and diversity of queries, we develop a simple yet efficient batch querying method, without any combinatorial search over the fidelities. We propose a batch acquisition function based on Max-value Entropy Search (MES) principle, which penalizes highly correlated queries and encourages diversity. We use posterior samples and moment matching to fulfill efficient computation of the acquisition function, and conduct alternating optimization over every fidelity-input pair, which guarantees an improvement at each step. We demonstrate the advantage of our approach on four real-world hyperparameter optimization applications.
Learning with Holographic Reduced Representations
Ashwinkumar Ganesan · Hang Gao · Sunil Gandhi · Edward Raff · Tim Oates · James Holt · Mark McLean
Holographic Reduced Representations (HRR) are a method for performing symbolic AI on top of real-valued vectors by associating each vector with an abstract concept, and providing mathematical operations to manipulate vectors as if they were classic symbolic objects. This method has seen little use outside of older symbolic AI work and cognitive science. Our goal is to revisit this approach to understand if it is viable for enabling a hybrid neural-symbolic approach to learning as a differential component of a deep learning architecture. HRRs today are not effective in a differential solution due to numerical instability, a problem we solve by introducing a projection step that forces the vectors to exist in a well behaved point in space. In doing so we improve the concept retrieval efficacy of HRRs by over $100\times$. Using multi-label classification we demonstrate how to leverage the symbolic HRR properties to develop a output layer and loss function that is able to learn effectively, and allows us to investigate some of the pros and cons of an HRR neuro-symbolic learning approach.
On the Second-order Convergence Properties of Random Search Methods
Aurelien Lucchi · Antonio Orvieto · Adamos Solomou
We study the theoretical convergence properties of random-search methods when optimizing non-convex objective functions without having access to derivatives. We prove that standard random-search methods that do not rely on second-order information converge to a second-order stationary point. However, they suffer from an exponential complexity in terms of the input dimension of the problem. In order to address this issue, we propose a novel variant of random search that exploits negative curvature by only relying on function evaluations. We prove that this approach converges to a second-order stationary point at a much faster rate than vanilla methods: namely, the complexity in terms of the number of function evaluations is only linear in the problem dimension. We test our algorithm empirically and find good agreements with our theoretical results.
In this paper, we propose a max-min entropy framework for reinforcement learning (RL) to overcome the limitation of the soft actor-critic (SAC) algorithm implementing the maximum entropy RL in model-free sample-based learning. Whereas the maximum entropy RL guides learning for policies to reach states with high entropy in the future, the proposed max-min entropy framework aims to learn to visit states with low entropy and maximize the entropy of these low-entropy states to promote better exploration. For general Markov decision processes (MDPs), an efficient algorithm is constructed under the proposed max-min entropy framework based on disentanglement of exploration and exploitation. Numerical results show that the proposed algorithm yields drastic performance improvement over the current state-of-the-art RL algorithms.
Sample-Efficient Learning of Stackelberg Equilibria in General-Sum Games
Yu Bai · Chi Jin · Huan Wang · Caiming Xiong
Real world applications such as economics and policy making often involve solving multi-agent games with two unique features: (1) The agents are inherently asymmetric and partitioned into leaders and followers; (2) The agents have different reward functions, thus the game is general-sum. The majority of existing results in this field focuses on either symmetric solution concepts (e.g. Nash equilibrium) or zero-sum games. It remains open how to learn the Stackelberg equilibrium---an asymmetric analog of the Nash equilibrium---in general-sum games efficiently from noisy samples. This paper initiates the theoretical study of sample-efficient learning of the Stackelberg equilibrium, in the bandit feedback setting where we only observe noisy samples of the reward. We consider three representative two-player general-sum games: bandit games, bandit-reinforcement learning (bandit-RL) games, and linear bandit games. In all these games, we identify a fundamental gap between the exact value of the Stackelberg equilibrium and its estimated version using finitely many noisy samples, which can not be closed information-theoretically regardless of the algorithm. We then establish sharp positive results on sample-efficient learning of Stackelberg equilibrium with value optimal up to the gap identified above, with matching lower bounds in the dependency on the gap, error tolerance, and the size of the action spaces. Overall, our results unveil unique challenges in learning Stackelberg equilibria under noisy bandit feedback, which we hope could shed light on future research on this topic.
Sequence-to-sequence learning with neural networks has become the de facto standard for sequence modeling. This approach typically models the local distribution over the next element with a powerful neural network that can condition on arbitrary context. While flexible and performant, these models often require large datasets for training and can fail spectacularly on benchmarks designed to test for compositional generalization. This work explores an alternative, hierarchical approach to sequence-to-sequence learning with synchronous grammars, where each node in the target tree is transduced by a subset of nodes in the source tree. The source and target trees are treated as fully latent and marginalized out during training. We develop a neural parameterization of the grammar which enables parameter sharing over combinatorial structures without the need for manual feature engineering. We apply this latent neural grammar to various domains---a diagnostic language navigation task designed to test for compositional generalization (SCAN), style transfer, and small-scale machine translation---and find that it performs respectably compared to standard baselines.
