Registration Desk Wed 30 Nov 08:00 a.m.
Invited Talk: Juho Kim
Remarkable model performance makes news headlines and compelling demos, but these advances rarely translate to a lasting impact on real-world users. A common anti-pattern is overlooking the dynamic, complex, and unexpected ways humans interact with AI, which in turn limits the adoption and usage of AI in practical contexts. To address this, I argue that human-AI interaction should be considered a first-class object in designing AI applications.
In this talk, I present a few novel interactive systems that use AI to support complex real-life tasks. I discuss tensions and solutions in designing human-AI interaction, and critically reflect on my own research to share hard-earned design lessons. Factors such as user motivation, coordination between stakeholders, social dynamics, and user’s and AI’s adaptivity to each other often play a crucial role in determining the user experience of AI, even more so than model accuracy. My call to action is that we need to establish robust building blocks for “Interaction-Centric AI”—a systematic approach to designing and engineering human-AI interaction that complements and overcomes the limitations of model- and data-centric views.
Bio :Poster Session 3 Wed 30 Nov 11:00 a.m.
[ Hall J ]

There has been a surge of recent interest in graph representation learning (GRL). GRL methods have generally fallen into three main categories, based on the availability of labeled data. The first, network embedding, focuses on learning unsupervised representations of relational structure. The second, graph regularized neural networks, leverages graphs to augment neural network losses with a regularization objective for semi-supervised learning. The third, graph neural networks, aims to learn differentiable functions over discrete topologies with arbitrary structure. However, despite the popularity of these areas there has been surprisingly little work on unifying the three paradigms. Here, we aim to bridge the gap between network embedding, graph regularization and graph neural networks. We propose a comprehensive taxonomy of GRL methods, aiming to unify several disparate bodies of work. Specifically, we propose the GraphEDM framework, which generalizes popular algorithms for semi-supervised learning (e.g. GraphSage, GCN, GAT), and unsupervised learning (e.g. DeepWalk, node2vec) of graph representations into a single consistent approach. To illustrate the generality of GraphEDM, we fit over thirty existing methods into this framework. We believe that this unifying view both provides a solid foundation for understanding the intuition behind these methods, and enables future research in the area.
[ Hall J ]

Self-training based semi-supervised learning algorithms have enabled the learning of highly accurate deep neural networks, using only a fraction of labeled data. However, the majority of work on self-training has focused on the objective of improving accuracy whereas practical machine learning systems can have complex goals (e.g. maximizing the minimum of recall across classes, etc.) that are non-decomposable in nature. In this work, we introduce the Cost-Sensitive Self-Training (CSST) framework which generalizes the self-training-based methods for optimizing non-decomposable metrics. We prove that our framework can better optimize the desired non-decomposable metric utilizing unlabeled data, under similar data distribution assumptions made for the analysis of self-training. Using the proposed CSST framework, we obtain practical self-training methods (for both vision and NLP tasks) for optimizing different non-decomposable metrics using deep neural networks. Our results demonstrate that CSST achieves an improvement over the state-of-the-art in majority of the cases across datasets and objectives.
[ Hall J ]
Distillation in neural networks using only the samples randomly drawn from a Gaussian distribution is possibly the most straightforward solution one can think of for the complex problem of knowledge transfer from one network (teacher) to the other (student). If successfully done, it can eliminate the requirement of teacher's training data for knowledge distillation and avoid often arising privacy concerns in sensitive applications such as healthcare. There have been some recent attempts at Gaussian noise-based data-free knowledge distillation, however, none of them offer a consistent or reliable solution. We identify the shift in the distribution of hidden layer activation as the key limiting factor, which occurs when Gaussian noise is fed to the teacher network instead of the accustomed training data. We propose a simple solution to mitigate this shift and show that for vision tasks, such as classification, it is possible to achieve a performance close to the teacher by just using the samples randomly drawn from a Gaussian distribution. We validate our approach on CIFAR10, CIFAR100, SVHN, and Food101 datasets. We further show that in situations of sparsely available original data for distillation, the proposed Gaussian noise-based knowledge distillation method can outperform the distillation using the available data …
[ Hall J ]

In recent years, a number of reinforcement learning (RL) methods have been pro- posed to explore complex environments which differ across episodes. In this work, we show that the effectiveness of these methods critically relies on a count-based episodic term in their exploration bonus. As a result, despite their success in relatively simple, noise-free settings, these methods fall short in more realistic scenarios where the state space is vast and prone to noise. To address this limitation, we introduce Exploration via Elliptical Episodic Bonuses (E3B), a new method which extends count-based episodic bonuses to continuous state spaces and encourages an agent to explore states that are diverse under a learned embed- ding within each episode. The embedding is learned using an inverse dynamics model in order to capture controllable aspects of the environment. Our method sets a new state-of-the-art across 16 challenging tasks from the MiniHack suite, without requiring task-specific inductive biases. E3B also outperforms existing methods in reward-free exploration on Habitat, demonstrating that it can scale to high-dimensional pixel-based observations and realistic environments.
[ Hall J ]

Randomly masking and predicting word tokens has been a successful approach in pre-training language models for a variety of downstream tasks. In this work, we observe that the same idea also applies naturally to sequential decision making, where many well-studied tasks like behavior cloning, offline RL, inverse dynamics, and waypoint conditioning correspond to different sequence maskings over a sequence of states, actions, and returns. We introduce the UniMASK framework, which provides a unified way to specify models which can be trained on many different sequential decision making tasks. We show that a single UniMASK model is often capable of carrying out many tasks with performance similar to or better than single-task models. Additionally, after fine-tuning, our UniMASK models consistently outperform comparable single-task models.
[ Hall J ]

A fundamental ability of an intelligent web-based agent is seeking out and acquiring new information. Internet search engines reliably find the correct vicinity but the top results may be a few links away from the desired target. A complementary approach is navigation via hyperlinks, employing a policy that comprehends local content and selects a link that moves it closer to the target. In this paper, we show that behavioral cloning of randomly sampled trajectories is sufficient to learn an effective link selection policy. We demonstrate the approach on a graph version of Wikipedia with 38M nodes and 387M edges. The model is able to efficiently navigate between nodes 5 and 20 steps apart 96% and 92% of the time, respectively. We then use the resulting embeddings and policy in downstream fact verification and question answering tasks where, in combination with basic TF-IDF search and ranking methods, they are competitive results to the state-of-the-art methods.
[ Hall J ]
It is a long-standing problem to find effective representations for training reinforcement learning (RL) agents. This paper demonstrates that learning state representations with supervision from Neural Radiance Fields (NeRFs) can improve the performance of RL compared to other learned representations or even low-dimensional, hand-engineered state information. Specifically, we propose to train an encoder that maps multiple image observations to a latent space describing the objects in the scene. The decoder built from a latent-conditioned NeRF serves as the supervision signal to learn the latent space. An RL algorithm then operates on the learned latent space as its state representation. We call this NeRF-RL. Our experiments indicate that NeRF as supervision leads to a latent space better suited for the downstream RL tasks involving robotic object manipulations like hanging mugs on hooks, pushing objects, or opening doors.Video: https://dannydriess.github.io/nerf-rl
[ Hall J ]

Room impulse response (RIR) functions capture how the surrounding physical environment transforms the sounds heard by a listener, with implications for various applications in AR, VR, and robotics. Whereas traditional methods to estimate RIRs assume dense geometry and/or sound measurements throughout the environment, we explore how to infer RIRs based on a sparse set of images and echoes observed in the space. Towards that goal, we introduce a transformer-based method that uses self-attention to build a rich acoustic context, then predicts RIRs of arbitrary query source-receiver locations through cross-attention. Additionally, we design a novel training objective that improves the match in the acoustic signature between the RIR predictions and the targets. In experiments using a state-of-the-art audio-visual simulator for 3D environments, we demonstrate that our method successfully generates arbitrary RIRs, outperforming state-of-the-art methods and---in a major departure from traditional methods---generalizing to novel environments in a few-shot manner. Project: http://vision.cs.utexas.edu/projects/fs_rir
[ Hall J ]

Recently, methods such as Decision Transformer that reduce reinforcement learning to a prediction task and solve it via supervised learning (RvS) have become popular due to their simplicity, robustness to hyperparameters, and strong overall performance on offline RL tasks. However, simply conditioning a probabilistic model on a desired return and taking the predicted action can fail dramatically in stochastic environments since trajectories that result in a return may have only achieved that return due to luck. In this work, we describe the limitations of RvS approaches in stochastic environments and propose a solution. Rather than simply conditioning on returns, as is standard practice, our proposed method, ESPER, conditions on learned average returns which are independent from environment stochasticity. Doing so allows ESPER to achieve strong alignment between target return and expected performance in real environments. We demonstrate this in several challenging stochastic offline-RL tasks including the challenging puzzle game 2048, and Connect Four playing against a stochastic opponent. In all tested domains, ESPER achieves significantly better alignment between the target return and achieved return than simply conditioning on returns. ESPER also achieves higher maximum performance than even the value-based baselines.
[ Hall J ]

Decision-Focused Learning (DFL) is a paradigm for tailoring a predictive model to a downstream optimization task that uses its predictions in order to perform better \textit{on that specific task}. The main technical challenge associated with DFL is that it requires being able to differentiate through the optimization problem, which is difficult due to discontinuous solutions and other challenges. Past work has largely gotten around this this issue by \textit{handcrafting} task-specific surrogates to the original optimization problem that provide informative gradients when differentiated through. However, the need to handcraft surrogates for each new task limits the usability of DFL. In addition, there are often no guarantees about the convexity of the resulting surrogates and, as a result, training a predictive model using them can lead to inferior local optima. In this paper, we do away with surrogates altogether and instead \textit{learn} loss functions that capture task-specific information. To the best of our knowledge, ours is the first approach that entirely replaces the optimization component of decision-focused learning with a loss that is automatically learned. Our approach (a) only requires access to a black-box oracle that can solve the optimization problem and is thus \textit{generalizable}, and (b) can be \textit{convex by construction} …
[ Hall J ]
We investigate the robustness of vision transformers (ViTs) through the lens of their special patch-based architectural structure, i.e., they process an image as a sequence of image patches. We find that ViTs are surprisingly insensitive to patch-based transformations, even when the transformation largely destroys the original semantics and makes the image unrecognizable by humans. This indicates that ViTs heavily use features that survived such transformations but are generally not indicative of the semantic class to humans. Further investigations show that these features are useful but non-robust, as ViTs trained on them can achieve high in-distribution accuracy, but break down under distribution shifts. From this understanding, we ask: can training the model to rely less on these features improve ViT robustness and out-of-distribution performance? We use the images transformed with our patch-based operations as negatively augmented views and offer losses to regularize the training away from using non-robust features. This is a complementary view to existing research that mostly focuses on augmenting inputs with semantic-preserving transformations to enforce models' invariance. We show that patch-based negative augmentation consistently improves robustness of ViTs on ImageNet based robustness benchmarks across 20+ different experimental settings. Furthermore, we find our patch-based negative augmentation are complementary to …
[ Hall J ]

Variational Autoencoders (VAEs) have recently been highly successful at imputing and acquiring heterogeneous missing data. However, within this specific application domain, existing VAE methods are restricted by using only one layer of latent variables and strictly Gaussian posterior approximations. To address these limitations, we present HH-VAEM, a Hierarchical VAE model for mixed-type incomplete data that uses Hamiltonian Monte Carlo with automatic hyper-parameter tuning for improved approximate inference. Our experiments show that HH-VAEM outperforms existing baselines in the tasks of missing data imputation and supervised learning with missing features. Finally, we also present a sampling-based approach for efficiently computing the information gain when missing features are to be acquired with HH-VAEM. Our experiments show that this sampling-based approach is superior to alternatives based on Gaussian approximations.
[ Hall J ]

Bayesian optimization over the latent spaces of deep autoencoder models (DAEs) has recently emerged as a promising new approach for optimizing challenging black-box functions over structured, discrete, hard-to-enumerate search spaces (e.g., molecules). Here the DAE dramatically simplifies the search space by mapping inputs into a continuous latent space where familiar Bayesian optimization tools can be more readily applied. Despite this simplification, the latent space typically remains high-dimensional. Thus, even with a well-suited latent space, these approaches do not necessarily provide a complete solution, but may rather shift the structured optimization problem to a high-dimensional one. In this paper, we propose LOL-BO, which adapts the notion of trust regions explored in recent work on high-dimensional Bayesian optimization to the structured setting. By reformulating the encoder to function as both an encoder for the DAE globally and as a deep kernel for the surrogate model within a trust region, we better align the notion of local optimization in the latent space with local optimization in the input space. LOL-BO achieves as much as 20 times improvement over state-of-the-art latent space Bayesian optimization methods across six real-world benchmarks, demonstrating that improvement in optimization strategies is as important as developing better DAE models.
[ Hall J ]

Modern neural recording techniques allow neuroscientists to observe the spiking activity of many neurons simultaneously. Although previous work has illustrated how activity within and between known populations of neurons can be summarized by low-dimensional latent vectors, in many cases what determines a unique population may be unclear. Neurons differ in their anatomical location, but also, in their cell types and response properties. Moreover, multiple distinct populations may not be well described by a single low-dimensional, linear representation.To tackle these challenges, we develop a clustering method based on a mixture of dynamic Poisson factor analyzers (DPFA) model, with the number of clusters treated as an unknown parameter. To do the analysis of DPFA model, we propose a novel Markov chain Monte Carlo (MCMC) algorithm to efficiently sample its posterior distribution. Validating our proposed MCMC algorithm with simulations, we find that it can accurately recover the true clustering and latent states and is insensitive to the initial cluster assignments. We then apply the proposed mixture of DPFA model to multi-region experimental recordings, where we find that the proposed method can identify novel, reliable clusters of neurons based on their activity, and may, thus, be a useful tool for neural data analysis.
[ Hall J ]
Modeling the energy and forces of atomic systems is a fundamental problem in computational chemistry with the potential to help address many of the world’s most pressing problems, including those related to energy scarcity and climate change. These calculations are traditionally performed using Density Functional Theory, which is computationally very expensive. Machine learning has the potential to dramatically improve the efficiency of these calculations from days or hours to seconds.We propose the Spherical Channel Network (SCN) to model atomic energies and forces. The SCN is a graph neural network where nodes represent atoms and edges their neighboring atoms. The atom embeddings are a set of spherical functions, called spherical channels, represented using spherical harmonics. We demonstrate, that by rotating the embeddings based on the 3D edge orientation, more information may be utilized while maintaining the rotational equivariance of the messages. While equivariance is a desirable property, we find that by relaxing this constraint in both message passing and aggregation, improved accuracy may be achieved. We demonstrate state-of-the-art results on the large-scale Open Catalyst 2020 dataset in both energy and force prediction for numerous tasks and metrics.
[ Hall J ]
Policies produced by deep reinforcement learning are typically characterised by their learning curves, but they remain poorly understood in many other respects. ReLU-based policies result in a partitioning of the input space into piecewise linear regions. We seek to understand how observed region counts and their densities evolve during deep reinforcement learning using empirical results that span a range of continuous control tasks and policy network dimensions. Intuitively, we may expect that during training, the region density increases in the areas that are frequently visited by the policy, thereby affording fine-grained control. We use recent theoretical and empirical results for the linear regions induced by neural networks in supervised learning settings for grounding and comparison of our results. Empirically, we find that the region density increases only moderately throughout training, as measured along fixed trajectories coming from the final policy. However, the trajectories themselves also increase in length during training, and thus the region densities decrease as seen from the perspective of the current trajectory. Our findings suggest that the complexity of deep reinforcement learning policies does not principally emerge from a significant growth in the complexity of functions observed on-and-around trajectories of the policy.
[ Hall J ]

We present a framework to statistically audit the privacy guarantee conferred by a differentially private machine learner in practice. While previous works have taken steps toward evaluating privacy loss through poisoning attacks or membership inference, they have been tailored to specific models or have demonstrated low statistical power. Our work develops a general methodology to empirically evaluate the privacy of differentially private machine learning implementations, combining improved privacy search and verification methods with a toolkit of influence-based poisoning attacks. We demonstrate significantly improved auditing power over previous approaches on a variety of models including logistic regression, Naive Bayes, and random forest. Our method can be used to detect privacy violations due to implementation errors or misuse. When violations are not present, it can aid in understanding the amount of information that can be leaked from a given dataset, algorithm, and privacy specification.
[ Hall J ]

A persistent challenge in conditional image synthesis has been to generate diverse output images from the same input image despite only one output image being observed per input image. GAN-based methods are prone to mode collapse, which leads to low diversity. To get around this, we leverage Implicit Maximum Likelihood Estimation (IMLE) which can overcome mode collapse fundamentally. IMLE uses the same generator as GANs but trains it with a different, non-adversarial objective which ensures each observed image has a generated sample nearby. Unfortunately, to generate high-fidelity images, prior IMLE-based methods require a large number of samples, which is expensive. In this paper, we propose a new method to get around this limitation, which we dub Conditional Hierarchical IMLE (CHIMLE), which can generate high-fidelity images without requiring many samples. We show CHIMLE significantly outperforms the prior best IMLE, GAN and diffusion-based methods in terms of image fidelity and mode coverage across four tasks, namely night-to-day, 16x single image super-resolution, image colourization and image decompression. Quantitatively, our method improves Fréchet Inception Distance (FID) by 36.9% on average compared to the prior best IMLE-based method, and by 27.5% on average compared to the best non-IMLE-based general-purpose methods. More results and code are …
[ Hall J ]

Rehearsal approaches enjoy immense popularity with Continual Learning (CL) practitioners. These methods collect samples from previously encountered data distributions in a small memory buffer; subsequently, they repeatedly optimize on the latter to prevent catastrophic forgetting. This work draws attention to a hidden pitfall of this widespread practice: repeated optimization on a small pool of data inevitably leads to tight and unstable decision boundaries, which are a major hindrance to generalization. To address this issue, we propose Lipschitz-DrivEn Rehearsal (LiDER), a surrogate objective that induces smoothness in the backbone network by constraining its layer-wise Lipschitz constants w.r.t. replay examples. By means of extensive experiments, we show that applying LiDER delivers a stable performance gain to several state-of-the-art rehearsal CL methods across multiple datasets, both in the presence and absence of pre-training. Through additional ablative experiments, we highlight peculiar aspects of buffer overfitting in CL and better characterize the effect produced by LiDER. Code is available at https://github.com/aimagelab/LiDER.
[ Hall J ]
Efficient and automated design of optimizers plays a crucial role in full-stack AutoML systems. However, prior methods in optimizer search are often limited by their scalability, generability, or sample efficiency. With the goal of democratizing research and application of optimizer search, we present the first efficient, scalable and generalizable framework that can directly search on the tasks of interest. We first observe that optimizer updates are fundamentally mathematical expressions applied to the gradient. Inspired by the innate tree structure of the underlying math expressions, we re-arrange the space of optimizers into a super-tree, where each path encodes an optimizer. This way, optimizer search can be naturally formulated as a path-finding problem, allowing a variety of well-established tree traversal methods to be used as the search algorithm. We adopt an adaptation of the Monte Carlo method to tree search, equipped with rejection sampling and equivalent-form detection that leverage the characteristics of optimizer update rules to further boost the sample efficiency. We provide a diverse set of tasks to benchmark our algorithm and demonstrate that, with only 128 evaluations, the proposed framework can discover optimizers that surpass both human-designed counterparts and prior optimizer search methods. Our code is publicly available at https://github.com/ruocwang/enos.
[ Hall J ]
Spectral analysis provides one of the most effective paradigms for information-preserving dimensionality reduction, as simple descriptions of naturally occurring signals are often obtained via few terms of periodic basis functions. In this work, we study deep neural networks designed to harness the structure in frequency domain for efficient learning of long-range correlations in space or time: frequency-domain models (FDMs). Existing FDMs are based on complex-valued transforms i.e. Fourier Transforms (FT), and layers that perform computation on the spectrum and input data separately. This design introduces considerable computational overhead: for each layer, a forward and inverse FT. Instead, this work introduces a blueprint for frequency domain learning through a single transform: transform once (T1). To enable efficient, direct learning in the frequency domain we derive a variance preserving weight initialization scheme and investigate methods for frequency selection in reduced-order FDMs. Our results noticeably streamline the design process of FDMs, pruning redundant transforms, and leading to speedups of 3x to 10x that increase with data resolution and model size. We perform extensive experiments on learning the solution operator of spatio-temporal dynamics, including incompressible Navier-Stokes, turbulent flows around airfoils and high-resolution video of smoke. T1 models improve on the test performance of FDMs …
[ Hall J ]
There is currently a large gap in performance between the statistically rigorous methods like linear regression or additive splines and the powerful deep methods using neural networks. Previous works attempting to close this gap have failed to fully consider the exponentially growing number of feature combinations which deep networks consider automatically during training. In this work, we develop a tractable selection algorithm to efficiently identify the necessary feature combinations by leveraging techniques in feature interaction detection.Our proposed Sparse Interaction Additive Networks (SIAN) construct a bridge from these simple and interpretable models to a fully connected neural network. SIAN achieves competitive performance against state-of-the-art methods across multiple large-scale tabular datasets and consistently finds an optimal tradeoff between the modeling capacity of neural networks and the generalizability of simpler methods.
[ Hall J ]

