D-optimal neural exploration of nonlinear physical systems
Matthieu Blanke · marc lelarge
Abstract
Exploring an unknown physical environment in a sample-efficient and computationally fast manner is a challenging task. In this work, we introduce an exploration policy based on neural networks and experimental design. Our policy maximizes the one-step-ahead information gain on the model, which is computed using automatic differentiation, and leads us to an online exploration algorithm requiring small computing resources. We test our method on a number of nonlinear physical systems covering different settings.
Chat is not available.
Successful Page Load