Towards a Unified Information-Theoretic Framework for Generalization
Mahdi Haghifam · Gintare Karolina Dziugaite · Shay Moran · Dan Roy
In this work, we investigate the expressiveness of the "conditional mutual information" (CMI) framework of Steinke and Zakynthinou (2020) and the prospect of using it to provide a unified framework for proving generalization bounds in the realizable setting. We first demonstrate that one can use this framework to express non-trivial (but sub-optimal) bounds for any learning algorithm that outputs hypotheses from a class of bounded VC dimension. We then explore two directions of strengthening this bound: (i) Can the CMI framework express optimal bounds for VC classes? (ii) Can the CMI framework be used to analyze algorithms whose output hypothesis space is unrestricted (i.e. has an unbounded VC dimension)? With respect to Item (i) we prove that the CMI framework yields the optimal bound on the expected risk of Support Vector Machines (SVMs) for learning halfspaces. This result is an application of our general result showing that stable compression schemes Bousquet al. (2020) of size $k$ have uniformly bounded CMI of order $O(k)$. We further show that an inherent limitation of proper learning of VC classes contradicts the existence of a proper learner with constant CMI, and it implies a negative resolution to an open problem of Steinke and Zakynthinou (2020). We further study the CMI of empirical risk minimizers (ERMs) of class $H$ and show that it is possible to output all consistent classifiers (version space) with bounded CMI if and only if $H$ has a bounded star number (Hanneke and Yang (2015)). With respect to Item (ii) we prove a general reduction showing that "leave-one-out" analysis is expressible via the CMI framework. As a corollary we investigate the CMI of the one-inclusion-graph algorithm proposed by Haussler et al. (1994). More generally, we show that the CMI framework is universal in the sense that for every consistent algorithm and data distribution, the expected risk vanishes as the number of samples diverges if and only if its evaluated CMI has sublinear growth with the number of samples.
Pragmatic Image Compression for Human-in-the-Loop Decision-Making
Sid Reddy · Anca Dragan · Sergey Levine
Standard lossy image compression algorithms aim to preserve an image's appearance, while minimizing the number of bits needed to transmit it. However, the amount of information actually needed by the user for downstream tasks -- e.g., deciding which product to click on in a shopping website -- is likely much lower. To achieve this lower bitrate, we would ideally only transmit the visual features that drive user behavior, while discarding details irrelevant to the user's decisions. We approach this problem by training a compression model through human-in-the-loop learning as the user performs tasks with the compressed images. The key insight is to train the model to produce a compressed image that induces the user to take the same action that they would have taken had they seen the original image. To approximate the loss function for this model, we train a discriminator that tries to distinguish whether a user's action was taken in response to the compressed image or the original. We evaluate our method through experiments with human participants on four tasks: reading handwritten digits, verifying photos of faces, browsing an online shopping catalogue, and playing a car racing video game. The results show that our method learns to match the user's actions with and without compression at lower bitrates than baseline methods, and adapts the compression model to the user's behavior: it preserves the digit number and randomizes handwriting style in the digit reading task, preserves hats and eyeglasses while randomizing faces in the photo verification task, preserves the perceived price of an item while randomizing its color and background in the online shopping task, and preserves upcoming bends in the road in the car racing game.
Characterizing possible failure modes in physics-informed neural networks
Aditi Krishnapriyan · Amir Gholami · Shandian Zhe · Robert Kirby · Michael Mahoney
Recent work in scientific machine learning has developed so-called physics-informed neural network (PINN) models. The typical approach is to incorporate physical domain knowledge as soft constraints on an empirical loss function and use existing machine learning methodologies to train the model. We demonstrate that, while existing PINN methodologies can learn good models for relatively trivial problems, they can easily fail to learn relevant physical phenomena for even slightly more complex problems. In particular, we analyze several distinct situations of widespread physical interest, including learning differential equations with convection, reaction, and diffusion operators. We provide evidence that the soft regularization in PINNs, which involves PDE-based differential operators, can introduce a number of subtle problems, including making the problem more ill-conditioned. Importantly, we show that these possible failure modes are not due to the lack of expressivity in the NN architecture, but that the PINN's setup makes the loss landscape very hard to optimize. We then describe two promising solutions to address these failure modes. The first approach is to use curriculum regularization, where the PINN's loss term starts from a simple PDE regularization, and becomes progressively more complex as the NN gets trained. The second approach is to pose the problem as a sequence-to-sequence learning task, rather than learning to predict the entire space-time at once. Extensive testing shows that we can achieve up to 1-2 orders of magnitude lower error with these methods as compared to regular PINN training.