Current deep learning models for dynamics forecasting struggle with generalization. They can only forecast in a specific domain and fail when applied to systems with different parameters, external forces, or boundary conditions. We propose a model-based meta-learning method called DyAd which can generalize across heterogeneous domains by partitioning them into different tasks. DyAd has two parts: an encoder that infers the time-invariant hidden features of the task with weak supervision, and a forecaster which learns the shared dynamics of the entire domain. The encoder adapts and controls the forecaster during inference using adaptive instance normalization and adaptive padding. Theoretically, we prove that the generalization error of such a procedure is related to the task relatedness in the source domain, as well as the domain differences between source and target. Experimentally, we demonstrate that our model outperforms state-of-the-art approaches on forecasting complex physical dynamics including turbulent flow, real-world sea surface temperature, and ocean currents.
[ Hall J ]

Coordinate-based networks, usually in the forms of MLPs, have been successfully applied to the task of predicting high-frequency but low-dimensional signals using coordinate inputs. To scale them to model large-scale signals, previous works resort to hybrid representations, combining a coordinate-based network with a grid-based representation, such as sparse voxels. However, such approaches lack a compact global latent representation in its grid, making it difficult to model a distribution of signals, which is important for generalization tasks. To address the limitation, we propose the Levels-of-Experts (LoE) framework, which is a novel coordinate-based representation consisting of an MLP with periodic, position-dependent weights arranged hierarchically. For each linear layer of the MLP, multiple candidate values of its weight matrix are tiled and replicated across the input space, with different layers replicating at different frequencies. Based on the input, only one of the weight matrices is chosen for each layer. This greatly increases the model capacity without incurring extra computation or compromising generalization capability. We show that the new representation is an efficient and competitive drop-in replacement for a wide range of tasks, including signal fitting, novel view synthesis, and generative modeling.
[ Hall J ]

Automated machine learning has been widely explored to reduce human efforts in designing neural architectures and looking for proper hyperparameters. In the domain of neural initialization, however, similar automated techniques have rarely been studied. Most existing initialization methods are handcrafted and highly dependent on specific architectures. In this paper, we propose a differentiable quantity, named GradCoisne, with theoretical insights to evaluate the initial state of a neural network. Specifically, GradCosine is the cosine similarity of sample-wise gradients with respect to the initialized parameters. By analyzing the sample-wise optimization landscape, we show that both the training and test performance of a network can be improved by maximizing GradCosine under gradient norm constraint. Based on this observation, we further propose the neural initialization optimization (NIO) algorithm. Generalized from the sample-wise analysis into the real batch setting, NIO is able to automatically look for a better initialization with negligible cost compared with the training time. With NIO, we improve the classification performance of a variety of neural architectures on CIFAR10, CIFAR-100, and ImageNet. Moreover, we find that our method can even help to train large vision Transformer architecture without warmup.
[ Hall J ]

Discriminator plays a vital role in training generative adversarial networks (GANs) via distinguishing real and synthesized samples. While the real data distribution remains the same, the synthesis distribution keeps varying because of the evolving generator, and thus effects a corresponding change of the bi-classification task assigned to the discriminator. We argue that a discriminator with an on-the-fly adjustment on its capacity can better accommodate such a time-varying task. A comprehensive empirical study confirms that the proposed training strategy, termed as DynamicD, improves the synthesis performance without incurring any additional computation cost or training objectives. Two capacity adjusting schemes are developed for training GANs under different data regimes: i) given a sufficient amount of training data, the discriminator benefits from a progressively increased learning capacity, and ii) when the training data is limited, gradually decreasing the layer width mitigates the over-fitting issue of the discriminator. Experiments on both 2D and 3D-aware image synthesis tasks conducted on a range of datasets substantiate the generalizability of our DynamicD as well as its substantial improvement over the baselines. Furthermore, DynamicD is synergistic to other discriminator-improving approaches (including data augmentation, regularizers, and pre-training), and brings continuous performance gain when combined with them for learning GANs. …
[ Hall J ]

Meta-learning hyperparameter optimization (HPO) algorithms from prior experiments is a promising approach to improve optimization efficiency over objective functions from a similar distribution. However, existing methods are restricted to learning from experiments sharing the same set of hyperparameters. In this paper, we introduce the OptFormer, the first text-based Transformer HPO framework that provides a universal end-to-end interface for jointly learning policy and function prediction when trained on vast tuning data from the wild, such as Google’s Vizier database, one of the world’s largest HPO datasets. Our extensive experiments demonstrate that the OptFormer can simultaneously imitate at least 7 different HPO algorithms, which can be further improved via its function uncertainty estimates. Compared to a Gaussian Process, the OptFormer also learns a robust prior distribution for hyperparameter response functions, and can thereby provide more accurate and better calibrated predictions. This work paves the path to future extensions for training a Transformer-based model as a general HPO optimizer.
[ Hall J ]

Self-supervised learning of graph neural networks (GNNs) aims to learn an accurate representation of the graphs in an unsupervised manner, to obtain transferable representations of them for diverse downstream tasks. Predictive learning and contrastive learning are the two most prevalent approaches for graph self-supervised learning. However, they have their own drawbacks. While the predictive learning methods can learn the contextual relationships between neighboring nodes and edges, they cannot learn global graph-level similarities. Contrastive learning, while it can learn global graph-level similarities, its objective to maximize the similarity between two differently perturbed graphs may result in representations that cannot discriminate two similar graphs with different properties. To tackle such limitations, we propose a framework that aims to learn the exact discrepancy between the original and the perturbed graphs, coined as Discrepancy-based Self-supervised LeArning (D-SLA). Specifically, we create multiple perturbations of the given graph with varying degrees of similarity, and train the model to predict whether each graph is the original graph or the perturbed one. Moreover, we further aim to accurately capture the amount of discrepancy for each perturbed graph using the graph edit distance. We validate our D-SLA on various graph-related downstream tasks, including molecular property prediction, protein function prediction, …
[ Hall J ]

Based on the significant improvement of model robustness by AT (Adversarial Training), various variants have been proposed to further boost the performance. Well-recognized methods have focused on different components of AT (e.g., designing loss functions and leveraging additional unlabeled data). It is generally accepted that stronger perturbations yield more robust models.However, how to generate stronger perturbations efficiently is still missed. In this paper, we propose an efficient automated attacker called A2 to boost AT by generating the optimal perturbations on-the-fly during training. A2 is a parameterized automated attacker to search in the attacker space for the best attacker against the defense model and examples. Extensive experiments across different datasets demonstrate that A2 generates stronger perturbations with low extra cost and reliably improves the robustness of various AT methods against different attacks.
[ Hall J ]

Out-of-distribution (OOD) detection is a critical task for ensuring the reliability and safety of deep neural networks in real-world scenarios. Different from most previous OOD detection methods that focus on designing OOD scores or introducing diverse outlier examples to retrain the model, we delve into the obstacle factors in OOD detection from the perspective of typicality and regard the feature's high-probability region of the deep model as the feature's typical set. We propose to rectify the feature into its typical set and calculate the OOD score with the typical features to achieve reliable uncertainty estimation. The feature rectification can be conducted as a plug-and-play module with various OOD scores. We evaluate the superiority of our method on both the commonly used benchmark (CIFAR) and the more challenging high-resolution benchmark with large label space (ImageNet). Notably, our approach outperforms state-of-the-art methods by up to 5.11% in the average FPR95 on the ImageNet benchmark.
[ Hall J ]

Universal Domain Adaptation (UniDA) aims to transfer knowledge from a source domain to a target domain without any constraints on label sets. Since both domains may hold private classes, identifying target common samples for domain alignment is an essential issue in UniDA. Most existing methods require manually specified or hand-tuned threshold values to detect common samples thus they are hard to extend to more realistic UniDA because of the diverse ratios of common classes. Moreover, they cannot recognize different categories among target-private samples as these private samples are treated as a whole. In this paper, we propose to use Optimal Transport (OT) to handle these issues under a unified framework, namely UniOT. First, an OT-based partial alignment with adaptive filling is designed to detect common classes without any predefined threshold values for realistic UniDA. It can automatically discover the intrinsic difference between common and private classes based on the statistical information of the assignment matrix obtained from OT. Second, we propose an OT-based target representation learning that encourages both global discrimination and local consistency of samples to avoid the over-reliance on the source. Notably, UniOT is the first method with the capability to automatically discover and recognize private categories in …
[ Hall J ]
[ Hall J ]

Recently, the accuracy of image-text matching has been greatly improved by multimodal pretrained models, all of which are trained on millions or billions of paired images and texts. Different from them, this paper studies a new scenario as unpaired image-text matching, in which paired images and texts are assumed to be unavailable during model training. To deal with this, we propose a simple yet effective method namely Multimodal Aligned Conceptual Knowledge (MACK), which is inspired by the knowledge use in human brain. It can be directly used as general knowledge to correlate images and texts even without model training, or further fine-tuned based on unpaired images and texts to better generalize to certain datasets. In addition, we extend it as a re-ranking method, which can be easily combined with existing image-text matching models to substantially improve their performance.
[ Hall J ]

Existing open-vocabulary object detectors typically enlarge their vocabulary sizes by leveraging different forms of weak supervision. This helps generalize to novel objects at inference. Two popular forms of weak-supervision used in open-vocabulary detection (OVD) include pretrained CLIP model and image-level supervision. We note that both these modes of supervision are not optimally aligned for the detection task: CLIP is trained with image-text pairs and lacks precise localization of objects while the image-level supervision has been used with heuristics that do not accurately specify local object regions. In this work, we propose to address this problem by performing object-centric alignment of the language embeddings from the CLIP model. Furthermore, we visually ground the objects with only image-level supervision using a pseudo-labeling process that provides high-quality object proposals and helps expand the vocabulary during training. We establish a bridge between the above two object-alignment strategies via a novel weight transfer function that aggregates their complimentary strengths. In essence, the proposed model seeks to minimize the gap between object and image-centric representations in the OVD setting. On the COCO benchmark, our proposed approach achieves 36.6 AP50 on novel classes, an absolute 8.2 gain over the previous best performance. For LVIS, we surpass the …
[ Hall J ]

The idea of using a separately trained target model (or teacher) to improve the performance of the student model has been increasingly popular in various machine learning domains, and meta-learning is no exception; a recent discovery shows that utilizing task-wise target models can significantly boost the generalization performance. However, obtaining a target model for each task can be highly expensive, especially when the number of tasks for meta-learning is large. To tackle this issue, we propose a simple yet effective method, coined Self-improving Momentum Target (SiMT). SiMT generates the target model by adapting from the temporal ensemble of the meta-learner, i.e., the momentum network. This momentum network and its task-specific adaptations enjoy a favorable generalization performance, enabling self-improving of the meta-learner through knowledge distillation. Moreover, we found that perturbing parameters of the meta-learner, e.g., dropout, further stabilize this self-improving process by preventing fast convergence of the distillation loss during meta-training. Our experimental results demonstrate that SiMT brings a significant performance gain when combined with a wide range of meta-learning methods under various applications, including few-shot regression, few-shot classification, and meta-reinforcement learning. Code is available at https://github.com/jihoontack/SiMT.
[ Hall J ]

High-concurrency asynchronous training upon parameter server (PS) architecture and high-performance synchronous training upon all-reduce (AR) architecture are the most commonly deployed distributed training modes for recommendation models. Although synchronous AR training is designed to have higher training efficiency, asynchronous PS training would be a better choice for training speed when there are stragglers (slow workers) in the shared cluster, especially under limited computing resources. An ideal way to take full advantage of these two training modes is to switch between them upon the cluster status. However, switching training modes often requires tuning hyper-parameters, which is extremely time- and resource-consuming. We find two obstacles to a tuning-free approach: the different distribution of the gradient values and the stale gradients from the stragglers. This paper proposes Global Batch gradients Aggregation (GBA) over PS, which aggregates and applies gradients with the same global batch size as the synchronous training. A token-control process is implemented to assemble the gradients and decay the gradients with severe staleness. We provide the convergence analysis to reveal that GBA has comparable convergence properties with the synchronous training, and demonstrate the robustness of GBA the recommendation models against the gradient staleness. Experiments on three industrial-scale recommendation tasks show that …
[ Hall J ]
[ Hall J ]

We study semi-supervised learning (SSL) for vision transformers (ViT), an under-explored topic despite the wide adoption of the ViT architectures to different tasks. To tackle this problem, we use a SSL pipeline, consisting of first un/self-supervised pre-training, followed by supervised fine-tuning, and finally semi-supervised fine-tuning. At the semi-supervised fine-tuning stage, we adopt an exponential moving average (EMA)-Teacher framework instead of the popular FixMatch, since the former is more stable and delivers higher accuracy for semi-supervised vision transformers. In addition, we propose a probabilistic pseudo mixup mechanism to interpolate unlabeled samples and their pseudo labels for improved regularization, which is important for training ViTs with weak inductive bias. Our proposed method, dubbed Semi-ViT, achieves comparable or better performance than the CNN counterparts in the semi-supervised classification setting. Semi-ViT also enjoys the scalability benefits of ViTs that can be readily scaled up to large-size models with increasing accuracy. For example, Semi-ViT-Huge achieves an impressive 80\% top-1 accuracy on ImageNet using only 1\% labels, which is comparable with Inception-v4 using 100\% ImageNet labels. The code is available at https://github.com/amazon-science/semi-vit.
[ Hall J ]

Pretraining Vision Transformers (ViTs) has achieved great success in visual recognition. A following scenario is to adapt a ViT to various image and video recognition tasks. The adaptation is challenging because of heavy computation and memory storage. Each model needs an independent and complete finetuning process to adapt to different tasks, which limits its transferability to different visual domains.To address this challenge, we propose an effective adaptation approach for Transformer, namely AdaptFormer, which can adapt the pre-trained ViTs into many different image and video tasks efficiently.It possesses several benefits more appealing than prior arts.Firstly, AdaptFormer introduces lightweight modules that only add less than 2% extra parameters to a ViT, while it is able to increase the ViT's transferability without updating its original pre-trained parameters, significantly outperforming the existing 100\% fully fine-tuned models on action recognition benchmarks.Secondly, it can be plug-and-play in different Transformers and scalable to many visual tasks.Thirdly, extensive experiments on five image and video datasets show that AdaptFormer largely improves ViTs in the target domains. For example, when updating just 1.5% extra parameters, it achieves about 10% and 19% relative improvement compared to the fully fine-tuned models on Something-Something~v2 and HMDB51, respectively. Code is available at https://github.com/ShoufaChen/AdaptFormer.
[ Hall J ]

Large-scale pre-trained language models have achieved impressive results on a wide range of downstream tasks recently. However, fine-tuning an extremely large-scale pre-trained language model on limited target datasets is often plagued by overfitting and representation degradation. In this paper, we propose a Dynamic Parameter Selection (DPS) algorithm for the large-scale pre-trained models during fine-tuning, which adaptively selects a more promising subnetwork to perform staging updates based on gradients of back-propagation. Experiments on the GLUE benchmark show that DPS outperforms previous fine-tuning methods in terms of overall performance and stability, and consistently achieves better results with variable pre-trained language models. In addition, DPS brings a large magnitude of improvement in out-of-domain transferring experiments and low-resource scenarios, which shows that it can maintain stable general contextual features and reduce the representation collapse. We release our code at \url{https://github.com/ZhangHaojie077/DPS}.
[ Hall J ]

In this paper, we tackle the problem of learning visual representations from unlabeled scene-centric data. Existing works have demonstrated the potential of utilizing the underlying complex structure within scene-centric data; still, they commonly rely on hand-crafted objectness priors or specialized pretext tasks to build a learning framework, which may harm generalizability. Instead, we propose contrastive learning from data-driven semantic slots, namely SlotCon, for joint semantic grouping and representation learning. The semantic grouping is performed by assigning pixels to a set of learnable prototypes, which can adapt to each sample by attentive pooling over the feature and form new slots. Based on the learned data-dependent slots, a contrastive objective is employed for representation learning, which enhances the discriminability of features, and conversely facilitates grouping semantically coherent pixels together. Compared with previous efforts, by simultaneously optimizing the two coupled objectives of semantic grouping and contrastive learning, our approach bypasses the disadvantages of hand-crafted priors and is able to learn object/group-level representations from scene-centric images. Experiments show our approach effectively decomposes complex scenes into semantic groups for feature learning and significantly benefits downstream tasks, including object detection, instance segmentation, and semantic segmentation. Code is available at: https://github.com/CVMI-Lab/SlotCon.
[ Hall J ]

Although PIFu-based 3D human reconstruction methods are popular, the quality of recovered details is still unsatisfactory. In a sparse (e.g., 3 RGBD sensors) capture setting, the depth noise is typically amplified in the PIFu representation, resulting in flat facial surfaces and geometry-fallible bodies. In this paper, we propose a novel geometry-aware two-scale PIFu for 3D human reconstruction from sparse, noisy inputs. Our key idea is to exploit the complementary properties of depth denoising and 3D reconstruction, for learning a two-scale PIFu representation to reconstruct high-frequency facial details and consistent bodies separately. To this end, we first formulate depth denoising and 3D reconstruction as a multi-task learning problem. The depth denoising process enriches the local geometry information of the reconstruction features, while the reconstruction process enhances depth denoising with global topology information. We then propose to learn the two-scale PIFu representation using two MLPs based on the denoised depth and geometry-aware features. Extensive experiments demonstrate the effectiveness of our approach in reconstructing facial details and bodies of different poses and its superiority over state-of-the-art methods.
[ Hall J ]
We present 360-MLC, a self-training method based on multi-view layout consistency for finetuning monocular room-layout models using unlabeled 360-images only. This can be valuable in practical scenarios where a pre-trained model needs to be adapted to a new data domain without using any ground truth annotations. Our simple yet effective assumption is that multiple layout estimations in the same scene must define a consistent geometry regardless of their camera positions. Based on this idea, we leverage a pre-trained model to project estimated layout boundaries from several camera views into the 3D world coordinate. Then, we re-project them back to the spherical coordinate and build a probability function, from which we sample the pseudo-labels for self-training. To handle unconfident pseudo-labels, we evaluate the variance in the re-projected boundaries as an uncertainty value to weight each pseudo-label in our loss function during training. In addition, since ground truth annotations are not available during training nor in testing, we leverage the entropy information in multiple layout estimations as a quantitative metric to measure the geometry consistency of the scene, allowing us to evaluate any layout estimator for hyper-parameter tuning, including model selection without ground truth annotations. Experimental results show that our solution achieves …
[ Hall J ]
Learning from a few examples is a challenging computer vision task. Traditionally,meta-learning-based methods have shown promise towards solving this problem.Recent approaches show benefits by learning a feature extractor on the abundantbase examples and transferring these to the fewer novel examples. However, thefinetuning stage is often prone to overfitting due to the small size of the noveldataset. To this end, we propose Few shot Learning with hard Mixup (FeLMi)using manifold mixup to synthetically generate samples that helps in mitigatingthe data scarcity issue. Different from a naïve mixup, our approach selects the hardmixup samples using an uncertainty-based criteria. To the best of our knowledge,we are the first to use hard-mixup for the few-shot learning problem. Our approachallows better use of the pseudo-labeled base examples through base-novel mixupand entropy-based filtering. We evaluate our approach on several common few-shotbenchmarks - FC-100, CIFAR-FS, miniImageNet and tieredImageNet and obtainimprovements in both 1-shot and 5-shot settings. Additionally, we experimented onthe cross-domain few-shot setting (miniImageNet → CUB) and obtain significantimprovements.
[ Hall J ]

