Skip to yearly menu bar Skip to main content


Poster
in
Workshop: AI for Science: Progress and Promises

HotProtein: A Novel Framework for Protein Thermostability Prediction and Editing

Tianlong Chen · Chengyue Gong · Daniel Diaz · Xuxi Chen · Jordan Wells · Qiang Liu · Zhangyang Wang · Andrew Ellington · Alex Dimakis · Adam Klivans

Keywords: [ Factorized Sparse Tuning ] [ dataset ] [ Protein Editing ] [ Protein Thermostability ] [ Structure-aware Pre-training ]


Abstract: The molecular basis of protein thermal stability is only partially understood and has major significance for drug and vaccine discovery. The lack of datasets and standardized benchmarks considerably limits learning-based discovery methods. We present HotProtein, a large-scale protein dataset with \textit{growth temperature} annotations of thermostability, containing 182K amino acid sequences and 3K folded structures from 230 different species with a wide temperature range 20C120C. Due to functional domain differences and data scarcity within each species, existing methods fail to generalize well on our dataset. We address this problem through a novel learning framework, consisting of (1) Protein structure-aware pre-training (SAP) which leverages 3D information to enhance sequence-based pre-training; (2) Factorized sparse tuning (FST) that utilizes low-rank and sparse priors as an implicit regularization, together with feature augmentations. Extensive empirical studies demonstrate that our framework improves thermostability prediction compared to other deep learning models. Finally, we propose a novel editing algorithm to efficiently generate positive amino acid mutations that improve thermostability.

Chat is not available.