A Stochastic Newton Algorithm for Distributed Convex Optimization
Brian Bullins · Kshitij Patel · Ohad Shamir · Nathan Srebro · Blake Woodworth
We propose and analyze a stochastic Newton algorithm for homogeneous distributed stochastic convex optimization, where each machine can calculate stochastic gradients of the same population objective, as well as stochastic Hessian-vector products (products of an independent unbiased estimator of the Hessian of the population objective with arbitrary vectors), with many such stochastic computations performed between rounds of communication. We show that our method can reduce the number, and frequency, of required communication rounds, compared to existing methods without hurting performance, by proving convergence guarantees for quasi-self-concordant objectives (e.g., logistic regression), alongside empirical evidence.
The staircase property: How hierarchical structure can guide deep learning
Emmanuel Abbe · Enric Boix-Adsera · Matthew S Brennan · Guy Bresler · Dheeraj Nagaraj
This paper identifies a structural property of data distributions that enables deep neural networks to learn hierarchically. We define the ``staircase'' property for functions over the Boolean hypercube, which posits that high-order Fourier coefficients are reachable from lower-order Fourier coefficients along increasing chains. We prove that functions satisfying this property can be learned in polynomial time using layerwise stochastic coordinate descent on regular neural networks -- a class of network architectures and initializations that have homogeneity properties. Our analysis shows that for such staircase functions and neural networks, the gradient-based algorithm learns high-level features by greedily combining lower-level features along the depth of the network. We further back our theoretical results with experiments showing that staircase functions are learnable by more standard ResNet architectures with stochastic gradient descent. Both the theoretical and experimental results support the fact that the staircase property has a role to play in understanding the capabilities of gradient-based learning on regular networks, in contrast to general polynomial-size networks that can emulate any Statistical Query or PAC algorithm, as recently shown.
Scaling Up Exact Neural Network Compression by ReLU Stability
Thiago Serra · Xin Yu · Abhinav Kumar · Srikumar Ramalingam
We can compress a rectifier network while exactly preserving its underlying functionality with respect to a given input domain if some of its neurons are stable. However, current approaches to determine the stability of neurons with Rectified Linear Unit (ReLU) activations require solving or finding a good approximation to multiple discrete optimization problems. In this work, we introduce an algorithm based on solving a single optimization problem to identify all stable neurons. Our approach is on median 183 times faster than the state-of-art method on CIFAR-10, which allows us to explore exact compression on deeper (5 x 100) and wider (2 x 800) networks within minutes. For classifiers trained under an amount of L1 regularization that does not worsen accuracy, we can remove up to 56% of the connections on the CIFAR-10 dataset. The code is available at the following link, https://github.com/yuxwind/ExactCompression .
Improving Generalization in Meta-RL with Imaginary Tasks from Latent Dynamics Mixture
Suyoung Lee · Sae-Young Chung
The generalization ability of most meta-reinforcement learning (meta-RL) methods is largely limited to test tasks that are sampled from the same distribution used to sample training tasks. To overcome the limitation, we propose Latent Dynamics Mixture (LDM) that trains a reinforcement learning agent with imaginary tasks generated from mixtures of learned latent dynamics. By training a policy on mixture tasks along with original training tasks, LDM allows the agent to prepare for unseen test tasks during training and prevents the agent from overfitting the training tasks. LDM significantly outperforms standard meta-RL methods in test returns on the gridworld navigation and MuJoCo tasks where we strictly separate the training task distribution and the test task distribution.
Localization with Sampling-Argmax
Jiefeng Li · Tong Chen · Ruiqi Shi · Yujing Lou · Yong-Lu Li · Cewu Lu
Soft-argmax operation is commonly adopted in detection-based methods to localize the target position in a differentiable manner. However, training the neural network with soft-argmax makes the shape of the probability map unconstrained. Consequently, the model lacks pixel-wise supervision through the map during training, leading to performance degradation. In this work, we propose sampling-argmax, a differentiable training method that imposes implicit constraints to the shape of the probability map by minimizing the expectation of the localization error. To approximate the expectation, we introduce a continuous formulation of the output distribution and develop a differentiable sampling process. The expectation can be approximated by calculating the average error of all samples drawn from the output distribution. We show that sampling-argmax can seamlessly replace the conventional soft-argmax operation on various localization tasks. Comprehensive experiments demonstrate the effectiveness and flexibility of the proposed method. Code is available at https://github.com/Jeff-sjtu/sampling-argmax
Attention mechanism has shown great performance and efficiency in a lot of deep learning models, in which relative position encoding plays a crucial role. However, when introducing attention to manifolds, there is no canonical local coordinate system to parameterize neighborhoods. To address this issue, we propose an equivariant transformer to make our model agnostic to the orientation of local coordinate systems (\textit{i.e.}, gauge equivariant), which employs multi-head self-attention to jointly incorporate both position-based and content-based information. To enhance expressive ability, we adopt regular field of cyclic groups as feature fields in intermediate layers, and propose a novel method to parallel transport the feature vectors in these fields. In addition, we project the position vector of each point onto its local coordinate system to disentangle the orientation of the coordinate system in ambient space (\textit{i.e.}, global coordinate system), achieving rotation invariance. To the best of our knowledge, we are the first to introduce gauge equivariance to self-attention, thus name our model Gauge Equivariant Transformer (GET), which can be efficiently implemented on triangle meshes. Extensive experiments show that GET achieves state-of-the-art performance on two common recognition tasks.