Recent years have seen a growth in user-centric applications that require effective knowledge transfer across tasks in the low-data regime. An example is personalization, where a pretrained system is adapted by learning on small amounts of labeled data belonging to a specific user. This setting requires high accuracy under low computational complexity, therefore the Pareto frontier of accuracy vs. adaptation cost plays a crucial role. In this paper we push this Pareto frontier in the few-shot image classification setting with a key contribution: a new adaptive block called Contextual Squeeze-and-Excitation (CaSE) that adjusts a pretrained neural network on a new task to significantly improve performance with a single forward pass of the user data (context). We use meta-trained CaSE blocks to conditionally adapt the body of a network and a fine-tuning routine to adapt a linear head, defining a method called UpperCaSE. UpperCaSE achieves a new state-of-the-art accuracy relative to meta-learners on the 26 datasets of VTAB+MD and on a challenging real-world personalization benchmark (ORBIT), narrowing the gap with leading fine-tuning methods with the benefit of orders of magnitude lower adaptation cost.
[ Hall J ]

Heterogeneous graph neural networks (GNNs) achieve strong performance on node classification tasks in a semi-supervised learning setting. However, as in the simpler homogeneous GNN case, message-passing-based heterogeneous GNNs may struggle to balance between resisting the oversmoothing that may occur in deep models, and capturing long-range dependencies of graph structured data. Moreover, the complexity of this trade-off is compounded in the heterogeneous graph case due to the disparate heterophily relationships between nodes of different types. To address these issues, we propose a novel heterogeneous GNN architecture in which layers are derived from optimization steps that descend a novel relation-aware energy function. The corresponding minimizer is fully differentiable with respect to the energy function parameters, such that bilevel optimization can be applied to effectively learn a functional form whose minimum provides optimal node representations for subsequent classification tasks. In particular, this methodology allows us to model diverse heterophily relationships between different node types while avoiding oversmoothing effects. Experimental results on 8 heterogeneous graph benchmarks demonstrates that our proposed method can achieve competitive node classification accuracy.
[ Hall J ]
Recent studies show that despite achieving high accuracy on a number of real-world applications, deep neural networks (DNNs) can be backdoored: by injecting triggered data samples into the training dataset, the adversary can mislead the trained model into classifying any test data to the target class as long as the trigger pattern is presented. To nullify such backdoor threats, various methods have been proposed. Particularly, a line of research aims to purify the potentially compromised model. However, one major limitation of this line of work is the requirement to access sufficient original training data: the purifying performance is a lot worse when the available training data is limited. In this work, we propose Adversarial Weight Masking (AWM), a novel method capable of erasing the neural backdoors even in the one-shot setting. The key idea behind our method is to formulate this into a min-max optimization problem: first, adversarially recover the non-robust perturbation patterns and then (soft) mask the network weights that are sensitive to the recovered patterns. Comprehensive evaluations of several benchmark datasets suggest that AWM can largely improve the purifying effects over other state-of-the-art methods on various available training dataset sizes.
[ Hall J ]

Multiple time series data occur in many real applications and the alignment among them is usually a fundamental step of data analysis. Frequently, these multiple time series are inter-dependent, which provides extra information for the alignment task and this information cannot be well utilized in the conventional pairwise alignment methods. Recently, the joint alignment was modeled as a max-flow problem, in which both the profile similarity between the aligned time series and the distance between adjacent warping functions are jointly optimized. However, despite the new model having elegant mathematical formulation and superior alignment accuracy, the long computation time and large memory usage, due to the use of the existing general-purpose max-flow algorithms, limit significantly its well-deserved wide use. In this report, we present BIdirectional pushing with Linear Component Operations (BILCO), a novel algorithm that solves the joint alignment max-flow problems efficiently and exactly. We develop the strategy of linear component operations that integrates dynamic programming technique and the push-relabel approach. This strategy is motivated by the fact that the joint alignment max-flow problem is a generalization of dynamic time warping (DTW) and numerous individual DTW problems are embedded. Further, a bidirectional-pushing strategy is proposed to introduce prior knowledge and reduce …
[ Hall J ]

[ Hall J ]

Data-free Knowledge Distillation (DFKD) has attracted attention recently thanks to its appealing capability of transferring knowledge from a teacher network to a student network without using training data. The main idea is to use a generator to synthesize data for training the student. As the generator gets updated, the distribution of synthetic data will change. Such distribution shift could be large if the generator and the student are trained adversarially, causing the student to forget the knowledge it acquired at the previous steps. To alleviate this problem, we propose a simple yet effective method called Momentum Adversarial Distillation (MAD) which maintains an exponential moving average (EMA) copy of the generator and uses synthetic samples from both the generator and the EMA generator to train the student. Since the EMA generator can be considered as an ensemble of the generator's old versions and often undergoes a smaller change in updates compared to the generator, training on its synthetic samples can help the student recall the past knowledge and prevent the student from adapting too quickly to the new updates of the generator. Our experiments on six benchmark datasets including big datasets like ImageNet and Places365 demonstrate the superior performance of MAD …
[ Hall J ]

Multi-task learning (MTL) jointly learns a set of tasks by sharing parameters among tasks. It is a promising approach for reducing storage costs while improving task accuracy for many computer vision tasks. The effective adoption of MTL faces two main challenges. The first challenge is to determine what parameters to share across tasks to optimize for both memory efficiency and task accuracy. The second challenge is to automatically apply MTL algorithms to an arbitrary CNN backbone without requiring time-consuming manual re-implementation and significant domain expertise. This paper addresses the challenges by developing the first programming framework AutoMTL that automates efficient MTL model development for vision tasks. AutoMTL takes as inputs an arbitrary backbone convolutional neural network (CNN) and a set of tasks to learn, and automatically produces a multi-task model that achieves high accuracy and small memory footprint simultaneously. Experiments on three popular MTL benchmarks (CityScapes, NYUv2, Tiny-Taskonomy) demonstrate the effectiveness of AutoMTL over state-of-the-art approaches as well as the generalizability of AutoMTL across CNNs. AutoMTL is open-sourced and available at https://github.com/zhanglijun95/AutoMTL.
[ Hall J ]

We tackle the problem of novel class discovery and localization (NCDL). In this setting, we assume a source dataset with supervision for only some object classes. Instances of other classes need to be discovered, classified, and localized automatically based on visual similarity without any human supervision. To tackle NCDL, we propose a two-stage object detection network Region-based NCDL (RNCDL) that uses a region proposal network to localize regions of interest (RoIs). We then train our network to learn to classify each RoI, either as one of the known classes, seen in the source dataset, or one of the novel classes, with a long-tail distribution constraint on the class assignments, reflecting the natural frequency of classes in the real world. By training our detection network with this objective in an end-to-end manner, it learns to classify all region proposals for a large variety of classes, including those not part of the labeled object class vocabulary. Our experiments conducted using COCO and LVIS datasets reveal that our method is significantly more effective than multi-stage pipelines that rely on traditional clustering algorithms. Furthermore, we demonstrate the generality of our approach by applying our method to a large-scale Visual Genome dataset, where our network …
[ Hall J ]
Consider the problem of improving the estimation of conditional average treatment effects (CATE) for a target domain of interest by leveraging related information from a source domain with a different feature space. This heterogeneous transfer learning problem for CATE estimation is ubiquitous in areas such as healthcare where we may wish to evaluate the effectiveness of a treatment for a new patient population for which different clinical covariates and limited data are available. In this paper, we address this problem by introducing several building blocks that use representation learning to handle the heterogeneous feature spaces and a flexible multi-task architecture with shared and private layers to transfer information between potential outcome functions across domains. Then, we show how these building blocks can be used to recover transfer learning equivalents of the standard CATE learners. On a new semi-synthetic data simulation benchmark for heterogeneous transfer learning, we not only demonstrate performance improvements of our heterogeneous transfer causal effect learners across datasets, but also provide insights into the differences between these learners from a transfer perspective.
[ Hall J ]

[ Hall J ]

We aim to understand grokking, a phenomenon where models generalize long after overfitting their training set. We present both a microscopic analysis anchored by an effective theory and a macroscopic analysis of phase diagrams describing learning performance across hyperparameters. We find that generalization originates from structured representations, whose training dynamics and dependence on training set size can be predicted by our effective theory (in a toy setting). We observe empirically the presence of four learning phases: comprehension, grokking, memorization, and confusion. We find representation learning to occur only in a "Goldilocks zone" (including comprehension and grokking) between memorization and confusion. Compared to the comprehension phase, the grokking phase stays closer to the memorization phase, leading to delayed generalization. The Goldilocks phase is reminiscent of "intelligence from starvation" in Darwinian evolution, where resource limitations drive discovery of more efficient solutions. This study not only provides intuitive explanations of the origin of grokking, but also highlights the usefulness of physics-inspired tools, e.g., effective theories and phase diagrams, for understanding deep learning.
[ Hall J ]

Biological and artificial agents need to deal with constant changes in the real world. We study this problem in four classical continuous control environments, augmented with morphological perturbations. Learning to locomote when the length and the thickness of different body parts vary is challenging, as the control policy is required to adapt to the morphology to successfully balance and advance the agent. We show that a control policy based on the proprioceptive state performs poorly with highly variable body configurations, while an (oracle) agent with access to a learned encoding of the perturbation performs significantly better. We introduce DMAP, a biologically-inspired, attention-based policy network architecture. DMAP combines independent proprioceptive processing, a distributed policy with individual controllers for each joint, and an attention mechanism, to dynamically gate sensory information from different body parts to different controllers. Despite not having access to the (hidden) morphology information, DMAP can be trained end-to-end in all the considered environments, overall matching or surpassing the performance of an oracle agent. Thus DMAP, implementing principles from biological motor control, provides a strong inductive bias for learning challenging sensorimotor tasks. Overall, our work corroborates the power of these principles in challenging locomotion tasks. The code is available at …
[ Hall J ]

Training foundation models, such as GPT-3 and PaLM, can be extremely expensive, often involving tens of thousands of GPUs running continuously for months. These models are typically trained in specialized clusters featuring fast, homogeneous interconnects and using carefully designed software systems that support both data parallelism and model/pipeline parallelism. Such dedicated clusters can be costly and difficult to obtain. Can we instead leverage the much greater amount of decentralized, heterogeneous, and lower-bandwidth interconnected compute? Previous works examining the heterogeneous, decentralized setting focus on relatively small models that can be trained in a purely data parallel manner. State-of-the-art schemes for model parallel foundation model training, such as Megatron and Deepspeed, only consider the homogeneous data center setting. In this paper, we present the first study of training large foundation models with model parallelism in a decentralized regime over a heterogeneous network. Our key technical contribution is a scheduling algorithm that allocates different computational “tasklets” in the training of foundation models to a group of decentralized GPU devices connected by a slow heterogeneous network. We provide a formal cost model and further propose an efficient evolutionary algorithm to find the optimal allocation strategy. We conduct extensive experiments that represent different scenarios for …
[ Hall J ]

We propose a model-based lifelong reinforcement-learning approach that estimates a hierarchical Bayesian posterior distilling the common structure shared across different tasks. The learned posterior combined with a sample-based Bayesian exploration procedure increases the sample efficiency of learning across a family of related tasks. We first derive an analysis of the relationship between the sample complexity and the initialization quality of the posterior in the finite MDP setting. We next scale the approach to continuous-state domains by introducing a Variational Bayesian Lifelong Reinforcement Learning algorithm that can be combined with recent model-based deep RL methods, and that exhibits backward transfer. Experimental results on several challenging domains show that our algorithms achieve both better forward and backward transfer performance than state-of-the-art lifelong RL methods.
[ Hall J ]

Curriculum Reinforcement Learning (CRL) aims to create a sequence of tasks, starting from easy ones and gradually learning towards difficult tasks. In this work, we focus on the idea of framing CRL as interpolations between a source (auxiliary) and a target task distribution. Although existing studies have shown the great potential of this idea, it remains unclear how to formally quantify and generate the movement between task distributions. Inspired by the insights from gradual domain adaptation in semi-supervised learning, we create a natural curriculum by breaking down the potentially large task distributional shift in CRL into smaller shifts. We propose GRADIENT which formulates CRL as an optimal transport problem with a tailored distance metric between tasks. Specifically, we generate a sequence of task distributions as a geodesic interpolation between the source and target distributions, which are actually the Wasserstein barycenter. Different from many existing methods, our algorithm considers a task-dependent contextual distance metric and is capable of handling nonparametric distributions in both continuous and discrete context settings. In addition, we theoretically show that GRADIENT enables smooth transfer between subsequent stages in the curriculum under certain conditions. We conduct extensive experiments in locomotion and manipulation tasks and show that our proposed …
[ Hall J ]

Federated Learning (FL) refers to the decentralized and privacy-preserving machine learning framework in which multiple clients collaborate (with the help of a central server) to train a global model without sharing their data. However, most existing FL methods only focus on maximizing the model's performance on the source clients' data (e.g., mobile users) without considering its generalization ability to unknown target data (e.g., a new user). In this paper, we incorporate the problem of Domain Generalization (DG) into Federated Learning to tackle the aforementioned issue. However, virtually all existing DG methods require a centralized setting where data is shared across the domains, which violates the principles of decentralized FL and hence not applicable. To this end, we propose a simple yet novel representation learning framework, namely FedSR, which enables domain generalization while still respecting the decentralized and privacy-preserving natures of this FL setting. Motivated by classical machine learning algorithms, we aim to learn a simple representation of the data for better generalization. In particular, we enforce an L2-norm regularizer on the representation and a conditional mutual information (between the representation and the data given the label) regularizer to encourage the model to only learn essential information (while ignoring spurious correlations …
[ Hall J ]
Bayesian optimization (BO), which uses a Gaussian process (GP) as a surrogate to model its objective function, is popular for black-box optimization. However, due to the limitations of GPs, BO underperforms in some problems such as those with categorical, high-dimensional or image inputs. To this end, recent works have used the highly expressive neural networks (NNs) as the surrogate model and derived theoretical guarantees using the theory of neural tangent kernel (NTK). However, these works suffer from the limitations of the requirement to invert an extremely large parameter matrix and the restriction to the sequential (rather than batch) setting. To overcome these limitations, we introduce two algorithms based on the Thompson sampling (TS) policy named Sample-Then-Optimize Batch Neural TS (STO-BNTS) and STO-BNTS-Linear. To choose an input query, we only need to train an NN (resp. a linear model) and then choose the query by maximizing the trained NN (resp. linear model), which is equivalently sampled from the GP posterior with the NTK as the kernel function. As a result, our algorithms sidestep the need to invert the large parameter matrix yet still preserve the validity of the TS policy. Next, we derive regret upper bounds for our algorithms with batch …
[ Hall J ]

Recently, diffusion models have been used to solve various inverse problems in an unsupervised manner with appropriate modifications to the sampling process. However, the current solvers, which recursively apply a reverse diffusion step followed by a projection-based measurement consistency step, often produce sub-optimal results. By studying the generative sampling path, here we show that current solvers throw the sample path off the data manifold, and hence the error accumulates. To address this, we propose an additional correction term inspired by the manifold constraint, which can be used synergistically with the previous solvers to make the iterations close to the manifold. The proposed manifold constraint is straightforward to implement within a few lines of code, yet boosts the performance by a surprisingly large margin. With extensive experiments, we show that our method is superior to the previous methods both theoretically and empirically, producing promising results in many applications such as image inpainting, colorization, and sparse-view computed tomography. Code available https://github.com/HJ-harry/MCG_diffusion
[ Hall J ]

The Federated Averaging (FedAvg) algorithm, which consists of alternating between a few local stochastic gradient updates at client nodes, followed by a model averaging update at the server, is perhaps the most commonly used method in Federated Learning. Notwithstanding its simplicity, several empirical studies have illustrated that the model output by FedAvg leads to a model that generalizes well to new unseen tasks after a few fine-tuning steps. This surprising performance of such a simple method, however, is not fully understood from a theoretical point of view. In this paper, we formally investigate this phenomenon in the multi-task linear regression setting. We show that the reason behind the generalizability of the FedAvg output is FedAvg’s power in learning the common data representation among the clients’ tasks, by leveraging the diversity among client data distributions via multiple local updates between communication rounds. We formally establish the iteration complexity required by the clients for proving such result in the setting where the underlying shared representation is a linear map. To the best of our knowledge, this is the first result showing that FedAvg learns an expressive representation in any setting. Moreover, we show that multiple local updates between communication rounds are necessary …
[ Hall J ]

Identity-invariant facial expression recognition (FER) has been one of the challenging computer vision tasks. Since conventional FER schemes do not explicitly address the inter-identity variation of facial expressions, their neural network models still operate depending on facial identity. This paper proposes to quantify the inter-identity variation by utilizing pairs of similar expressions explored through a specific matching process. We formulate the identity matching process as an Optimal Transport (OT) problem. Specifically, to find pairs of similar expressions from different identities, we define the inter-feature similarity as a transportation cost. Then, optimal identity matching to find the optimal flow with minimum transportation cost is performed by Sinkhorn-Knopp iteration. The proposed matching method is not only easy to plug in to other models, but also requires only acceptable computational overhead. Extensive simulations prove that the proposed FER method improves the PCC/CCC performance by up to 10% or more compared to the runner-up on wild datasets. The source code and software demo are available at https://github.com/kdhht2334/ELIM_FER.
[ Hall J ]

We present a general vision transformer backbone, called as Orthogonal Transformer, in pursuit of both efficiency and effectiveness. A major challenge for vision transformer is that self-attention, as the key element in capturing long-range dependency, is very computationally expensive for dense prediction tasks (e.g., object detection). Coarse global self-attention and local self-attention are then designed to reduce the cost, but they suffer from either neglecting local correlations or hurting global modeling. We present an orthogonal self-attention mechanism to alleviate these issues. Specifically, self-attention is computed in the orthogonal space that is reversible to the spatial domain but has much lower resolution. The capabilities of learning global dependency and exploring local correlations are maintained because every orthogonal token in self-attention can attend to the entire visual tokens. Remarkably, orthogonality is realized by constructing an endogenously orthogonal matrix that is friendly to neural networks and can be optimized as arbitrary orthogonal matrices. We also introduce Positional MLP to incorporate position information for arbitrary input resolutions as well as enhance the capacity of MLP. Finally, we develop a hierarchical architecture for Orthogonal Transformer. Extensive experiments demonstrate its strong performance on a broad range of vision tasks, including image classification, object detection, instance segmentation …
[ Hall J ]