DeepSITH: Efficient Learning via Decomposition of What and When Across Time Scales
Brandon Jacques · Zoran Tiganj · Marc Howard · Per B Sederberg
Extracting temporal relationships over a range of scales is a hallmark ofhuman perception and cognition---and thus it is a critical feature of machinelearning applied to real-world problems. Neural networks are either plaguedby the exploding/vanishing gradient problem in recurrent neural networks(RNNs) or must adjust their parameters to learn the relevant time scales(e.g., in LSTMs). This paper introduces DeepSITH, a deep network comprisingbiologically-inspired Scale-Invariant Temporal History (SITH) modules inseries with dense connections between layers. Each SITH module is simply aset of time cells coding what happened when with a geometrically-spaced set oftime lags. The dense connections between layers change the definition of whatfrom one layer to the next. The geometric series of time lags implies thatthe network codes time on a logarithmic scale, enabling DeepSITH network tolearn problems requiring memory over a wide range of time scales. We compareDeepSITH to LSTMs and other recent RNNs on several time series prediction anddecoding tasks. DeepSITH achieves results comparable to state-of-the-artperformance on these problems and continues to perform well even as the delaysare increased.
A generative nonparametric Bayesian model for whole genomes
Alan Amin · Eli N Weinstein · Debora Marks
Generative probabilistic modeling of biological sequences has widespread existing and potential use across biology and biomedicine, particularly given advances in high-throughput sequencing, synthesis and editing. However, we still lack methods with nucleotide resolution that are tractable at the scale of whole genomes and that can achieve high predictive accuracy in theory and practice. In this article we propose a new generative sequence model, the Bayesian embedded autoregressive (BEAR) model, which uses a parametric autoregressive model to specify a conjugate prior over a nonparametric Bayesian Markov model. We explore, theoretically and empirically, applications of BEAR models to a variety of statistical problems including density estimation, robust parameter estimation, goodness-of-fit tests, and two-sample tests. We prove rigorous asymptotic consistency results including nonparametric posterior concentration rates. We scale inference in BEAR models to datasets containing tens of billions of nucleotides. On genomic, transcriptomic, and metagenomic sequence data we show that BEAR models provide large increases in predictive performance as compared to parametric autoregressive models, among other results. BEAR models offer a flexible and scalable framework, with theoretical guarantees, for building and critiquing generative models at the whole genome scale.
Spatial-Temporal Super-Resolution of Satellite Imagery via Conditional Pixel Synthesis
Yutong He · Dingjie Wang · Nicholas Lai · William Zhang · Chenlin Meng · Marshall Burke · David Lobell · Stefano Ermon
High-resolution satellite imagery has proven useful for a broad range of tasks, including measurement of global human population, local economic livelihoods, and biodiversity, among many others. Unfortunately, high-resolution imagery is both infrequently collected and expensive to purchase, making it hard to efficiently and effectively scale these downstream tasks over both time and space. We propose a new conditional pixel synthesis model that uses abundant, low-cost, low-resolution imagery to generate accurate high-resolution imagery at locations and times in which it is unavailable. We show that our model attains photo-realistic sample quality and outperforms competing baselines on a key downstream task – object counting – particularly in geographic locations where conditions on the ground are changing rapidly.
We propose a new discretization of the mirror-Langevin diffusion and give a crisp proof of its convergence. Our analysis uses relative convexity/smoothness and self-concordance, ideas which originated in convex optimization, together with a new result in optimal transport that generalizes the displacement convexity of the entropy. Unlike prior works, our result both (1) requires much weaker assumptions on the mirror map and the target distribution, and (2) has vanishing bias as the step size tends to zero. In particular, for the task of sampling from a log-concave distribution supported on a compact set, our theoretical results are significantly better than the existing guarantees.
ViTAE: Vision Transformer Advanced by Exploring Intrinsic Inductive Bias
Yufei Xu · Qiming ZHANG · Jing Zhang · Dacheng Tao
Transformers have shown great potential in various computer vision tasks owing to their strong capability in modeling long-range dependency using the self-attention mechanism. Nevertheless, vision transformers treat an image as 1D sequence of visual tokens, lacking an intrinsic inductive bias (IB) in modeling local visual structures and dealing with scale variance. Alternatively, they require large-scale training data and longer training schedules to learn the IB implicitly. In this paper, we propose a new Vision Transformer Advanced by Exploring intrinsic IB from convolutions, i.e., ViTAE. Technically, ViTAE has several spatial pyramid reduction modules to downsample and embed the input image into tokens with rich multi-scale context by using multiple convolutions with different dilation rates. In this way, it acquires an intrinsic scale invariance IB and is able to learn robust feature representation for objects at various scales. Moreover, in each transformer layer, ViTAE has a convolution block in parallel to the multi-head self-attention module, whose features are fused and fed into the feed-forward network. Consequently, it has the intrinsic locality IB and is able to learn local features and global dependencies collaboratively. Experiments on ImageNet as well as downstream tasks prove the superiority of ViTAE over the baseline transformer and concurrent works. Source code and pretrained models will be available at https://github.com/Annbless/ViTAE.
Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme
Shaojie Li · Jie Wu · Xuefeng Xiao · Fei Chao · Xudong Mao · Rongrong Ji
Recently, a series of algorithms have been explored for GAN compression, which aims to reduce tremendous computational overhead and memory usages when deploying GANs on resource-constrained edge devices. However, most of the existing GAN compression work only focuses on how to compress the generator, while fails to take the discriminator into account. In this work, we revisit the role of discriminator in GAN compression and design a novel generator-discriminator cooperative compression scheme for GAN compression, termed GCC. Within GCC, a selective activation discriminator automatically selects and activates convolutional channels according to a local capacity constraint and a global coordination constraint, which help maintain the Nash equilibrium with the lightweight generator during the adversarial training and avoid mode collapse. The original generator and discriminator are also optimized from scratch, to play as a teacher model to progressively refine the pruned generator and the selective activation discriminator. A novel online collaborative distillation scheme is designed to take full advantage of the intermediate feature of the teacher generator and discriminator to further boost the performance of the lightweight generator. Extensive experiments on various GAN-based generation tasks demonstrate the effectiveness and generalization of GCC. Among them, GCC contributes to reducing 80% computational costs while maintains comparable performance in image translation tasks.
MobILE: Model-Based Imitation Learning From Observation Alone
Rahul Kidambi · Jonathan Chang · Wen Sun
This paper studies Imitation Learning from Observations alone (ILFO) where the learner is presented with expert demonstrations that consist only of states visited by an expert (without access to actions taken by the expert). We present a provably efficient model-based framework MobILE to solve the ILFO problem. MobILE involves carefully trading off exploration against imitation - this is achieved by integrating the idea of optimism in the face of uncertainty into the distribution matching imitation learning (IL) framework. We provide a unified analysis for MobILE, and demonstrate that MobILE enjoys strong performance guarantees for classes of MDP dynamics that satisfy certain well studied notions of complexity. We also show that the ILFO problem is strictly harder than the standard IL problem by reducing ILFO to a multi-armed bandit problem indicating that exploration is necessary for solving ILFO efficiently. We complement these theoretical results with experimental simulations on benchmark OpenAI Gym tasks that indicate the efficacy of MobILE. Code for implementing the MobILE framework is available at https://github.com/rahulkidambi/MobILE-NeurIPS2021.
Learning with neural networks relies on the complexity of their representable functions, but more importantly, their particular assignment of typical parameters to functions of different complexity. Taking the number of activation regions as a complexity measure, recent works have shown that the practical complexity of deep ReLU networks is often far from the theoretical maximum. In this work, we show that this phenomenon also occurs in networks with maxout (multi-argument) activation functions and when considering the decision boundaries in classification tasks. We also show that the parameter space has a multitude of full-dimensional regions with widely different complexity, and obtain nontrivial lower bounds on the expected complexity. Finally, we investigate different parameter initialization procedures and show that they can increase the speed of convergence in training.
Gradient-based Editing of Memory Examples for Online Task-free Continual Learning
Xisen Jin · Arka Sadhu · Junyi Du · Xiang Ren
We explore task-free continual learning (CL), in which a model is trained to avoid catastrophic forgetting in the absence of explicit task boundaries or identities. Among many efforts on task-free CL, a notable family of approaches are memory-based that store and replay a subset of training examples. However, the utility of stored seen examples may diminish over time since CL models are continually updated. Here, we propose Gradient based Memory EDiting (GMED), a framework for editing stored examples in continuous input space via gradient updates, in order to create more "challenging" examples for replay. GMED-edited examples remain similar to their unedited forms, but can yield increased loss in the upcoming model updates, thereby making the future replays more effective in overcoming catastrophic forgetting. By construction, GMED can be seamlessly applied in conjunction with other memory-based CL algorithms to bring further improvement. Experiments validate the effectiveness of GMED, and our best method significantly outperforms baselines and previous state-of-the-art on five out of six datasets.