The recent success of Transformer has benefited many real-world applications, with its capability of building long dependency through pairwise dot-products. However, the strong assumption that elements are directly attentive to each other limits the performance of tasks with high-order dependencies such as natural language understanding and Image captioning. To solve such problems, we are the first to define the Jump Self-attention (JAT) to build Transformers. Inspired by the pieces moving of English Draughts, we introduce the spectral convolutional technique to calculate JAT on the dot-product feature map. This technique allows JAT's propagation in each self-attention head and is interchangeable with the canonical self-attention. We further develop the higher-order variants under the multi-hop assumption to increase the generality. Moreover, the proposed architecture is compatible with the pre-trained models. With extensive experiments, we empirically show that our methods significantly increase the performance on ten different tasks.
[ Hall J ]
Building models that can be rapidly adapted to novel tasks using only a handful of annotated examples is an open challenge for multimodal machine learning research. We introduce Flamingo, a family of Visual Language Models (VLM) with this ability. We propose key architectural innovations to: (i) bridge powerful pretrained vision-only and language-only models, (ii) handle sequences of arbitrarily interleaved visual and textual data, and (iii) seamlessly ingest images or videos as inputs. Thanks to their flexibility, Flamingo models can be trained on large-scale multimodal web corpora containing arbitrarily interleaved text and images, which is key to endow them with in-context few-shot learning capabilities. We perform a thorough evaluation of our models, exploring and measuring their ability to rapidly adapt to a variety of image and video tasks. These include open-ended tasks such as visual question-answering, where the model is prompted with a question which it has to answer, captioning tasks, which evaluate the ability to describe a scene or an event, and close-ended tasks such as multiple-choice visual question-answering. For tasks lying anywhere on this spectrum, a single Flamingo model can achieve a new state of the art with few-shot learning, simply by prompting the model with task-specific examples. On …
[ Hall J ]

How does one adapt a pre-trained visual model to novel downstream tasks without task-specific finetuning or any model modification? Inspired by prompting in NLP, this paper investigates visual prompting: given input-output image example(s) of a new task at test time and a new input image, the goal is to automatically produce the output image, consistent with the given examples. We show that posing this problem as simple image inpainting -- literally just filling in a hole in a concatenated visual prompt image -- turns out to be surprisingly effective, provided that the inpainting algorithm has been trained on the right data. We train masked auto-encoders on a new dataset that we curated -- 88k unlabeled figures from academic papers sources on Arxiv. We apply visual prompting to these pretrained models and demonstrate results on various downstream image-to-image tasks, including foreground segmentation, single object detection, colorization, edge detection, etc. Project page: https://yossigandelsman.github.io/visual_prompt
[ Hall J ]

Recognition of electroencephalographic (EEG) signals highly affect the efficiency of non-invasive brain-computer interfaces (BCIs). While recent advances of deep-learning (DL)-based EEG decoders offer improved performances, the development of geometric learning (GL) has attracted much attention for offering exceptional robustness in decoding noisy EEG data. However, there is a lack of studies on the merged use of deep neural networks (DNNs) and geometric learning for EEG decoding. We herein propose a manifold attention network (mAtt), a novel geometric deep learning (GDL)-based model, featuring a manifold attention mechanism that characterizes spatiotemporal representations of EEG data fully on a Riemannian symmetric positive definite (SPD). The evaluation of the proposed mAtt on both time-synchronous and -asyncronous EEG datasets suggests its superiority over other leading DL methods for general EEG decoding. Furthermore, analysis of model interpretation reveals the capability of mAtt in capturing informative EEG features and handling the non-stationarity of brain dynamics.
[ Hall J ]

Measuring the attribution of input features toward the model output is one of the popular post-hoc explanations on the Deep Neural Networks (DNNs). Among various approaches to compute the attribution, the gradient-based methods are widely used to generate attributions, because of its ease of implementation and the model-agnostic characteristic. However, existing gradient integration methods such as Integrated Gradients (IG) suffer from (1) the noisy attributions which cause the unreliability of the explanation, and (2) the selection for the integration path which determines the quality of explanations. FullGrad (FG) is an another approach to construct the reliable attributions by focusing the locality of piece-wise linear network with the bias gradient. Although FG has shown reasonable performance for the given input, as the shortage of the global property, FG is vulnerable to the small perturbation, while IG which includes the exploration over the input space is robust. In this work, we design a new input attribution method which adopt the strengths of both local and global attributions.In particular, we propose a novel approach to distill input features using weak and extremely positive contributor masks. We aggregate the intermediate local attributions obtained from the distillation sequence to provide reliable attribution. We perform the …
[ Hall J ]

Obtaining the human-like perception ability of abstracting visual concepts from concrete pixels has always been a fundamental and important target in machine learning research fields such as disentangled representation learning and scene decomposition. Towards this goal, we propose an unsupervised transformer-based Visual Concepts Tokenization framework, dubbed VCT, to perceive an image into a set of disentangled visual concept tokens, with each concept token responding to one type of independent visual concept. Particularly, to obtain these concept tokens, we only use cross-attention to extract visual information from the image tokens layer by layer without self-attention between concept tokens, preventing information leakage across concept tokens. We further propose a Concept Disentangling Loss to facilitate that different concept tokens represent independent visual concepts. The cross-attention and disentangling loss play the role of induction and mutual exclusion for the concept tokens, respectively. Extensive experiments on several popular datasets verify the effectiveness of VCT on the tasks of disentangled representation learning and scene decomposition. VCT achieves the state of the art results by a large margin.
[ Hall J ]

Computer-aided pathology diagnosis based on the classification of Whole Slide Image (WSI) plays an important role in clinical practice, and it is often formulated as a weakly-supervised Multiple Instance Learning (MIL) problem. Existing methods solve this problem from either a bag classification or an instance classification perspective. In this paper, we propose an end-to-end weakly supervised knowledge distillation framework (WENO) for WSI classification, which integrates a bag classifier and an instance classifier in a knowledge distillation framework to mutually improve the performance of both classifiers. Specifically, an attention-based bag classifier is used as the teacher network, which is trained with weak bag labels, and an instance classifier is used as the student network, which is trained using the normalized attention scores obtained from the teacher network as soft pseudo labels for the instances in positive bags. An instance feature extractor is shared between the teacher and the student to further enhance the knowledge exchange between them. In addition, we propose a hard positive instance mining strategy based on the output of the student network to force the teacher network to keep mining hard positive instances. WENO is a plug-and-play framework that can be easily applied to any existing attention-based bag …
[ Hall J ]

This paper presents HierSpeech, a high-quality end-to-end text-to-speech (TTS) system based on a hierarchical conditional variational autoencoder (VAE) utilizing self-supervised speech representations. Recently, single-stage TTS systems, which directly generate raw speech waveform from text, have been getting interest thanks to their ability in generating high-quality audio within a fully end-to-end training pipeline. However, there is still a room for improvement in the conventional TTS systems. Since it is challenging to infer both the linguistic and acoustic attributes from the text directly, missing the details of attributes, specifically linguistic information, is inevitable, which results in mispronunciation and over-smoothing problem in their synthetic speech. To address the aforementioned problem, we leverage self-supervised speech representations as additional linguistic representations to bridge an information gap between text and speech. Then, the hierarchical conditional VAE is adopted to connect these representations and to learn each attribute hierarchically by improving the linguistic capability in latent representations. Compared with the state-of-the-art TTS system, HierSpeech achieves +0.303 comparative mean opinion score, and reduces the phoneme error rate of synthesized speech from 9.16% to 5.78% on the VCTK dataset. Furthermore, we extend our model to HierSpeech-U, an untranscribed text-to-speech system. Specifically, HierSpeech-U can adapt to a novel speaker by …
[ Hall J ]

Existing fine-tuning methods either tune all parameters of the pre-trained model (full fine-tuning), which is not efficient, or only tune the last linear layer (linear probing), which suffers a significant accuracy drop compared to the full fine-tuning. In this paper, we propose a new parameter-efficient fine-tuning method termed as SSF, representing that researchers only need to Scale and Shift the deep Features extracted by a pre-trained model to catch up with the performance of full fine-tuning. In this way, SSF also surprisingly outperforms other parameter-efficient fine-tuning approaches even with a smaller number of tunable parameters. Furthermore, different from some existing parameter-efficient fine-tuning methods (e.g., Adapter or VPT) that introduce the extra parameters and computational cost in the training and inference stages, SSF only adds learnable parameters during the training stage, and these additional parameters can be merged into the original pre-trained model weights via re-parameterization in the inference phase. With the proposed SSF, our model obtains 2.46% (90.72% vs. 88.54%) and 11.48% (73.10% vs. 65.57%) performance improvement on FGVC and VTAB-1k in terms of Top-1 accuracy compared to the full fine-tuning but only fine-tuning about 0.3M parameters. We also conduct amounts of experiments in various model families (CNNs, Transformers, and …
[ Hall J ]
Online distillation attracts attention from the community as it simplifies the traditional two-stage knowledge distillation process into a single stage. Online distillation collaboratively trains a group of peer models, which are treated as students, and all students gain extra knowledge from each other. However, memory consumption and diversity among peers are two key challenges to the scalability and quality of online distillation. To address the two challenges, this paper presents a framework called Weighted Mutual Learning with Diversity-Driven Model Compression (WML) for online distillation. First, at the base of a hierarchical structure where peers share different parts, we leverage the structured network pruning to generate diversified peer models and reduce the memory requirements. Second, rather than taking the average of peers, this paper, for the first time, leverages a bi-level formulation to estimate the relative importance of peers with a close-form, to further boost the effectiveness of the distillation from each other. Extensive experiments show the generalization of the proposed framework, which outperforms existing online distillation methods on a variety of deep neural networks. More interesting, as a byproduct, \WML produces a series of pruned models under different model sizes in a single run, which also achieves competitive results compared …
[ Hall J ]
Meta learning has demonstrated tremendous success in few-shot learning with limited supervised data. In those settings, the meta model is usually overparameterized. While the conventional statistical learning theory suggests that overparameterized models tend to overfit, empirical evidence reveals that overparameterized meta learning methods still work well -- a phenomenon often called ``benign overfitting.'' To understand this phenomenon, we focus on the meta learning settings with a challenging bilevel structure that we term the gradient-based meta learning, and analyze its generalization performance under an overparameterized meta linear regression model. While our analysis uses the relatively tractable linear models, our theory contributes to understanding the delicate interplay among data heterogeneity, model adaptation and benign overfitting in gradient-based meta learning tasks. We corroborate our theoretical claims through numerical simulations.
[ Hall J ]
A powerful category of (invisible) data poisoning attacks modify a subset of training examples by small adversarial perturbations to change the prediction of certain test-time data. Existing defense mechanisms are not desirable to deploy in practice, as they ofteneither drastically harm the generalization performance, or are attack-specific, and prohibitively slow to apply. Here, we propose a simple but highly effective approach that unlike existing methods breaks various types of invisible poisoning attacks with the slightest drop in the generalization performance. We make the key observation that attacks introduce local sharp regions of high training loss, which when minimized, results in learning the adversarial perturbations and makes the attack successful. To break poisoning attacks, our key idea is to alleviate the sharp loss regions introduced by poisons. To do so, our approach comprises two components: an optimized friendly noise that is generated to maximally perturb examples without degrading the performance, and a randomly varying noise component. The combination of both components builds a very light-weight but extremely effective defense against the most powerful triggerless targeted and hidden-trigger backdoor poisoning attacks, including Gradient Matching, Bulls-eye Polytope, and Sleeper Agent. We show that our friendly noise is transferable to other architectures, and adaptive …
[ Hall J ]

Tabular data (or tables) are the most widely used data format in machine learning (ML). However, ML models often assume the table structure keeps fixed in training and testing. Before ML modeling, heavy data cleaning is required to merge disparate tables with different columns. This preprocessing often incurs significant data waste (e.g., removing unmatched columns and samples). How to learn ML models from multiple tables with partially overlapping columns? How to incrementally update ML models as more columns become available over time? Can we leverage model pretraining on multiple distinct tables? How to train an ML model which can predict on an unseen table? To answer all those questions, we propose to relax fixed table structures by introducing a Transferable Tabular Transformer (TransTab) for tables. The goal of TransTab is to convert each sample (a row in the table) to a generalizable embedding vector, and then apply stacked transformers for feature encoding. One methodology insight is combining column description and table cells as the raw input to a gated transformer model. The other insight is to introduce supervised and self-supervised pretraining to improve model performance. We compare TransTab with multiple baseline methods on diverse benchmark datasets and five oncology clinical …
[ Hall J ]

Federated Learning (FL) is a machine learning paradigm that allows decentralized clients to learn collaboratively without sharing their private data. However, excessive computation and communication demands pose challenges to current FL frameworks, especially when training large-scale models. To prevent these issues from hindering the deployment of FL systems, we propose a lightweight framework where clients jointly learn to fuse the representations generated by multiple fixed pre-trained models rather than training a large-scale model from scratch. This leads us to a more practical FL problem by considering how to capture more client-specific and class-relevant information from the pre-trained models and jointly improve each client's ability to exploit those off-the-shelf models. Here, we design a Federated Prototype-wise Contrastive Learning (FedPCL) approach which shares knowledge across clients through their class prototypes and builds client-specific representations in a prototype-wise contrastive manner. Sharing prototypes rather than learnable model parameters allows each client to fuse the representations in a personalized way while keeping the shared knowledge in a compact form for efficient communication. We perform a thorough evaluation of the proposed FedPCL in the lightweight framework, measuring and visualizing its ability to fuse various pre-trained models on popular FL datasets.
[ Hall J ]

Developing deep generative models has been an emerging field due to the ability to model and generate complex data for various purposes, such as image synthesis and molecular design. However, the advance of deep generative models is limited by the challenges to generate objects that possess multiple desired properties because: 1) the existence of complex correlation among real-world properties is common but hard to identify; 2) controlling individual property enforces an implicit partially control of its correlated properties, which is difficult to model; 3) controlling multiple properties under variour manners simultaneously is hard and underexplored. We address these challenges by proposing a novel deep generative framework that recovers semantics and correlation of properties through disentangled latent vectors. The correlation is handled via an explainable mask pooling layer, and properties are precisely retained by the generated objects via the mutual dependence between latent vectors and properties. Our generative model preserves properties of interest while handles correlation and conflicts of properties under a multi-objective optimization framework. The experiments demonstrate our model's superior performance in generating objects with desired properties.
[ Hall J ]

In this paper, we investigate a realistic but underexplored problem, called few-shot temporal knowledge graph reasoning, that aims to predict future facts for newly emerging entities based on extremely limited observations in evolving graphs. It offers practical value in applications that need to derive instant new knowledge about new entities in temporal knowledge graphs (TKGs) with minimal supervision. The challenges mainly come from the few-shot and time shift properties of new entities. First, the limited observations associated with them are insufficient for training a model from scratch. Second, the potentially dynamic distributions from the initially observable facts to the future facts ask for explicitly modeling the evolving characteristics of new entities. We correspondingly propose a novel Meta Temporal Knowledge Graph Reasoning (MetaTKGR) framework. Unlike prior work that relies on rigid neighborhood aggregation schemes to enhance low-data entity representation, MetaTKGR dynamically adjusts the strategies of sampling and aggregating neighbors from recent facts for new entities, through temporally supervised signals on future facts as instant feedback. Besides, such a meta temporal reasoning procedure goes beyond existing meta-learning paradigms on static knowledge graphs that fail to handle temporal adaptation with large entity variance. We further provide a theoretical analysis and propose a temporal …
[ Hall J ]

Placement and routing are two critical yet time-consuming steps of chip design in modern VLSI systems. Distinct from traditional heuristic solvers, this paper on one hand proposes an RL-based model for mixed-size macro placement, which differs from existing learning-based placers that often consider the macro by coarse grid-based mask. While the standard cells are placed via gradient-based GPU acceleration. On the other hand, a one-shot conditional generative routing model, which is composed of a special-designed input-size-adapting generator and a bi-discriminator, is devised to perform one-shot routing to the pins within each net, and the order of nets to route is adaptively learned. Combining these techniques, we develop a flexible and efficient neural pipeline, which to our best knowledge, is the first joint placement and routing network without involving any traditional heuristic solver. Experimental results on chip design benchmarks showcase the effectiveness of our approach, with code that will be made publicly available.
[ Hall J ]

Attention mechanisms have become a standard tool for sequence modeling tasks, in particular by stacking self-attention layers over the entire input sequence as in the Transformer architecture. In this work we introduce a novel attention procedure called staircase attention that, unlike self-attention, operates across the sequence (in time) recurrently processing the input by adding another step of processing. A step in the staircase comprises of backward tokens (encoding the sequence so far seen) and forward tokens (ingesting a new part of the sequence). Thus our model can trade off performance and compute, by increasing the amount of recurrence through time and depth. Staircase attention is shown to be able to solve tasks that involve tracking that conventional Transformers cannot, due to this recurrence. Further, it is shown to provide improved modeling power for the same size model (number of parameters) compared to self-attentive Transformers on large language modeling and dialogue tasks, yielding significant perplexity gains.
[ Hall J ]

To survive, animals must adapt synaptic weights based on external stimuli and rewards. And they must do so using local, biologically plausible, learning rules -- a highly nontrivial constraint. One possible approach is to perturb neural activity (or use intrinsic, ongoing noise to perturb it), determine whether performance increases or decreases, and use that information to adjust the weights. This algorithm -- known as node perturbation -- has been shown to work on simple problems, but little is known about either its stability or its scalability with respect to network size. We investigate these issues both analytically, in deep linear networks, and numerically, in deep nonlinear ones.We show analytically that in deep linear networks with one hidden layer, both learning time and performance depend very weakly on hidden layer size. However, unlike stochastic gradient descent, when there is model mismatch between the student and teacher networks, node perturbation is always unstable. The instability is triggered by weight diffusion, which eventually leads to very large weights. This instability can be suppressed by weight normalization, at the cost of bias in the learning rule. We confirm numerically that a similar instability, and to a lesser extent scalability, exist in deep nonlinear networks …
[ Hall J ]
The success of reinforcement learning in a variety of challenging sequential decision-making problems has been much discussed, but often ignored in this discussion is the consideration of how the choice of reward function affects the behavior of these algorithms. Most practical RL algorithms require copious amounts of reward engineering in order to successfully solve challenging tasks. The idea of this type of ``reward-shaping'' has been often discussed in the literature and is used in practical instantiations, but there is relatively little formal characterization of how the choice of reward shaping can yield benefits in sample complexity for RL problems. In this work, we build on the framework of novelty-based exploration to provide a simple scheme for incorporating shaped rewards into RL along with an analysis tool to show that particular choices of reward shaping provably improve sample efficiency. We characterize the class of problems where these gains are expected to be significant and show how this can be connected to practical algorithms in the literature. We show that these results hold in practice in experimental evaluations as well, providing an insight into the mechanisms through which reward shaping can significantly improve the complexity of reinforcement learning while retaining asymptotic performance.
[ Hall J ]

[ Hall J ]

In this paper, we propose a neural network-based approach for learning to represent the behavior of plastic solid materials ranging from rubber and metal to sand and snow. Unlike elastic forces such as spring forces, these plastic forces do not result from the positional gradient of any potential energy, imposing great challenges on the stability and flexibility of their simulation. Our method effectively resolves this issue by learning a generalizable plastic energy whose derivative closely matches the analytical behavior of plastic forces. Our method, for the first time, enables the simulation of a wide range of arbitrary elasticity-plasticity combinations using time step-independent, unconditionally stable optimization-based time integrators. We demonstrate the efficacy of our method by learning and producing challenging 2D and 3D effects of metal, sand, and snow with complex dynamics.
[ Hall J ]
[ Hall J ]