Learning Distilled Collaboration Graph for Multi-Agent Perception
Yiming Li · Shunli Ren · Pengxiang Wu · Siheng Chen · Chen Feng · Wenjun Zhang
To promote better performance-bandwidth trade-off for multi-agent perception, we propose a novel distilled collaboration graph (DiscoGraph) to model trainable, pose-aware, and adaptive collaboration among agents. Our key novelties lie in two aspects. First, we propose a teacher-student framework to train DiscoGraph via knowledge distillation. The teacher model employs an early collaboration with holistic-view inputs; the student model is based on intermediate collaboration with single-view inputs. Our framework trains DiscoGraph by constraining post-collaboration feature maps in the student model to match the correspondences in the teacher model. Second, we propose a matrix-valued edge weight in DiscoGraph. In such a matrix, each element reflects the inter-agent attention at a specific spatial region, allowing an agent to adaptively highlight the informative regions. During inference, we only need to use the student model named as the distilled collaboration network (DiscoNet). Attributed to the teacher-student framework, multiple agents with the shared DiscoNet could collaboratively approach the performance of a hypothetical teacher model with a holistic view. Our approach is validated on V2X-Sim 1.0, a large-scale multi-agent perception dataset that we synthesized using CARLA and SUMO co-simulation. Our quantitative and qualitative experiments in multi-agent 3D object detection show that DiscoNet could not only achieve a better performance-bandwidth trade-off than the state-of-the-art collaborative perception methods, but also bring more straightforward design rationale. Our code is available on https://github.com/ai4ce/DiscoNet.
We conduct theoretical studies on streaming-based active learning for binary classification under unknown adversarial label corruptions. In this setting, every time before the learner observes a sample, the adversary decides whether to corrupt the label ornot. First, we show that, in a benign corruption setting (which includes the misspecification setting as a special case),with a slight enlargement on the hypothesis elimination threshold, the classical RobustCAL framework can (surprisingly) achieve nearly the same label complexity guarantee as in the non-corrupted setting. However, this algorithm can fail in the general corruption setting. To resolve this drawback, we propose a new algorithm which is provably correct without any assumptions on the presence of corruptions. Furthermore, this algorithm enjoys the minimax label complexity in the non-corrupted setting (which is achieved by RobustCAL) and only requires $\tilde{\mathcal{O}}(C_{\mathrm{total}})$ additional labels in the corrupted setting to achieve $\mathcal{O}(\varepsilon + \frac{C_{\mathrm{total}}}{n})$, where $\varepsilon$ is the target accuracy, $C_{\mathrm{total}}$ is the total number of corruptions and $n$ is the total number of unlabeled samples.
Program Synthesis Guided Reinforcement Learning for Partially Observed Environments
Yichen Yang · Jeevana Priya Inala · Osbert Bastani · Yewen Pu · Armando Solar-Lezama · Martin Rinard
A key challenge for reinforcement learning is solving long-horizon planning problems. Recent work has leveraged programs to guide reinforcement learning in these settings. However, these approaches impose a high manual burden on the user since they must provide a guiding program for every new task. Partially observed environments further complicate the programming task because the program must implement a strategy that correctly, and ideally optimally, handles every possible configuration of the hidden regions of the environment. We propose a new approach, model predictive program synthesis (MPPS), that uses program synthesis to automatically generate the guiding programs. It trains a generative model to predict the unobserved portions of the world, and then synthesizes a program based on samples from this model in a way that is robust to its uncertainty. In our experiments, we show that our approach significantly outperforms non-program-guided approaches on a set of challenging benchmarks, including a 2D Minecraft-inspired environment where the agent must complete a complex sequence of subtasks to achieve its goal, and achieves a similar performance as using handcrafted programs to guide the agent. Our results demonstrate that our approach can obtain the benefits of program-guided reinforcement learning without requiring the user to provide a new guiding program for every new task.
Soft Calibration Objectives for Neural Networks
Archit Karandikar · Nicholas Cain · Dustin Tran · Balaji Lakshminarayanan · Jonathon Shlens · Michael Mozer · Becca Roelofs
Optimal decision making requires that classifiers produce uncertainty estimates consistent with their empirical accuracy. However, deep neural networks are often under- or over-confident in their predictions. Consequently, methods have been developed to improve the calibration of their predictive uncertainty both during training and post-hoc. In this work, we propose differentiable losses to improve calibration based on a soft (continuous) version of the binning operation underlying popular calibration-error estimators. When incorporated into training, these soft calibration losses achieve state-of-the-art single-model ECE across multiple datasets with less than 1% decrease in accuracy. For instance, we observe an 82% reduction in ECE (70% relative to the post-hoc rescaled ECE) in exchange for a 0.7% relative decrease in accuracy relative to the cross entropy baseline on CIFAR-100.When incorporated post-training, the soft-binning-based calibration error objective improves upon temperature scaling, a popular recalibration method. Overall, experiments across losses and datasets demonstrate that using calibration-sensitive procedures yield better uncertainty estimates under dataset shift than the standard practice of using a cross entropy loss and post-hoc recalibration methods.
A Geometric Analysis of Neural Collapse with Unconstrained Features
Zhihui Zhu · Tianyu Ding · Jinxin Zhou · Xiao Li · Chong You · Jeremias Sulam · Qing Qu
We provide the first global optimization landscape analysis of Neural Collapse -- an intriguing empirical phenomenon that arises in the last-layer classifiers and features of neural networks during the terminal phase of training. As recently reported by Papyan et al., this phenomenon implies that (i) the class means and the last-layer classifiers all collapse to the vertices of a Simplex Equiangular Tight Frame (ETF) up to scaling, and (ii) cross-example within-class variability of last-layer activations collapses to zero. We study the problem based on a simplified unconstrained feature model, which isolates the topmost layers from the classifier of the neural network. In this context, we show that the classical cross-entropy loss with weight decay has a benign global landscape, in the sense that the only global minimizers are the Simplex ETFs while all other critical points are strict saddles whose Hessian exhibit negative curvature directions. Our analysis of the simplified model not only explains what kind of features are learned in the last layer, but also shows why they can be efficiently optimized, matching the empirical observations in practical deep network architectures. These findings provide important practical implications. As an example, our experiments demonstrate that one may set the feature dimension equal to the number of classes and fix the last-layer classifier to be a Simplex ETF for network training, which reduces memory cost by over 20% on ResNet18 without sacrificing the generalization performance. The source code is available at https://github.com/tding1/Neural-Collapse.
We introduce Automorphism-based graph neural networks (Autobahn), a new family of graph neural networks. In an Autobahn, we decompose the graph into a collection of subgraphs and apply local convolutions that are equivariant to each subgraph's automorphism group. Specific choices of local neighborhoods and subgraphs recover existing architectures such as message passing neural networks. Our formalism also encompasses novel architectures: as an example, we introduce a graph neural network that decomposes the graph into paths and cycles. The resulting convolutions reflect the natural way that parts of the graph can transform, preserving the intuitive meaning of convolution without sacrificing global permutation equivariance. We validate our approach by applying Autobahn to molecular graphs, where it achieves results competitive with state-of-the-art message passing algorithms.
Focal Attention for Long-Range Interactions in Vision Transformers
Jianwei Yang · Chunyuan Li · Pengchuan Zhang · Xiyang Dai · Bin Xiao · Lu Yuan · Jianfeng Gao
Recently, Vision Transformer and its variants have shown great promise on various computer vision tasks. The ability to capture local and global visual dependencies through self-attention is the key to its success. But it also brings challenges due to quadratic computational overhead, especially for the high-resolution vision tasks(e.g., object detection). Many recent works have attempted to reduce the cost and improve model performance by applying either coarse-grained global attention or fine-grained local attention. However, both approaches cripple the modeling power of the original self-attention mechanism of multi-layer Transformers, leading to sub-optimal solutions. In this paper, we present focal attention, a new attention mechanism that incorporates both fine-grained local and coarse-grained global interactions. In this new mechanism, each token attends its closest surrounding tokens at the fine granularity and the tokens far away at a coarse granularity and thus can capture both short- and long-range visual dependencies efficiently and effectively. With focal attention, we propose a new variant of Vision Transformer models, called Focal Transformers, which achieve superior performance over the state-of-the-art (SoTA) Vision Transformers on a range of public image classification and object detection benchmarks. In particular, our Focal Transformer models with a moderate size of 51.1M and a large size of 89.8M achieve 83.6% and 84.0%Top-1 accuracy, respectively, on ImageNet classification at 224×224. When employed as the backbones, Focal Transformers achieve consistent and substantial improvements over the current SoTA Swin Transformers [44] across 6 different object detection methods. Our largest Focal Transformer yields58.7/59.0boxmAPs and50.9/51.3mask mAPs on COCO mini-val/test-dev, and55.4mIoU onADE20K for semantic segmentation, creating new SoTA on three of the most challenging computer vision tasks.