Many reinforcement learning (RL) applications have combinatorial action spaces, where each action is a composition of sub-actions. A standard RL approach ignores this inherent factorization structure, resulting in a potential failure to make meaningful inferences about rarely observed sub-action combinations; this is particularly problematic for offline settings, where data may be limited. In this work, we propose a form of linear Q-function decomposition induced by factored action spaces. We study the theoretical properties of our approach, identifying scenarios where it is guaranteed to lead to zero bias when used to approximate the Q-function. Outside the regimes with theoretical guarantees, we show that our approach can still be useful because it leads to better sample efficiency without necessarily sacrificing policy optimality, allowing us to achieve a better bias-variance trade-off. Across several offline RL problems using simulators and real-world datasets motivated by healthcare, we demonstrate that incorporating factored action spaces into value-based RL can result in better-performing policies. Our approach can help an agent make more accurate inferences within underexplored regions of the state-action space when applying RL to observational datasets.
[ Hall J ]

State-of-the-art Mixed Integer Linear Programming (MILP) solvers combine systematic tree search with a plethora of hard-coded heuristics, such as branching rules. While approaches to learn branching strategies have received increasing attention and have shown very promising results, most of the literature focuses on learning fast approximations of the \emph{strong branching} rule. Instead, we propose to learn branching rules from scratch with Reinforcement Learning (RL). We revisit the work of Etheve et al. (2020) and propose a generalization of Markov Decisions Processes (MDP), which we call \emph{tree MDP}, that provides a more suitable formulation of the branching problem. We derive a policy gradient theorem for tree MDPs that exhibits a better credit assignment compared to its temporal counterpart. We demonstrate through computational experiments that this new framework is suitable to tackle the learning-to-branch problem in MILP, and improves the learning convergence.
[ Hall J ]
[ Hall J ]
[ Hall J ]
[ Hall J ]
In this work, we study data-driven decision-making and depart from the classical identically and independently distributed (i.i.d.) assumption. We present a new framework in which historical samples are generated from unknown and different distributions, which we dub \textit{heterogeneous environments}. These distributions are assumed to lie in a heterogeneity ball with known radius and centered around the (also) unknown future (out-of-sample) distribution on which the performance of a decision will be evaluated. We quantify the asymptotic worst-case regret that is achievable by central data-driven policies such as Sample Average Approximation, but also by rate-optimal ones, as a function of the radius of the heterogeneity ball. Our work shows that the type of achievable performance varies considerably across different combinations of problem classes and notions of heterogeneity. We demonstrate the versatility of our framework by comparing achievable guarantees for the heterogeneous version of widely studied data-driven problems such as pricing, ski-rental, and newsvendor. En route, we establish a new connection between data-driven decision-making and distributionally robust optimization.
[ Hall J ]
Recent research in the theory of overparametrized learning has sought to establish generalization guarantees in the interpolating regime. Such results have been established for a few common classes of methods, but so far not for ensemble methods. We devise an ensemble classification method that simultaneously interpolates the training data, and is consistent for a broad class of data distributions. To this end, we define the manifold-Hilbert kernel for data distributed on a Riemannian manifold. We prove that kernel smoothing regression using the manifold-Hilbert kernel is weakly consistent in the setting of Devroye et al. 1998. For the sphere, we show that the manifold-Hilbert kernel can be realized as a weighted random partition kernel, which arises as an infinite ensemble of partition-based classifiers.
[ Hall J ]

[ Hall J ]

We study reward-free reinforcement learning (RL) under general non-linear function approximation, and establish sample efficiency and hardness results under various standard structural assumptions. On the positive side, we propose the RFOLIVE (Reward-Free OLIVE) algorithm for sample-efficient reward-free exploration under minimal structural assumptions, which covers the previously studied settings of linear MDPs (Jin et al., 2020b), linear completeness (Zanette et al., 2020b) and low-rank MDPs with unknown representation (Modi et al., 2021). Our analyses indicate that the explorability or reachability assumptions, previously made for the latter two settings, are not necessary statistically for reward-free exploration. On the negative side, we provide a statistical hardness result for both reward-free and reward-aware exploration under linear completeness assumptions when the underlying features are unknown, showing an exponential separation between low-rank and linear completeness settings.
[ Hall J ]
[ Hall J ]

[ Hall J ]

[ Hall J ]
[ Hall J ]
We study norm-based uniform convergence bounds for neural networks, aiming at a tight understanding of how these are affected by the architecture and type of norm constraint, for the simple class of scalar-valued one-hidden-layer networks, and inputs bounded in Euclidean norm. We begin by proving that in general, controlling the spectral norm of the hidden layer weight matrix is insufficient to get uniform convergence guarantees (independent of the network width), while a stronger Frobenius norm control is sufficient, extending and improving on previous work. Motivated by the proof constructions, we identify and analyze two important settings where (perhaps surprisingly) a mere spectral norm control turns out to be sufficient: First, when the network's activation functions are sufficiently smooth (with the result extending to deeper networks); and second, for certain types of convolutional networks. In the latter setting, we study how the sample complexity is additionally affected by parameters such as the amount of overlap between patches and the overall number of patches.
[ Hall J ]
Graph neural networks (GNN) are an effective framework that exploit inter-relationships within graph-structured data for learning. Principal component analysis (PCA) involves the projection of data on the eigenspace of the covariance matrix and draws similarities with the graph convolutional filters in GNNs. Motivated by this observation, we study a GNN architecture, called coVariance neural network (VNN), that operates on sample covariance matrices as graphs. We theoretically establish the stability of VNNs to perturbations in the covariance matrix, thus, implying an advantage over standard PCA-based data analysis approaches that are prone to instability due to principal components associated with close eigenvalues. Our experiments on real-world datasets validate our theoretical results and show that VNN performance is indeed more stable than PCA-based statistical approaches. Moreover, our experiments on multi-resolution datasets also demonstrate that VNNs are amenable to transferability of performance over covariance matrices of different dimensions; a feature that is infeasible for PCA-based approaches.
[ Hall J ]

Interpretable and explainable machine learning has seen a recent surge of interest. We focus on safety as a key motivation behind the surge and make the relationship between interpretability and safety more quantitative. Toward assessing safety, we introduce the concept of maximum deviation via an optimization problem to find the largest deviation of a supervised learning model from a reference model regarded as safe. We then show how interpretability facilitates this safety assessment. For models including decision trees, generalized linear and additive models, the maximum deviation can be computed exactly and efficiently. For tree ensembles, which are not regarded as interpretable, discrete optimization techniques can still provide informative bounds. For a broader class of piecewise Lipschitz functions, we leverage the multi-armed bandit literature to show that interpretability produces tighter (regret) bounds on the maximum deviation. We present case studies, including one on mortgage approval, to illustrate our methods and the insights about models that may be obtained from deviation maximization.
[ Hall J ]

Motivated by the problem of learning with small sample sizes, this paper shows how to incorporate into support-vector machines (SVMs) those properties that have made convolutional neural networks (CNNs) successful. Particularly important is the ability to incorporate domain knowledge of invariances, e.g., translational invariance of images. Kernels based on the \textit{maximum} similarity over a group of transformations are not generally positive definite. Perhaps it is for this reason that they have not been studied theoretically. We address this lacuna and show that positive definiteness indeed holds \textit{with high probability} for kernels based on the maximum similarity in the small training sample set regime of interest, and that they do yield the best results in that regime. We also show how additional properties such as their ability to incorporate local features at multiple spatial scales, e.g., as done in CNNs through max pooling, and to provide the benefits of composition through the architecture of multiple layers, can also be embedded into SVMs. We verify through experiments on widely available image sets that the resulting SVMs do provide superior accuracy in comparison to well-established deep neural network benchmarks for small sample sizes.
[ Hall J ]

Biases in existing datasets used to train algorithmic decision rules can raise ethical and economic concerns due to the resulting disparate treatment of different groups. We propose an algorithm for sequentially debiasing such datasets through adaptive and bounded exploration in a classification problem with costly and censored feedback. Exploration in this context means that at times, and to a judiciously-chosen extent, the decision maker deviates from its (current) loss-minimizing rule, and instead accepts some individuals that would otherwise be rejected, so as to reduce statistical data biases. Our proposed algorithm includes parameters that can be used to balance between the ultimate goal of removing data biases -- which will in turn lead to more accurate and fair decisions, and the exploration risks incurred to achieve this goal. We analytically show that such exploration can help debias data in certain distributions. We further investigate how fairness criteria can work in conjunction with our data debiasing algorithm. We illustrate the performance of our algorithm using experiments on synthetic and real-world datasets.
[ Hall J ]

Safe exploration is a challenging and important problem in model-free reinforcement learning (RL). Often the safety cost is sparse and unknown, which unavoidably leads to constraint violations - a phenomenon ideally to be avoided in safety-critical applications. We tackle this problem by augmenting the state-space with a safety state, which is nonnegative if and only if the constraint is satisfied. The value of this state also serves as a distance toward constraint violation, while its initial value indicates the available safety budget. This idea allows us to derive policies for scheduling the safety budget during training. We call our approach Simmer (Safe policy IMproveMEnt for RL) to reflect the careful nature of these schedules. We apply this idea to two safe RL problems: RL with constraints imposed on an average cost, and RL with constraints imposed on a cost with probability one. Our experiments suggest that "simmering" a safe algorithm can improve safety during training for both settings. We further show that Simmer can stabilize training and improve the performance of safe RL with average constraints.
[ Hall J ]
With the advent and increasing consolidation of e-commerce, digital advertising has very recently replaced traditional advertising as the main marketing force in the economy. In the past four years, a particularly important development in the digital advertising industry is the shift from second-price auctions to first-price auctions for online display ads. This shift immediately motivated the intellectually challenging question of how to bid in first-price auctions, because unlike in second-price auctions, bidding one's private value truthfully is no longer optimal. Following a series of recent works in this area, we consider a differentiated setup: we do not make any assumption about other bidders' maximum bid (i.e. it can be adversarial over time), and instead assume that we have access to a hint that serves as a prediction of other bidders' maximum bid, where the prediction is learned through some blackbox machine learning model. We consider two types of hints: one where a single point-prediction is available, and the other where a hint interval (representing a type of confidence region into which others' maximum bid falls) is available. We establish minimax optimal regret bounds for both cases and highlight the quantitatively different behavior between the two settings. We also provide improved …
[ Hall J ]

Methods for sequential decision-making are often built upon a foundational assumption that the underlying decision process is stationary. This limits the application of such methods because real-world problems are often subject to changes due to external factors (\textit{passive} non-stationarity), changes induced by interactions with the system itself (\textit{active} non-stationarity), or both (\textit{hybrid} non-stationarity). In this work, we take the first steps towards the fundamental challenge of on-policy and off-policy evaluation amidst structured changes due to active, passive, or hybrid non-stationarity. Towards this goal, we make a \textit{higher-order stationarity} assumption such that non-stationarity results in changes over time, but the way changes happen is fixed. We propose, OPEN, an algorithm that uses a double application of counterfactual reasoning and a novel importance-weighted instrument-variable regression to obtain both a lower bias and a lower variance estimate of the structure in the changes of a policy's past performances. Finally, we show promising results on how OPEN can be used to predict future performances for several domains inspired by real-world applications that exhibit non-stationarity.
[ Hall J ]

Recent advances in distributed optimization and learning have shown that communication compression is one of the most effective means of reducing communication. While there have been many results for convergence rates with compressed communication, a lower bound is still missing.Analyses of algorithms with communication compression have identified two abstract properties that guarantee convergence: the unbiased property or the contractive property. They can be applied either unidirectionally (compressing messages from worker to server) or bidirectionally. In the smooth and non-convex stochastic regime, this paper establishes a lower bound for distributed algorithms whether using unbiased or contractive compressors in unidirection or bidirection. To close the gap between this lower bound and the best existing upper bound, we further propose an algorithm, NEOLITHIC, that almost reaches our lower bound (except for a logarithm factor) under mild conditions. Our results also show that using contractive compressors in bidirection can yield iterative methods that converge as fast as those using unbiased compressors unidirectionally. We report experimental results that validate our findings.
[ Hall J ]

Discrimination in machine learning often arises along multiple dimensions (a.k.a. protected attributes); it is then desirable to ensure \emph{intersectional fairness}---i.e., that no subgroup is discriminated against. It is known that ensuring \emph{marginal fairness} for every dimension independently is not sufficient in general. Due to the exponential number of subgroups, however, directly measuring intersectional fairness from data is impossible. In this paper, our primary goal is to understand in detail the relationship between marginal and intersectional fairness through statistical analysis. We first identify a set of sufficient conditions under which an exact relationship can be obtained. Then, we prove bounds (easily computable through marginal fairness and other meaningful statistical quantities) in high-probability on intersectional fairness in the general case. Beyond their descriptive value, we show that these theoretical bounds can be leveraged to derive a heuristic improving the approximation and bounds of intersectional fairness by choosing, in a relevant manner, protected attributes for which we describe intersectional subgroups. Finally, we test the performance of our approximations and bounds on real and synthetic data-sets.
[ Hall J ]
[ Hall J ]
The existing analysis of asynchronous stochastic gradient descent (SGD) degrades dramatically when any delay is large, giving the impression that performance depends primarily on the delay. On the contrary, we prove much better guarantees for the same asynchronous SGD algorithm regardless of the delays in the gradients, depending instead just on the number of parallel devices used to implement the algorithm. Our guarantees are strictly better than the existing analyses, and we also argue that asynchronous SGD outperforms synchronous minibatch SGD in the settings we consider. For our analysis, we introduce a novel recursion based on ``virtual iterates'' and delay-adaptive stepsizes, which allow us to derive state-of-the-art guarantees for both convex and non-convex objectives.
[ Hall J ]

We propose a novel reduction-to-binary (R2B) approach that enforces demographic parity for multiclass classification with non-binary sensitive attributes via a reduction to a sequence of binary debiasing tasks. We prove that R2B satisfies optimality and bias guarantees and demonstrate empirically that it can lead to an improvement over two baselines: (1) treating multiclass problems as multi-label by debiasing labels independently and (2) transforming the features instead of the labels. Surprisingly, we also demonstrate that independent label debiasing yields competitive results in most (but not all) settings. We validate these conclusions on synthetic and real-world datasets from social science, computer vision, and healthcare.
[ Hall J ]

Many practical settings allow a learner to defer predictions to one or more costly experts. For example, the learning to defer paradigm allows a learner to defer to a human expert, at some monetary cost. Similarly, the adaptive inference paradigm allows a base model to defer to one or more large models, at some computational cost. The goal in these settings is to learn classification and deferral mechanisms to optimise a suitable accuracy-cost tradeoff. To achieve this, a central issue studied in prior work is the design of a coherent loss function for both mechanisms. In this work, we demonstrate that existing losses have two subtle limitations: they can encourage underfitting when there is a high cost of deferring, and the deferral function can have a weak dependence on the base model predictions. To resolve these issues, we propose a post-hoc training scheme: we train a deferral function on top of a base model, with the objective of predicting to defer when the base model's error probability exceeds the cost of the expert model. This may be viewed as applying a partial surrogate to the ideal deferral loss, which can lead to a tighter approximation and thus better performance. Empirically, …
[ Hall J ]
Learned optimizers---neural networks that are trained to act as optimizers---have the potential to dramatically accelerate training of machine learning models. However, even when meta-trained across thousands of tasks at huge computational expense, blackbox learned optimizers often struggle with stability and generalization when applied to tasks unlike those in their meta-training set. In this paper, we use tools from dynamical systems to investigate the inductive biases and stability properties of optimization algorithms, and apply the resulting insights to designing inductive biases for blackbox optimizers. Our investigation begins with a noisy quadratic model, where we characterize conditions in which optimization is stable, in terms of eigenvalues of the training dynamics. We then introduce simple modifications to a learned optimizer's architecture and meta-training procedure which lead to improved stability, and improve the optimizer's inductive bias. We apply the resulting learned optimizer to a variety of neural network training tasks, where it outperforms the current state of the art learned optimizer---at matched optimizer computational overhead---with regard to optimization performance and meta-training speed, and is capable of generalization to tasks far different from those it was meta-trained on.
[ Hall J ]

[ Hall J ]

We introduce a new framework that performs decision-making in reinforcement learning (RL) as an iterative reasoning process. We model agent behavior as the steady-state distribution of a parameterized reasoning Markov chain (RMC), optimized with a new tractable estimate of the policy gradient. We perform action selection by simulating the RMC for enough reasoning steps to approach its steady-state distribution. We show our framework has several useful properties that are inherently missing from traditional RL. For instance, it allows agent behavior to approximate any continuous distribution over actions by parameterizing the RMC with a simple Gaussian transition function. Moreover, the number of reasoning steps to reach convergence can scale adaptively with the difficulty of each action selection decision and can be accelerated by re-using past solutions. Our resulting algorithm achieves state-of-the-art performance in popular Mujoco and DeepMind Control benchmarks, both for proprioceptive and pixel-based tasks.
[ Hall J ]
Widely observed neural scaling laws, in which error falls off as a power of the training set size, model size, or both, have driven substantial performance improvements in deep learning. However, these improvements through scaling alone require considerable costs in compute and energy. Here we focus on the scaling of error with dataset size and show how in theory we can break beyond power law scaling and potentially even reduce it to exponential scaling instead if we have access to a high-quality data pruning metric that ranks the order in which training examples should be discarded to achieve any pruned dataset size. We then test this improved scaling prediction with pruned dataset size empirically, and indeed observe better than power law scaling in practice on ResNets trained on CIFAR-10, SVHN, and ImageNet. Next, given the importance of finding high-quality pruning metrics, we perform the first large-scale benchmarking study of ten different data pruning metrics on ImageNet. We find most existing high performing metrics scale poorly to ImageNet, while the best are computationally intensive and require labels for every image. We therefore developed a new simple, cheap and scalable self-supervised pruning metric that demonstrates comparable performance to the best supervised metrics. …
[ Hall J ]
Despite the success of practical solvers in various NP-complete domains such as SAT and CSP as well as using deep reinforcement learning to tackle two-player games such as Go, certain classes of PSPACE-hard planning problems have remained out of reach. Even carefully designed domain-specialized solvers can fail quickly due to the exponential search space on hard instances. Recent works that combine traditional search methods, such as best-first search and Monte Carlo tree search, with Deep Neural Networks' (DNN) heuristics have shown promising progress and can solve a significant number of hard planning instances beyond specialized solvers. To better understand why these approaches work, we studied the interplay of the policy and value networks of DNN-based best-first search on Sokoban and show the surprising effectiveness of the policy network, further enhanced by the value network, as a guiding heuristic for the search. To further understand the phenomena, we studied the cost distribution of the search algorithms and found that Sokoban instances can have heavy-tailed runtime distributions, with tails both on the left and right-hand sides. In particular, for the first time, we show the existence of \textit{left heavy tails} and propose an abstract tree model that can empirically explain the appearance …
[ Hall J ]

A major task of sports analytics is player evaluation. Previous methods commonly measured the impact of players' actions on desirable outcomes (e.g., goals or winning) without considering the risk induced by stochastic game dynamics. In this paper, we design an uncertainty-aware Reinforcement Learning (RL) framework to learn a risk-sensitive player evaluation metric from stochastic game dynamics. To embed the risk of a player’s movements into the distribution of action-values, we model their 1) aleatoric uncertainty, which represents the intrinsic stochasticity in a sports game, and 2) epistemic uncertainty, which is due to a model's insufficient knowledge regarding Out-of-Distribution (OoD) samples. We demonstrate how a distributional Bellman operator and a feature-space density model can capture these uncertainties. Based on such uncertainty estimation, we propose a Risk-sensitive Game Impact Metric (RiGIM) that measures players' performance over a season by conditioning on a specific confidence level. Empirical evaluation, based on over 9M play-by-play ice hockey and soccer events, shows that RiGIM correlates highly with standard success measures and has a consistent risk sensitivity.
[ Hall J ]