Rectangular Flows for Manifold Learning
Anthony Caterini · Gabriel Loaiza-Ganem · Geoff Pleiss · John Cunningham
Normalizing flows are invertible neural networks with tractable change-of-volume terms, which allow optimization of their parameters to be efficiently performed via maximum likelihood. However, data of interest are typically assumed to live in some (often unknown) low-dimensional manifold embedded in a high-dimensional ambient space. The result is a modelling mismatch since -- by construction -- the invertibility requirement implies high-dimensional support of the learned distribution. Injective flows, mappings from low- to high-dimensional spaces, aim to fix this discrepancy by learning distributions on manifolds, but the resulting volume-change term becomes more challenging to evaluate. Current approaches either avoid computing this term entirely using various heuristics, or assume the manifold is known beforehand and therefore are not widely applicable. Instead, we propose two methods to tractably calculate the gradient of this term with respect to the parameters of the model, relying on careful use of automatic differentiation and techniques from numerical linear algebra. Both approaches perform end-to-end nonlinear manifold learning and density estimation for data projected onto this manifold. We study the trade-offs between our proposed methods, empirically verify that we outperform approaches ignoring the volume-change term by more accurately learning manifolds and the corresponding distributions on them, and show promising results on out-of-distribution detection. Our code is available at https://github.com/layer6ai-labs/rectangular-flows.
Continual Learning via Local Module Composition
Oleksiy Ostapenko · Pau Rodriguez · Massimo Caccia · Laurent Charlin
Modularity is a compelling solution to continual learning (CL), the problem of modeling sequences of related tasks. Learning and then composing modules to solve different tasks provides an abstraction to address the principal challenges of CL including catastrophic forgetting, backward and forward transfer across tasks, and sub-linear model growth. We introduce local module composition (LMC), an approach to modular CL where each module is provided a local structural component that estimates a module’s relevance to the input. Dynamic module composition is performed layer-wise based on local relevance scores. We demonstrate that agnosticity to task identities (IDs) arises from (local) structural learning that is module-specific as opposed to the task- and/or model-specific as in previous works, making LMC applicable to more CL settings compared to previous works. In addition, LMC also tracks statistics about the input distribution and adds new modules when outlier samples are detected. In the first set of experiments, LMC performs favorably compared to existing methods on the recent Continual Transfer-learning Benchmark without requiring task identities. In another study, we show that the locality of structural learning allows LMC to interpolate to related but unseen tasks (OOD), as well as to compose modular networks trained independently on different task sequences into a third modular network without any fine-tuning. Finally, in search for limitations of LMC we study it on more challenging sequences of 30 and 100 tasks, demonstrating that local module selection becomes much more challenging in presence of a large number of candidate modules. In this setting best performing LMC spawns much fewer modules compared to an oracle based baseline, however, it reaches a lower overall accuracy. The codebase is available under https://github.com/oleksost/LMC.
Local plasticity rules can learn deep representations using self-supervised contrastive predictions
Bernd Illing · Jean Ventura · Guillaume Bellec · Wulfram Gerstner
Learning in the brain is poorly understood and learning rules that respect biological constraints, yet yield deep hierarchical representations, are still unknown. Here, we propose a learning rule that takes inspiration from neuroscience and recent advances in self-supervised deep learning. Learning minimizes a simple layer-specific loss function and does not need to back-propagate error signals within or between layers. Instead, weight updates follow a local, Hebbian, learning rule that only depends on pre- and post-synaptic neuronal activity, predictive dendritic input and widely broadcasted modulation factors which are identical for large groups of neurons. The learning rule applies contrastive predictive learning to a causal, biological setting using saccades (i.e. rapid shifts in gaze direction). We find that networks trained with this self-supervised and local rule build deep hierarchical representations of images, speech and video.
MobTCast: Leveraging Auxiliary Trajectory Forecasting for Human Mobility Prediction
Hao Xue · Flora Salim · Yongli Ren · Nuria Oliver
Human mobility prediction is a core functionality in many location-based services and applications. However, due to the sparsity of mobility data, it is not an easy task to predict future POIs (place-of-interests) that are going to be visited. In this paper, we propose MobTCast, a Transformer-based context-aware network for mobility prediction. Specifically, we explore the influence of four types of context in mobility prediction: temporal, semantic, social, and geographical contexts. We first design a base mobility feature extractor using the Transformer architecture, which takes both the history POI sequence and the semantic information as input. It handles both the temporal and semantic contexts. Based on the base extractor and the social connections of a user, we employ a self-attention module to model the influence of the social context. Furthermore, unlike existing methods, we introduce a location prediction branch in MobTCast as an auxiliary task to model the geographical context and predict the next location. Intuitively, the geographical distance between the location of the predicted POI and the predicted location from the auxiliary branch should be as close as possible. To reflect this relation, we design a consistency loss to further improve the POI prediction performance. In our experimental results, MobTCast outperforms other state-of-the-art next POI prediction methods. Our approach illustrates the value of including different types of context in next POI prediction.