Besides per-pixel accuracy, topological correctness is also crucial for the segmentation of images with fine-scale structures, e.g., satellite images and biomedical images. In this paper, by leveraging the theory of digital topology, we identify pixels in an image that are critical for topology. By focusing on these critical pixels, we propose a new \textbf{homotopy warping loss} to train deep image segmentation networks for better topological accuracy. To efficiently identify these topologically critical pixels, we propose a new algorithm exploiting the distance transform. The proposed algorithm, as well as the loss function, naturally generalize to different topological structures in both 2D and 3D settings. The proposed loss function helps deep nets achieve better performance in terms of topology-aware metrics, outperforming state-of-the-art structure/topology-aware segmentation methods.
[ Hall J ]

Correctly capturing intraoperative brain shift in image-guided neurosurgical procedures is a critical task for aligning preoperative data with intraoperative geometry for ensuring accurate surgical navigation. While the finite element method (FEM) is a proven technique to effectively approximate soft tissue deformation through biomechanical formulations, their degree of success boils down to a trade-off between accuracy and speed. To circumvent this problem, the most recent works in this domain have proposed leveraging data-driven models obtained by training various machine learning algorithms---e.g., random forests, artificial neural networks (ANNs)---with the results of finite element analysis (FEA) to speed up tissue deformation approximations by prediction. These methods, however, do not account for the structure of the finite element (FE) mesh during training that provides information on node connectivities as well as the distance between them, which can aid with approximating tissue deformation based on the proximity of force load points with the rest of the mesh nodes. Therefore, this work proposes a novel framework, PhysGNN, a data-driven model that approximates the solution of the FEM by leveraging graph neural networks (GNNs), which are capable of accounting for the mesh structural information and inductive learning over unstructured grids and complex topological structures. Empirically, we demonstrate …
[ Hall J ]

We present a video generation model that accurately reproduces object motion, changes in camera viewpoint, and new content that arises over time. Existing video generation methods often fail to produce new content as a function of time while maintaining consistencies expected in real environments, such as plausible dynamics and object persistence. A common failure case is for content to never change due to over-reliance on inductive bias to provide temporal consistency, such as a single latent code that dictates content for the entire video. On the other extreme, without long-term consistency, generated videos may morph unrealistically between different scenes. To address these limitations, we prioritize the time axis by redesigning the temporal latent representation and learning long-term consistency from data by training on longer videos. We leverage a two-phase training strategy, where we separately train using longer videos at a low resolution and shorter videos at a high resolution. To evaluate the capabilities of our model, we introduce two new benchmark datasets with explicit focus on long-term temporal dynamics.
[ Hall J ]
In cooperative multi-agent reinforcement learning, centralized training and decentralized execution (CTDE) has achieved remarkable success. Individual Global Max (IGM) decomposition, which is an important element of CTDE, measures the consistency between local and joint policies. The majority of IGM-based research focuses on how to establish this consistent relationship, but little attention has been paid to examining IGM's potential flaws. In this work, we reveal that the IGM condition is a lossy decomposition, and the error of lossy decomposition will accumulated in hypernetwork-based methods. To address the above issue, we propose to adopt an imitation learning strategy to separate the lossy decomposition from Bellman iterations, thereby avoiding error accumulation. The proposed strategy is theoretically proved and empirically verified on the StarCraft Multi-Agent Challenge benchmark problem with zero sight view. The results also confirm that the proposed method outperforms state-of-the-art IGM-based approaches.
[ Hall J ]
It has become cognitive inertia to employ cross-entropy loss function in classification related tasks. In the untargeted attacks on graph structure, the gradients derived from the attack objective are the attacker's basis for evaluating a perturbation scheme. Previous methods use negative cross-entropy loss as the attack objective in attacking node-level classification models. However, the suitability of the cross-entropy function for constructing the untargeted attack objective has yet been discussed in previous works. This paper argues about the previous unreasonable attack objective from the perspective of budget allocation. We demonstrate theoretically and empirically that negative cross-entropy tends to produce more significant gradients from nodes with lower confidence in the labeled classes, even if the predicted classes of these nodes have been misled. To free up these inefficient attack budgets, we propose a simple attack model for untargeted attacks on graph structure based on a novel attack objective which generates unweighted gradients on graph structures that are not affected by the node confidence. By conducting experiments in gray-box poisoning attack scenarios, we demonstrate that a reasonable budget allocation can significantly improve the effectiveness of gradient-based edge perturbations without any extra hyper-parameter.
[ Hall J ]

The leap in performance in state-of-the-art computer vision methods is attributed to the development of deep neural networks. However it often comes at a computational price which may hinder their deployment. To alleviate this limitation, structured pruning is a well known technique which consists in removing channels, neurons or filters, and is commonly applied in order to produce more compact models. In most cases, the computations to remove are selected based on a relative importance criterion. At the same time, the need for explainable predictive models has risen tremendously and motivated the development of robust attribution methods that highlight the relative importance of pixels of an input image or feature map. In this work, we discuss the limitations of existing pruning heuristics, among which magnitude and gradient-based methods. We draw inspiration from attribution methods to design a novel integrated gradient pruning criterion, in which the relevance of each neuron is defined as the integral of the gradient variation on a path towards this neuron removal. Furthermore, We propose an entwined DNN pruning and fine-tuning flowchart to better preserve DNN accuracy while removing parameters. We show through extensive validation on several datasets, architectures as well as pruning scenarios that the proposed …
[ Hall J ]

In principle, applying variational autoencoders (VAEs) to sequential data offers a method for controlled sequence generation, manipulation, and structured representation learning. However, training sequence VAEs is challenging: autoregressive decoders can often explain the data without utilizing the latent space, known as posterior collapse. To mitigate this, state-of-the-art models weaken' the
powerful decoder' by applying uniformly random dropout to the decoder input.We show theoretically that this removes pointwise mutual information provided by the decoder input, which is compensated for by utilizing the latent space. We then propose an adversarial training strategy to achieve information-based stochastic dropout. Compared to uniform dropout on standard text benchmark datasets, our targeted approach increases both sequence modeling performance and the information captured in the latent space.
[ Hall J ]

Molecular conformer generation is a fundamental task in computational chemistry. Several machine learning approaches have been developed, but none have outperformed state-of-the-art cheminformatics methods. We propose torsional diffusion, a novel diffusion framework that operates on the space of torsion angles via a diffusion process on the hypertorus and an extrinsic-to-intrinsic score model. On a standard benchmark of drug-like molecules, torsional diffusion generates superior conformer ensembles compared to machine learning and cheminformatics methods in terms of both RMSD and chemical properties, and is orders of magnitude faster than previous diffusion-based models. Moreover, our model provides exact likelihoods, which we employ to build the first generalizable Boltzmann generator. Code is available at https://github.com/gcorso/torsional-diffusion.
[ Hall J ]
Multi-kernel learning (MKL) exhibits well-documented performance in online non-linear function approximation. Federated learning enables a group of learners (called clients) to train an MKL model on the data distributed among clients to perform online non-linear function approximation. There are some challenges in online federated MKL that need to be addressed: i) Communication efficiency especially when a large number of kernels are considered ii) Heterogeneous data distribution among clients. The present paper develops an algorithmic framework to enable clients to communicate with the server to send their updates with affordable communication cost while clients employ a large dictionary of kernels. Utilizing random feature (RF) approximation, the present paper proposes scalable online federated MKL algorithm. We prove that using the proposed online federated MKL algorithm, each client enjoys sub-linear regret with respect to the RF approximation of its best kernel in hindsight, which indicates that the proposed algorithm can effectively deal with heterogeneity of the data distributed among clients. Experimental results on real datasets showcase the advantages of the proposed algorithm compared with other online federated kernel learning ones.
[ Hall J ]

Controlled feature selection aims to discover the features a response depends on while limiting the false discovery rate (FDR) to a predefined level. Recently, multiple deep-learning-based methods have been proposed to perform controlled feature selection through the Model-X knockoff framework. We demonstrate, however, that these methods often fail to control the FDR for two reasons. First, these methods often learn inaccurate models of features. Second, the "swap" property, which is required for knockoffs to be valid, is often not well enforced. We propose a new procedure called FlowSelect to perform controlled feature selection that does not suffer from either of these two problems. To more accurately model the features, FlowSelect uses normalizing flows, the state-of-the-art method for density estimation. Instead of enforcing the "swap" property, FlowSelect uses a novel MCMC-based procedure to calculate p-values for each feature directly. Asymptotically, FlowSelect computes valid p-values. Empirically, FlowSelect consistently controls the FDR on both synthetic and semi-synthetic benchmarks, whereas competing knockoff-based approaches do not. FlowSelect also demonstrates greater power on these benchmarks. Additionally, FlowSelect correctly infers the genetic variants associated with specific soybean traits from GWAS data.
[ Hall J ]

We consider the stochastic gradient descent (SGD) algorithm driven by a general stochastic sequence, including i.i.d noise and random walk on an arbitrary graph, among others; and analyze it in the asymptotic sense. Specifically, we employ the notion of `efficiency ordering', a well-analyzed tool for comparing the performance of Markov Chain Monte Carlo (MCMC) samplers, for SGD algorithms in the form of Loewner ordering of covariance matrices associated with the scaled iterate errors in the long term. Using this ordering, we show that input sequences that are more efficient for MCMC sampling also lead to smaller covariance of the errors for SGD algorithms in the limit. This also suggests that an arbitrarily weighted MSE of SGD iterates in the limit becomes smaller when driven by more efficient chains. Our finding is of particular interest in applications such as decentralized optimization and swarm learning, where SGD is implemented in a random walk fashion on the underlying communication graph for cost issues and/or data privacy. We demonstrate how certain non-Markovian processes, for which typical mixing-time based non-asymptotic bounds are intractable, can outperform their Markovian counterparts in the sense of efficiency ordering for SGD. We show the utility of our method by applying …
[ Hall J ]

[ Hall J ]
Bayesian optimisation (BO) algorithms have shown remarkable success in applications involving expensive black-box functions. Traditionally BO has been set as a sequential decision-making process which estimates the utility of query points via an acquisition function and a prior over functions, such as a Gaussian process. Recently, however, a reformulation of BO via density-ratio estimation (BORE) allowed reinterpreting the acquisition function as a probabilistic binary classifier, removing the need for an explicit prior over functions and increasing scalability. In this paper, we present a theoretical analysis of BORE's regret and an extension of the algorithm with improved uncertainty estimates. We also show that BORE can be naturally extended to a batch optimisation setting by recasting the problem as approximate Bayesian inference. The resulting algorithms come equipped with theoretical performance guarantees and are assessed against other batch and sequential BO baselines in a series of experiments.
[ Hall J ]

Latent variable discovery is a central problem in data analysis with a broad range of applications in applied science.In this work, we consider data given as an invertible mixture of two statistically independent components, and assume that one of the components is observed while the other is hidden. Our goal is to recover the hidden component.For this purpose, we propose an autoencoder equipped with a discriminator.Unlike the standard nonlinear ICA problem, which was shown to be non-identifiable, in the special case of ICA we consider here, we show that our approach can recover the component of interest up to entropy-preserving transformation.We demonstrate the performance of the proposed approach in several tasks, including image synthesis, voice cloning, and fetal ECG extraction.
[ Hall J ]

Many patterns in nature exhibit self-similarity: they can be compactly described via self-referential transformations. Said patterns commonly appear in natural and artificial objects, such as molecules, shorelines, galaxies, and even images. In this work, we investigate the role of learning in the automated discovery of self-similarity and in its utilization for downstream tasks. To this end, we design a novel class of implicit operators, Neural Collages, which (1) represent data as the parameters of a self-referential, structured transformation, and (2) employ hypernetworks to amortize the cost of finding these parameters to a single forward pass. We detail how to leverage the representations produced by Neural Collages in various tasks, including data compression and generation. Neural Collage image compressors are orders of magnitude faster than other self-similarity-based algorithms during encoding and offer compression rates competitive with implicit methods. Finally, we showcase applications of Neural Collages for fractal art and as deep generative models.
[ Hall J ]

Understanding genetic variation, e.g., through mutations, in organisms is crucial to unravel their effects on the environment and human health. A fundamental characterization can be obtained by solving the haplotype assembly problem, which yields the variation across multiple copies of chromosomes. Variations among fast evolving viruses that lead to different strains (called quasispecies) are also deciphered with similar approaches. In both these cases, high-throughput sequencing technologies that provide oversampled mixtures of large noisy fragments (reads) of genomes, are used to infer constituent components (haplotypes or quasispecies). The problem is harder for polyploid species where there are more than two copies of chromosomes. State-of-the-art neural approaches to solve this NP-hard problem do not adequately model relations among the reads that are important for deconvolving the input signal. We address this problem by developing a new method, called NeurHap, that combines graph representation learning with combinatorial optimization. Our experiments demonstrate the substantially better performance of NeurHap in real and synthetic datasets compared to competing approaches.
[ Hall J ]
With model trustworthiness being crucial for sensitive real-world applications, practitioners are putting more and more focus on improving the uncertainty calibration of deep neural networks.Calibration errors are designed to quantify the reliability of probabilistic predictions but their estimators are usually biased and inconsistent.In this work, we introduce the framework of \textit{proper calibration errors}, which relates every calibration error to a proper score and provides a respective upper bound with optimal estimation properties.This relationship can be used to reliably quantify the model calibration improvement.We theoretically and empirically demonstrate the shortcomings of commonly used estimators compared to our approach.Due to the wide applicability of proper scores, this gives a natural extension of recalibration beyond classification.
[ Hall J ]
Data augmentation is commonly applied to improve performance of deep learning by enforcing the knowledge that certain transformations on the input preserve the output. Currently, the data augmentation parameters are chosen by human effort and costly cross-validation, which makes it cumbersome to apply to new datasets. We develop a convenient gradient-based method for selecting the data augmentation without validation data during training of a deep neural network. Our approach relies on phrasing data augmentation as an invariance in the prior distribution on the functions of a neural network, which allows us to learn it using Bayesian model selection. This has been shown to work in Gaussian processes, but not yet for deep neural networks. We propose a differentiable Kronecker-factored Laplace approximation to the marginal likelihood as our objective, which can be optimised without human supervision or validation data. We show that our method can successfully recover invariances present in the data, and that this improves generalisation and data efficiency on image datasets.
[ Hall J ]

Inverse rendering is an ill-posed problem. Previous work has sought to resolve this by focussing on priors for object or scene shape or appearance. In this work, we instead focus on a prior for natural illuminations. Current methods rely on spherical harmonic lighting or other generic representations and, at best, a simplistic prior on the parameters. We propose a conditional neural field representation based on a variational auto-decoder with a SIREN network and, extending Vector Neurons, build equivariance directly into the network. Using this, we develop a rotation-equivariant, high dynamic range (HDR) neural illumination model that is compact and able to express complex, high-frequency features of natural environment maps. Training our model on a curated dataset of 1.6K HDR environment maps of natural scenes, we compare it against traditional representations, demonstrate its applicability for an inverse rendering task and show environment map completion from partial observations.
[ Hall J ]

Programmatic Weak Supervision (PWS) aggregates the source votes of multiple weak supervision sources into probabilistic training labels, which are in turn used to train an end model. With its increasing popularity, it is critical to have some tool for users to understand the influence of each component (\eg, the source vote or training data) in the pipeline and interpret the end model behavior. To achieve this, we build on Influence Function (IF) and propose source-aware IF, which leverages the generation process of the probabilistic labels to decompose the end model's training objective and then calculate the influence associated with each (data, source, class) tuple. These primitive influence score can then be used to estimate the influence of individual component of PWS, such as source vote, supervision source, and training data. On datasets of diverse domains, we demonstrate multiple use cases: (1) interpreting incorrect predictions from multiple angles that reveals insights for debugging the PWS pipeline, (2) identifying mislabeling of sources with a gain of 9\%-37\% over baselines, and (3) improving the end model's generalization performance by removing harmful components in the training objective (13\%-24\% better than ordinary IF).
[ Hall J ]

Collaborative inference leverages diverse features provided by different agents (e.g., sensors) for more accurate inference. A common setup is where each agent sends its embedded features instead of the raw data to the Fusion Center (FC) for joint prediction. In this setting, we consider the inference-time attacks when a small fraction of agents are compromised. The compromised agent either does not send embedded features to the FC, or sends arbitrarily embedded features. To address this, we propose a certifiably robust COllaborative inference framework via feature PURification (CoPur), by leveraging the block-sparse nature of adversarial perturbations on the feature vector, as well as exploring the underlying redundancy across the embedded features (by assuming the overall features lie on an underlying lower dimensional manifold). We theoretically show that the proposed feature purification method can robustly recover the true feature vector, despite adversarial corruptions and/or incomplete observations. We also propose and test an untargeted distributed feature-flipping attack, which is agnostic to the model, training data, label, as well as the features held by other agents, and is shown to be effective in attacking state-of-the-art defenses. Experiments on ExtraSensory and NUS-WIDE datasets show that CoPur significantly outperforms existing defenses in terms of robustness against …
[ Hall J ]

Neural architecture search tries to shift the manual design of neural network (NN) architectures to algorithmic design. In these cases, the NN architecture itself can be viewed as data and needs to be modeled. A better modeling could help explore novel architectures automatically and open the black box of automated architecture design. To this end, this work proposes a new encoding scheme for neural architectures, the Training-Analogous Graph-based ArchiTecture Encoding Scheme (TA-GATES). TA-GATES encodes an NN architecture in a way that is analogous to its training. Extensive experiments demonstrate that the flexibility and discriminative power of TA-GATES lead to better modeling of NN architectures. We expect our methodology of explicitly modeling the NN training process to benefit broader automated deep learning systems. The code is available at https://github.com/walkerning/aw_nas.
[ Hall J ]

Placement is an essential task in modern chip design, aiming at placing millions of circuit modules on a 2D chip canvas. Unlike the human-centric solution, which requires months of intense effort by hardware engineers to produce a layout to minimize delay and energy consumption, deep reinforcement learning has become an emerging autonomous tool. However, the learning-centric method is still in its early stage, impeded by a massive design space of size ten to the order of a few thousand. This work presents MaskPlace to automatically generate a valid chip layout design within a few hours, whose performance can be superior or comparable to recent advanced approaches. It has several appealing benefits that prior arts do not have. Firstly, MaskPlace recasts placement as a problem of learning pixel-level visual representation to comprehensively describe millions of modules on a chip, enabling placement in a high-resolution canvas and a large action space. It outperforms recent methods that represent a chip as a hypergraph. Secondly, it enables training the policy network by an intuitive reward function with dense reward, rather than a complicated reward function with sparse reward from previous methods. Thirdly, extensive experiments on many public benchmarks show that MaskPlace outperforms existing RL …
[ Hall J ]

[ Hall J ]

Real-world machine-learning applications require robust models that generalize well to distribution shift settings, which is typical in real-world situations. Domain adaptation techniques aim to address this issue of distribution shift by minimizing the disparities between domains to ensure that the model trained on the source domain performs well on the target domain. Nevertheless, the existing domain adaptation methods are computationally very expensive. In this work, we aim to improve the efficiency of existing supervised domain adaptation (SDA) methods by using a subset of source data that is similar to target data for faster model training. Specifically, we propose ORIENT, a subset selection framework that uses the submodular mutual information (SMI) functions to select a source data subset similar to the target data for faster training. Additionally, we demonstrate how existing robust subset selection strategies, such as GLISTER, GRADMATCH, and CRAIG, when used with a held-out query set, fit within our proposed framework and demonstrate the connections with them. Finally, we empirically demonstrate that SDA approaches like d-SNE, CCSA, and standard Cross-entropy training, when employed together with ORIENT, achieve a) faster training and b) better performance on the target data.
[ Hall J ]

Modeling multivariate time series as temporal signals over a (possibly dynamic) graph is an effective representational framework that allows for developing models for time series analysis. In fact, discrete sequences of graphs can be processed by autoregressive graph neural networks to recursively learn representations at each discrete point in time and space. Spatiotemporal graphs are often highly sparse, with time series characterized by multiple, concurrent, and long sequences of missing data, e.g., due to the unreliable underlying sensor network. In this context, autoregressive models can be brittle and exhibit unstable learning dynamics. The objective of this paper is, then, to tackle the problem of learning effective models to reconstruct, i.e., impute, missing data points by conditioning the reconstruction only on the available observations. In particular, we propose a novel class of attention-based architectures that, given a set of highly sparse discrete observations, learn a representation for points in time and space by exploiting a spatiotemporal propagation architecture aligned with the imputation task. Representations are trained end-to-end to reconstruct observations w.r.t. the corresponding sensor and its neighboring nodes. Compared to the state of the art, our model handles sparse data without propagating prediction errors or requiring a bidirectional model to encode …
[ Hall J ]

[ Hall J ]

Our work focuses on training RL agents on multiple visually diverse environments to improve observational generalization performance. In prior methods, policy and value networks are separately optimized using a disjoint network architecture to avoid interference and obtain a more accurate value function. We identify that a value network in the multi-environment setting is more challenging to optimize and prone to memorizing the training data than in the conventional single-environment setting. In addition, we find that appropriate regularization on the value network is necessary to improve both training and test performance. To this end, we propose Delayed-Critic Policy Gradient (DCPG), a policy gradient algorithm that implicitly penalizes value estimates by optimizing the value network less frequently with more training data than the policy network. This can be implemented using a single unified network architecture. Furthermore, we introduce a simple self-supervised task that learns the forward and inverse dynamics of environments using a single discriminator, which can be jointly optimized with the value network. Our proposed algorithms significantly improve observational generalization performance and sample efficiency on the Procgen Benchmark.
[ Hall J ]
Distillation with unlabeled examples is a popular and powerful method for training deep neural networks in settings where the amount of labeled data is limited: A large “teacher” neural network is trained on the labeled data available, and then it is used to generate labels on an unlabeled dataset (typically much larger in size). These labels are then utilized to train the smaller “student” model which will actually be deployed. Naturally, the success of the approach depends on the quality of the teacher’s labels, since the student could be confused if trained on inaccurate data. This paper proposes a principled approach for addressing this issue based on a “debiasing" reweighting of the student’s loss function tailored to the distillation training paradigm. Our method is hyper-parameter free, data-agnostic, and simple to implement. We demonstrate significant improvements on popular academic datasets and we accompany our results with a theoretical analysis which rigorously justifies the performance of our method in certain settings.
[ Hall J ]
Deep and wide neural networks successfully fit very complex functions today, but dense models are starting to be prohibitively expensive for inference. To mitigate this, one promising research direction is networks that activate a sparse subgraph of the network. The subgraph is chosen by a data-dependent routing function, enforcing a fixed mapping of inputs to subnetworks (e.g., the Mixture of Experts (MoE) paradigm in Switch Transformers). However, there is no theoretical grounding for these sparsely activated models. As our first contribution, we present a formal model of data-dependent sparse networks that captures salient aspects of popular architectures. Then, we show how to construct sparse networks that provably match the approximation power and total size of dense networks on Lipschitz functions. The sparse networks use much fewer inference operations than dense networks, leading to a faster forward pass. The key idea is to use locality sensitive hashing on the input vectors and then interpolate the function in subregions of the input space. This offers a theoretical insight into why sparse networks work well in practice. Finally, we present empirical findings that support our theory; compared to dense networks, sparse networks give a favorable trade-off between number of active units and approximation …
[ Hall J ]
The No Unmeasured Confounding Assumption is widely used to identify causal effects in observational studies. Recent work on proximal inference has provided alternative identification results that succeed even in the presence of unobserved confounders, provided that one has measured a sufficiently rich set of proxy variables, satisfying specific structural conditions. However, proximal inference requires solving an ill-posed integral equation. Previous approaches have used a variety of machine learning techniques to estimate a solution to this integral equation, commonly referred to as the bridge function. However, prior work has often been limited by relying on pre-specified kernel functions, which are not data adaptive and struggle to scale to large datasets. In this work, we introduce a flexible and scalable method based on a deep neural network to estimate causal effects in the presence of unmeasured confounding using proximal inference. Our method achieves state of the art performance on two well-established proximal inference benchmarks. Finally, we provide theoretical consistency guarantees for our method.
[ Hall J ]

While significant theoretical progress has been achieved, unveiling the generalization mystery of overparameterized neural networks still remains largely elusive. In this paper, we study the generalization behavior of shallow neural networks (SNNs) by leveraging the concept of algorithmic stability. We consider gradient descent (GD) and stochastic gradient descent (SGD) to train SNNs, for both of which we develop consistent excess risk bounds by balancing the optimization and generalization via early-stopping. As compared to existing analysis on GD, our new analysis requires a relaxed overparameterization assumption and also applies to SGD. The key for the improvement is a better estimation of the smallest eigenvalues of the Hessian matrices of the empirical risks and the loss function along the trajectories of GD and SGD by providing a refined estimation of their iterates.
[ Hall J ]

[ Hall J ]

[ Hall J ]
Zero-shot coordination (ZSC) evaluates an algorithm by the performance of a team of agents that were trained independently under that algorithm. Off-belief learning (OBL) is a recent method that achieves state-of-the-art results in ZSC in the game Hanabi. However, the implementation of OBL relies on a belief model that experiences covariate shift. Moreover, during ad-hoc coordination, OBL or any other neural policy may experience test-time covariate shift. We present two methods addressing these issues. The first method, off-team belief learning (OTBL), attempts to improve the accuracy of the belief model of a target policy πT on a broader range of inputs by weighting trajectories approximately according to the distribution induced by a different policy πb. The second, off-team off-belief learning (OT-OBL), attempts to compute an OBL equilibrium, where fixed point error is weighted according to the distribution induced by cross-play between the training policy π and a different fixed policy πb instead of self-play of π. We investigate these methods in variants of Hanabi.
[ Hall J ]

Due to the widespread use of complex machine learning models in real-world applications, it is becoming critical to explain model predictions. However, these models are typically black-box deep neural networks, explained post-hoc via methods with known faithfulness limitations. Generalized Additive Models (GAMs) are an inherently interpretable class of models that address this limitation by learning a non-linear shape function for each feature separately, followed by a linear model on top. However, these models are typically difficult to train, require numerous parameters, and are difficult to scale. We propose an entirely new subfamily of GAMs that utilizes basis decomposition of shape functions. A small number of basis functions are shared among all features, and are learned jointly for a given task, thus making our model scale much better to large-scale data with high-dimensional features, especially when features are sparse. We propose an architecture denoted as the Neural Basis Model (NBM) which uses a single neural network to learn these bases. On a variety of tabular and image datasets, we demonstrate that for interpretable machine learning, NBMs are the state-of-the-art in accuracy, model size, and, throughput and can easily model all higher-order feature interactions. Source code is available at \href{https://github.com/facebookresearch/nbm-spam}{\ttfamily github.com/facebookresearch/nbm-spam}.
[ Hall J ]
Effective exploration is a challenge in reinforcement learning (RL). Novelty-based exploration methods can suffer in high-dimensional state spaces, such as continuous partially-observable 3D environments. We address this challenge by defining novelty using semantically meaningful state abstractions, which can be found in learned representations shaped by natural language. In particular, we evaluate vision-language representations, pretrained on natural image captioning datasets. We show that these pretrained representations drive meaningful, task-relevant exploration and improve performance on 3D simulated environments. We also characterize why and how language provides useful abstractions for exploration by considering the impacts of using representations from a pretrained model, a language oracle, and several ablations. We demonstrate the benefits of our approach with on- and off-policy RL algorithms and in two very different task domains---one that stresses the identification and manipulation of everyday objects, and one that requires navigational exploration in an expansive world. Our results suggest that using language-shaped representations could improve exploration for various algorithms and agents in challenging environments.
[ Hall J ]
Similarity metrics such as representational similarity analysis (RSA) and centered kernel alignment (CKA) have been used to understand neural networks by comparing their layer-wise representations. However, these metrics are confounded by the population structure of data items in the input space, leading to inconsistent conclusions about the \emph{functional} similarity between neural networks, such as spuriously high similarity of completely random neural networks and inconsistent domain relations in transfer learning. We introduce a simple and generally applicable fix to adjust for the confounder with covariate adjustment regression, which improves the ability of CKA and RSA to reveal functional similarity and also retains the intuitive invariance properties of the original similarity measures. We show that deconfounding the similarity metrics increases the resolution of detecting functionally similar neural networks across domains. Moreover, in real-world applications, deconfounding improves the consistency between CKA and domain similarity in transfer learning, and increases the correlation between CKA and model out-of-distribution accuracy similarity.
[ Hall J ]

Influence functions efficiently estimate the effect of removing a single training data point on a model's learned parameters. While influence estimates align well with leave-one-out retraining for linear models, recent works have shown this alignment is often poor in neural networks. In this work, we investigate the specific factors that cause this discrepancy by decomposing it into five separate terms. We study the contributions of each term on a variety of architectures and datasets and how they vary with factors such as network width and training time. While practical influence function estimates may be a poor match to leave-one-out retraining for nonlinear networks, we show that they are often a good approximation to a different object we term the proximal Bregman response function (PBRF). Since the PBRF can still be used to answer many of the questions motivating influence functions, such as identifying influential or mislabeled examples, our results suggest that current algorithms for influence function estimation give more informative results than previous error analyses would suggest.
[ Hall J ]
The convergence of GD and SGD when training mildly parameterized neural networks starting from random initialization is studied. For a broad range of models and loss functions, including the widely used square loss and cross entropy loss, we prove an ''early stage convergence'' result. We show that the loss is decreased by a significant amount in the early stage of the training, and this decreasing is fast. Furthurmore, for exponential type loss functions, and under some assumptions on the training data, we show global convergence of GD. Instead of relying on extreme over-parameterization, our study is based on a microscopic analysis of the activation patterns for the neurons, which helps us derive gradient lower bounds. The results on activation patterns, which we call ``neuron partition'', help build intuitions for understanding the behavior of neural networks' training dynamics, and may be of independent interest.
[ Hall J ]

[ Hall J ]

Recent studies have shown that gradient descent (GD) can achieve improved generalization when its dynamics exhibits a chaotic behavior. However, to obtain the desired effect, the step-size should be chosen sufficiently large, a task which is problem dependent and can be difficult in practice. In this study, we incorporate a chaotic component to GD in a controlled manner, and introduce \emph{multiscale perturbed GD} (MPGD), a novel optimization framework where the GD recursion is augmented with chaotic perturbations that evolve via an independent dynamical system. We analyze MPGD from three different angles: (i) By building up on recent advances in rough paths theory, we show that, under appropriate assumptions, as the step-size decreases, the MPGD recursion converges weakly to a stochastic differential equation (SDE) driven by a heavy-tailed L\'{e}vy-stable process. (ii) By making connections to recently developed generalization bounds for heavy-tailed processes, we derive a generalization bound for the limiting SDE and relate the worst-case generalization error over the trajectories of the process to the parameters of MPGD. (iii) We analyze the implicit regularization effect brought by the dynamical regularization and show that, in the weak perturbation regime, MPGD introduces terms that penalize the Hessian of the loss function. Empirical results …
[ Hall J ]

The classic Reinforcement Learning (RL) formulation concerns the maximization of a scalar reward function. More recently, convex RL has been introduced to extend the RL formulation to all the objectives that are convex functions of the state distribution induced by a policy. Notably, convex RL covers several relevant applications that do not fall into the scalar formulation, including imitation learning, risk-averse RL, and pure exploration. In classic RL, it is common to optimize an infinite trials objective, which accounts for the state distribution instead of the empirical state visitation frequencies, even though the actual number of trajectories is always finite in practice. This is theoretically sound since the infinite trials and finite trials objectives are equivalent and thus lead to the same optimal policy. In this paper, we show that this hidden assumption does not hold in convex RL. In particular, we prove that erroneously optimizing the infinite trials objective in place of the actual finite trials one, as it is usually done, can lead to a significant approximation error. Since the finite trials setting is the default in both simulated and real-world RL, we believe shedding light on this issue will lead to better approaches and methodologies for convex …
[ Hall J ]
In the field of reinforcement learning, because of the high cost and risk of policy training in the real world, policies are trained in a simulation environment and transferred to the corresponding real-world environment.However, the simulation environment does not perfectly mimic the real-world environment, lead to model misspecification. Multiple studies report significant deterioration of policy performance in a real-world environment.In this study, we focus on scenarios involving a simulation environment with uncertainty parameters and the set of their possible values, called the uncertainty parameter set. The aim is to optimize the worst-case performance on the uncertainty parameter set to guarantee the performance in the corresponding real-world environment.To obtain a policy for the optimization, we propose an off-policy actor-critic approach called the Max-Min Twin Delayed Deep Deterministic Policy Gradient algorithm (M2TD3), which solves a max-min optimization problem using a simultaneous gradient ascent descent approach.Experiments in multi-joint dynamics with contact (MuJoCo) environments show that the proposed method exhibited a worst-case performance superior to several baseline approaches.
[ Hall J ]

Likelihood-to-evidence ratio estimation is usually cast as either a binary (NRE-A) or a multiclass (NRE-B) classification task. In contrast to the binary classification framework, the current formulation of the multiclass version has an intrinsic and unknown bias term, making otherwise informative diagnostics unreliable. We propose a multiclass framework free from the bias inherent to NRE-B at optimum, leaving us in the position to run diagnostics that practitioners depend on. It also recovers NRE-A in one corner case and NRE-B in the limiting case. For fair comparison, we benchmark the behavior of all algorithms in both familiar and novel training regimes: when jointly drawn data is unlimited, when data is fixed but prior draws are unlimited, and in the commonplace fixed data and parameters setting. Our investigations reveal that the highest performing models are distant from the competitors (NRE-A, NRE-B) in hyperparameter space. We make a recommendation for hyperparameters distinct from the previous models. We suggest a bound on the mutual information as a performance metric for simulation-based inference methods, without the need for posterior samples, and provide experimental results.
[ Hall J ]

Existing gradient-based optimization methods update parameters locally, in a direction that minimizes the loss function. We study a different approach, symmetry teleportation, that allows parameters to travel a large distance on the loss level set, in order to improve the convergence speed in subsequent steps. Teleportation exploits symmetries in the loss landscape of optimization problems. We derive loss-invariant group actions for test functions in optimization and multi-layer neural networks, and prove a necessary condition for teleportation to improve convergence rate. We also show that our algorithm is closely related to second order methods. Experimentally, we show that teleportation improves the convergence speed of gradient descent and AdaGrad for several optimization problems including test functions, multi-layer regressions, and MNIST classification.
[ Hall J ]

The Adam optimization algorithm has proven remarkably effective for optimization problems across machine learning and even traditional tasks in geometry processing. At the same time, the development of equivariant methods, which preserve their output under the action of rotation or some other transformation, has proven to be important for geometry problems across these domains. In this work, we observe that Adam — when treated as a function that maps initial conditions to optimized results — is not rotation equivariant for vector-valued parameters due to per-coordinate moment updates. This leads to significant artifacts and biases in practice. We propose to resolve this deficiency with VectorAdam, a simple modification which makes Adam rotation-equivariant by accounting for the vector structure of optimization variables. We demonstrate this approach on problems in machine learning and traditional geometric optimization, showing that equivariant VectorAdam resolves the artifacts and biases of traditional Adam when applied to vector-valued data, with equivalent or even improved rates of convergence.
[ Hall J ]
Stochastic partial differential equations (SPDEs) are the mathematical tool of choice for modelling spatiotemporal PDE-dynamics under the influence of randomness. Based on the notion of mild solution of an SPDE, we introduce a novel neural architecture to learn solution operators of PDEs with (possibly stochastic) forcing from partially observed data. The proposed Neural SPDE model provides an extension to two popular classes of physics-inspired architectures. On the one hand, it extends Neural CDEs and variants -- continuous-time analogues of RNNs -- in that it is capable of processing incoming sequential information arriving at arbitrary spatial resolutions. On the other hand, it extends Neural Operators -- generalizations of neural networks to model mappings between spaces of functions -- in that it can parameterize solution operators of SPDEs depending simultaneously on the initial condition and a realization of the driving noise. By performing operations in the spectral domain, we show how a Neural SPDE can be evaluated in two ways, either by calling an ODE solver (emulating a spectral Galerkin scheme), or by solving a fixed point problem. Experiments on various semilinear SPDEs, including the stochastic Navier-Stokes equations, demonstrate how the Neural SPDE model is capable of learning complex spatiotemporal dynamics in …
[ Hall J ]

Predictive coding (PC) has emerged as an influential normative model of neural computation with numerous extensions and applications. As such, much effort has been put into mapping PC faithfully onto the cortex, but there are issues that remain unresolved or controversial. In particular, current implementations often involve separate value and error neurons and require symmetric forward and backward weights across different brain regions. These features have not been experimentally confirmed. In this work, we show that the PC framework in the linear regime can be modified to map faithfully onto the cortical hierarchy in a manner compatible with empirical observations. By employing a disentangling-inspired constraint on hidden-layer neural activities, we derive an upper bound for the PC objective. Optimization of this upper bound leads to an algorithm that shows the same performance as the original objective and maps onto a biologically plausible network. The units of this network can be interpreted as multi-compartmental neurons with non-Hebbian learning rules, with a remarkable resemblance to recent experimental findings. There exist prior models which also capture these features, but they are phenomenological, while our work is a normative derivation. This allows us to determine which features are necessary for the functioning of the …
[ Hall J ]
Large language models (LLMs) have demonstrated an impressive ability to generate code for various programming tasks. In many instances, LLMs can generate a correct program for a task when given numerous trials. Consequently, a recent trend is to do large scale sampling of programs using a model and then filtering/ranking the programs based on the program execution on a small number of known unit tests to select one candidate solution. However, these approaches assume that the unit tests are given and assume the ability to safely execute the generated programs (which can do arbitrary dangerous operations such as file manipulations). Both of the above assumptions are impractical in real-world software development. In this paper, we propose CodeRanker, a neural ranker that can predict the correctness of a sampled program without executing it. Our CodeRanker is fault-aware i.e., it is trained to predict different kinds of execution information such as predicting the exact compile/runtime error type (e.g., an IndexError or a TypeError). We show that CodeRanker can significantly increase the pass@1 accuracy of various code generation models (including Codex, GPT-Neo, GPT-J) on APPS, HumanEval and MBPP datasets.
[ Hall J ]

Symbolic regression, the task of predicting the mathematical expression of a function from the observation of its values, is a difficult task which usually involves a two-step procedure: predicting the "skeleton" of the expression up to the choice of numerical constants, then fitting the constants by optimizing a non-convex loss function. The dominant approach is genetic programming, which evolves candidates by iterating this subroutine a large number of times. Neural networks have recently been tasked to predict the correct skeleton in a single try, but remain much less powerful.In this paper, we challenge this two-step procedure, and task a Transformer to directly predict the full mathematical expression, constants included. One can subsequently refine the predicted constants by feeding them to the non-convex optimizer as an informed initialization. We present ablations to show that this end-to-end approach yields better results, sometimes even without the refinement step. We evaluate our model on problems from the SRBench benchmark and show that our model approaches the performance of state-of-the-art genetic programming with several orders of magnitude faster inference.
[ Hall J ]
The vast majority of work in self-supervised learning have focused on assessing recovered features by a chosen set of downstream tasks. While there are several commonly used benchmark datasets, this lens of feature learning requires assumptions on the downstream tasks which are not inherent to the data distribution itself. In this paper, we present an alternative lens, one of parameter identifiability: assuming data comes from a parametric probabilistic model, we train a self-supervised learning predictor with a suitable parametric form, and ask whether the parameters of the optimal predictor can be used to extract the parameters of the ground truth generative model.Specifically, we focus on latent-variable models capturing sequential structures, namely Hidden Markov Models with both discrete and conditionally Gaussian observations. We focus on masked prediction as the self-supervised learning task and study the optimal masked predictor. We show that parameter identifiability is governed by the task difficulty, which is determined by the choice of data model and the amount of tokens to predict. Technique-wise, we uncover close connections with the uniqueness of tensor rank decompositions, a widely used tool in studying identifiability through the lens of the method of moments.
[ Hall J ]

Structured prediction of tree-shaped objects is heavily studied under the name of syntactic dependency parsing. Current practice based on maximum likelihood or margin is either agnostic to or inconsistent with the evaluation loss. Risk minimization alleviates the discrepancy between training and test objectives but typically induces a non-convex problem. These approaches adopt explicit regularization to combat overfitting without probabilistic interpretation. We propose a moment-based distributionally robust optimization approach for tree structured prediction, where the worst-case expected loss over a set of distributions within bounded moment divergence from the empirical distribution is minimized. We develop efficient algorithms for arborescences and other variants of trees. We derive Fisher consistency, convergence rates and generalization bounds for our proposed method. We evaluate its empirical effectiveness on dependency parsing benchmarks.
[ Hall J ]

Understanding multivariate dependencies in both the bulk and the tails of a distribution is an important problem for many applications, such as ensuring algorithms are robust to observations that are infrequent but have devastating effects. Archimax copulas are a family of distributions endowed with a precise representation that allows simultaneous modeling of the bulk and the tails of a distribution. Rather than separating the two as is typically done in practice, incorporating additional information from the bulk may improve inference of the tails, where observations are limited. Building on the stochastic representation of Archimax copulas, we develop a non-parametric inference method and sampling algorithm. Our proposed methods, to the best of our knowledge, are the first that allow for highly flexible and scalable inference and sampling algorithms, enabling the increased use of Archimax copulas in practical settings. We experimentally compare to state-of-the-art density modeling techniques, and the results suggest that the proposed method effectively extrapolates to the tails while scaling to higher dimensional data. Our findings suggest that the proposed algorithms can be used in a variety of applications where understanding the interplay between the bulk and the tails of a distribution is necessary, such as healthcare and safety.
[ Hall J ]

Recurrent Neural Networks (RNN) are commonly used models to study neural computation. However, a comprehensive understanding of how dynamics in RNN emerge from the underlying connectivity is largely lacking. Previous work derived such an understanding for RNN fulfilling very specific constraints on their connectivity, but it is unclear whether the resulting insights apply more generally. Here we study how network dynamics are related to network connectivity in RNN trained without any specific constraints on several tasks previously employed in neuroscience. Despite the apparent high-dimensional connectivity of these RNN, we show that a low-dimensional, functionally relevant subspace of the weight matrix can be found through the identification of \textit{operative} dimensions, which we define as components of the connectivity whose removal has a large influence on local RNN dynamics. We find that a weight matrix built from only a few operative dimensions is sufficient for the RNN to operate with the original performance, implying that much of the high-dimensional structure of the trained connectivity is functionally irrelevant. The existence of a low-dimensional, operative subspace in the weight matrix simplifies the challenge of linking connectivity to network dynamics and suggests that independent network functions may be placed in specific, separate subspaces of the …
[ Hall J ]

As the curation of data for machine learning becomes increasingly automated, dataset tampering is a mounting threat. Backdoor attackers tamper with training data to embed a vulnerability in models that are trained on that data. This vulnerability is then activated at inference time by placing a "trigger'' into the model's input. Typical backdoor attacks insert the trigger directly into the training data, although the presence of such an attack may be visible upon inspection. In contrast, the Hidden Trigger Backdoor Attack achieves poisoning without placing a trigger into the training data at all. However, this hidden trigger attack is ineffective at poisoning neural networks trained from scratch. We develop a new hidden trigger attack, Sleeper Agent, which employs gradient matching, data selection, and target model re-training during the crafting process. Sleeper Agent is the first hidden trigger backdoor attack to be effective against neural networks trained from scratch. We demonstrate its effectiveness on ImageNet and in black-box settings. Our implementation code can be found at: https://github.com/hsouri/Sleeper-Agent.
[ Hall J ]
We explore how generating a chain of thought---a series of intermediate reasoning steps---significantly improves the ability of large language models to perform complex reasoning. In particular, we show how such reasoning abilities emerge naturally in sufficiently large language models via a simple method called chain of thought prompting, where a few chain of thought demonstrations are provided as exemplars in prompting. Experiments on three large language models show that chain of thought prompting improves performance on a range of arithmetic, commonsense, and symbolic reasoning tasks. The empirical gains can be striking. For instance, prompting a 540B-parameter language model with just eight chain of thought exemplars achieves state of the art accuracy on the GSM8K benchmark of math word problems, surpassing even finetuned GPT-3 with a verifier.
[ Hall J ]

We present a framework for video modeling based on denoising diffusion probabilistic models that produces long-duration video completions in a variety of realistic environments. We introduce a generative model that can at test-time sample any arbitrary subset of video frames conditioned on any other subset and present an architecture adapted for this purpose. Doing so allows us to efficiently compare and optimize a variety of schedules for the order in which frames in a long video are sampled and use selective sparse and long-range conditioning on previously sampled frames. We demonstrate improved video modeling over prior work on a number of datasets and sample temporally coherent videos over 25 minutes in length. We additionally release a new video modeling dataset and semantically meaningful metrics based on videos generated in the CARLA autonomous driving simulator.
[ Hall J ]
Gradient descent during the learning process of a neural network can be subject to many instabilities. The spectral density of the Jacobian is a key component for analyzing stability. Following the works of Pennington et al., such Jacobians are modeled using free multiplicative convolutions from Free Probability Theory (FPT).We present a reliable and very fast method for computing the associated spectral densities, for given architecture and initialization. This method has a controlled and proven convergence. Our technique is based on an homotopy method: it is an adaptative Newton-Raphson scheme which chains basins of attraction. We find contiguous lilypad-like basins and step from one to the next, heading towards the objective.In order to demonstrate the relevance of our method we show that the relevant FPT metrics computed before training are highly correlated to final test losses – up to 85%. We also give evidence that a very desirable feature for neural networks is the hyperbolicity of their Jacobian at initialization, while remaining at the edge of chaos.
[ Hall J ]

Finding accurate solutions to the Schrödinger equation is the key unsolved challenge of computational chemistry. Given its importance for the development of new chemical compounds, decades of research have been dedicated to this problem, but due to the large dimensionality even the best available methods do not yet reach the desired accuracy.Recently the combination of deep learning with Monte Carlo methods has emerged as a promising way to obtain highly accurate energies and moderate scaling of computational cost. In this paper we significantly contribute towards this goal by introducing a novel deep-learning architecture that achieves 40-70% lower energy error at 6x lower computational cost compared to previous approaches. Using our method we establish a new benchmark by calculating the most accurate variational ground state energies ever published for a number of different atoms and molecules.We systematically break down and measure our improvements, focusing in particular on the effect of increasing physical prior knowledge.We surprisingly find that increasing the prior knowledge given to the architecture can actually decrease accuracy.
[ Hall J ]
We present a method called Manifold Interpolating Optimal-Transport Flow (MIOFlow) that learns stochastic, continuous population dynamics from static snapshot samples taken at sporadic timepoints. MIOFlow combines dynamic models, manifold learning, and optimal transport by training neural ordinary differential equations (Neural ODE) to interpolate between static population snapshots as penalized by optimal transport with manifold ground distance. Further, we ensure that the flow follows the geometry by operating in the latent space of an autoencoder that we call a geodesic autoencoder (GAE). In GAE the latent space distance between points is regularized to match a novel multiscale geodesic distance on the data manifold that we define. We show that this method is superior to normalizing flows, Schr\"odinger bridges and other generative models that are designed to flow from noise to data in terms of interpolating between populations. Theoretically, we link these trajectories with dynamic optimal transport. We evaluate our method on simulated data with bifurcations and merges, as well as scRNA-seq data from embryoid body differentiation, and acute myeloid leukemia treatment.
[ Hall J ]
We present the problem of reinforcement learning with exogenous termination. We define the Termination Markov Decision Process (TerMDP), an extension of the MDP framework, in which episodes may be interrupted by an external non-Markovian observer. This formulation accounts for numerous real-world situations, such as a human interrupting an autonomous driving agent for reasons of discomfort. We learn the parameters of the TerMDP and leverage the structure of the estimation problem to provide state-wise confidence bounds. We use these to construct a provably-efficient algorithm, which accounts for termination, and bound its regret. Motivated by our theoretical analysis, we design and implement a scalable approach, which combines optimism (w.r.t. termination) and a dynamic discount factor, incorporating the termination probability. We deploy our method on high-dimensional driving and MinAtar benchmarks. Additionally, we test our approach on human data in a driving setting. Our results demonstrate fast convergence and significant improvement over various baseline approaches.
[ Hall J ]
Generative adversarial nets (GANs) have been remarkably successful at learning to sample from distributions specified by a given dataset, particularly if the given dataset is reasonably large compared to its dimensionality. However, given limited data, classical GANs have struggled, and strategies like output-regularization, data-augmentation, use of pre-trained models and pruning have been shown to lead to improvements. Notably, the applicability of these strategies is often constrained to particular settings, e.g., availability of a pretrained GAN, or increases training time, e.g., when using pruning. In contrast, we propose a Discriminator gradIent Gap regularized GAN (DigGAN) formulation which can be added to any existing GAN. DigGAN augments existing GANs by encouraging to narrow the gap between the norm of the gradient of a discriminator's prediction w.r.t. real images and w.r.t. the generated samples. We observe this formulation to avoid bad attractors within the GAN loss landscape, and we find DigGAN to significantly improve the results of GAN training when limited data is available.
[ Hall J ]

Large sequence models (SM) such as GPT series and BERT have displayed outstanding performance and generalization capabilities in natural language process, vision and recently reinforcement learning. A natural follow-up question is how to abstract multi-agent decision making also as an sequence modeling problem and benefit from the prosperous development of the SMs. In this paper, we introduce a novel architecture named Multi-Agent Transformer (MAT) that effectively casts cooperative multi-agent reinforcement learning (MARL) into SM problems wherein the objective is to map agents' observation sequences to agents' optimal action sequences. Our goal is to build the bridge between MARL and SMs so that the modeling power of modern sequence models can be unleashed for MARL. Central to our MAT is an encoder-decoder architecture which leverages the multi-agent advantage decomposition theorem to transform the joint policy search problem into a sequential decision making process; this renders only linear time complexity for multi-agent problems and, most importantly, endows MAT with monotonic performance improvement guarantee. Unlike prior arts such as Decision Transformer fit only pre-collected offline data, MAT is trained by online trial and error from the environment in an on-policy fashion. To validate MAT, we conduct extensive experiments on StarCraftII, Multi-Agent MuJoCo, Dexterous …
[ Hall J ]

It has been a long-standing dream to design artificial agents that explore their environment efficiently via intrinsic motivation, similar to how children perform curious free play. Despite recent advances in intrinsically motivated reinforcement learning (RL), sample-efficient exploration in object manipulation scenarios remains a significant challenge as most of the relevant information lies in the sparse agent-object and object-object interactions. In this paper, we propose to use structured world models to incorporate relational inductive biases in the control loop to achieve sample-efficient and interaction-rich exploration in compositional multi-object environments. By planning for future novelty inside structured world models, our method generates free-play behavior that starts to interact with objects early on and develops more complex behavior over time. Instead of using models only to compute intrinsic rewards, as commonly done, our method showcases that the self-reinforcing cycle between good models and good exploration also opens up another avenue: zero-shot generalization to downstream tasks via model-based planning. After the entirely intrinsic task-agnostic exploration phase, our method solves challenging downstream tasks such as stacking, flipping, pick & place, and throwing that generalizes to unseen numbers and arrangements of objects without any additional training.
[ Hall J ]

State-of-the-art 3D-aware generative models rely on coordinate-based MLPs to parameterize 3D radiance fields. While demonstrating impressive results, querying an MLP for every sample along each ray leads to slow rendering.Therefore, existing approaches often render low-resolution feature maps and process them with an upsampling network to obtain the final image. Albeit efficient, neural rendering often entangles viewpoint and content such that changing the camera pose results in unwanted changes of geometry or appearance.Motivated by recent results in voxel-based novel view synthesis, we investigate the utility of sparse voxel grid representations for fast and 3D-consistent generative modeling in this paper.Our results demonstrate that monolithic MLPs can indeed be replaced by 3D convolutions when combining sparse voxel grids with progressive growing, free space pruning and appropriate regularization.To obtain a compact representation of the scene and allow for scaling to higher voxel resolutions, our model disentangles the foreground object (modeled in 3D) from the background (modeled in 2D).In contrast to existing approaches, our method requires only a single forward pass to generate a full 3D scene. It hence allows for efficient rendering from arbitrary viewpoints while yielding 3D consistent results with high visual fidelity. Code and models are available at https://github.com/autonomousvision/voxgraf.
[ Hall J ]
Learning disentangled representations is important for unraveling the underlying complex interactions between latent generative factors. Disentanglement has been formalized using a symmetry-centric notion for unstructured spaces, however, graphs have eluded a similarly rigorous treatment. We fill this gap with a new notion of conditional symmetry for disentanglement, and leverage tools from Lie algebras to encode graph properties into subgroups using suitable adaptations of generative models such as Variational Autoencoders. Unlike existing works on disentanglement, the proposed models segregate the latent space into uncoupled and entangled parts. Experiments on synthetic and real datasets suggest that these models can learn effective disengaged representations, and improve performance on downstream tasks such as few-shot classification and molecular generation.
[ Hall J ]
Virtual, make-on-demand chemical libraries have transformed early-stage drug discovery by unlocking vast, synthetically accessible regions of chemical space. Recent years have witnessed rapid growth in these libraries from millions to trillions of compounds, hiding undiscovered, potent hits for a variety of therapeutic targets. However, they are quickly approaching a size beyond that which permits explicit enumeration, presenting new challenges for virtual screening. To overcome these challenges, we propose the Combinatorial Synthesis Library Variational Auto-Encoder (CSLVAE). The proposed generative model represents such libraries as a differentiable, hierarchically-organized database. Given a compound from the library, the molecular encoder constructs a query for retrieval, which is utilized by the molecular decoder to reconstruct the compound by first decoding its chemical reaction and subsequently decoding its reactants. Our design minimizes autoregression in the decoder, facilitating the generation of large, valid molecular graphs. Our method performs fast and parallel batch inference for ultra-large synthesis libraries, enabling a number of important applications in early-stage drug discovery. Compounds proposed by our method are guaranteed to be in the library, and thus synthetically and cost-effectively accessible. Importantly, CSLVAE can encode out-of-library compounds and search for in-library analogues. In experiments, we demonstrate the capabilities of the proposed method in …
[ Hall J ]

[ Hall J ]
We consider the problem of estimating states (e.g., position and velocity) and physical parameters (e.g., friction, elasticity) from a sequence of observations when provided a dynamic equation that describes the behavior of the system. The dynamic equation can arise from first principles (e.g., Newton’s laws) and provide useful cues for learning, but its physical parameters are unknown. To address this problem, we propose a model that estimates states and physical parameters of the system using two main components. First, an autoencoder compresses a sequence of observations (e.g., sensor measurements, pixel images) into a sequence for the state representation that is consistent with physics by including a simulation of the dynamic equation. Second, an estimator is coupled with the autoencoder to predict the values of the physical parameters. We also theoretically and empirically show that using Fourier feature mappings improves generalization of the estimator in predicting physical parameters compared to raw state sequences. In our experiments on three visual and one sensor measurement tasks, our model imposes interpretability on latent states and achieves improved generalization performance for long-term prediction of system dynamics over state-of-the-art baselines.
[ Hall J ]
[ Hall J ]

[ Hall J ]

Many real-world data can be modeled as 3D graphs, but learning representations that incorporates 3D information completely and efficiently is challenging. Existing methods either use partial 3D information, or suffer from excessive computational cost. To incorporate 3D information completely and efficiently, we propose a novel message passing scheme that operates within 1-hop neighborhood. Our method guarantees full completeness of 3D information on 3D graphs by achieving global and local completeness. Notably, we propose the important rotation angles to fulfill global completeness. Additionally, we show that our method is orders of magnitude faster than prior methods. We provide rigorous proof of completeness and analysis of time complexity for our methods. As molecules are in essence quantum systems, we build the \underline{com}plete and \underline{e}fficient graph neural network (ComENet) by combing quantum inspired basis functions and the proposed message passing scheme. Experimental results demonstrate the capability and efficiency of ComENet, especially on real-world datasets that are large in both numbers and sizes of graphs. Our code is publicly available as part of the DIG library (\url{https://github.com/divelab/DIG}).
[ Hall J ]
Image reconstruction enhanced by regularizers, e.g., to enforce sparsity, low rank or smoothness priors on images, has many successful applications in vision tasks such as computer photography, biomedical and spectral imaging. It has been well accepted that non-convex regularizers normally perform better than convex ones in terms of the reconstruction quality. But their convergence analysis is only established to a critical point, rather than the global optima. To mitigate the loss of guarantees for global optima, we propose to apply the concept of invexity and provide the first list of proved invex regularizers for improving image reconstruction. Moreover, we establish convergence guarantees to global optima for various advanced image reconstruction techniques after being improved by such invex regularization. To the best of our knowledge, this is the first practical work applying invex regularization to improve imaging with global optima guarantees. To demonstrate the effectiveness of invex regularization, numerical experiments are conducted for various imaging tasks using benchmark datasets.
[ Hall J ]

This paper investigates the problem of fairly trading off between payoff and model rewards in collaborative machine learning (ML) where parties aggregate their datasets together to obtain improved ML models over that of each party. Supposing parties can afford the optimal model trained on the aggregated dataset, we propose an allocation scheme that distributes the payoff fairly. Notably, the same scheme can be derived from two different approaches based on (a) desirable properties of the parties' payoffs or (b) that of the underlying payoff flows from one party to another. While the former is conceptually simpler, the latter can be used to handle the practical constraint on the budgets of parties. In particular, we propose desirable properties for achieving a fair adjustment of the payoff flows that can trade off between the model reward's performance and the payoff reward. We empirically demonstrate that our proposed scheme is a sensible solution in several scenarios of collaborative ML with different budget constraints.
[ Hall J ]

We consider regret minimization for Adversarial Markov Decision Processes (AMDPs), where the loss functions are changing over time and adversarially chosen, and the learner only observes the losses for the visited state-action pairs (i.e., bandit feedback). While there has been a surge of studies on this problem using Online-Mirror-Descent (OMD) methods, very little is known about the Follow-the-Perturbed-Leader (FTPL) methods, which are usually computationally more efficient and also easier to implement since it only requires solving an offline planning problem. Motivated by this, we take a closer look at FTPL for learning AMDPs, starting from the standard episodic finite-horizon setting. We find some unique and intriguing difficulties in the analysis and propose a workaround to eventually show that FTPL is also able to achieve near-optimal regret bounds in this case. More importantly, we then find two significant applications: First, the analysis of FTPL turns out to be readily generalizable to delayed bandit feedback with order-optimal regret, while OMD methods exhibit extra difficulties (Jin et al., 2022). Second, using FTPL, we also develop the first no-regret algorithm for learning communicating AMDPs in the infinite-horizon setting with bandit feedback and stochastic transitions. Our algorithm is efficient assuming access to an offline planning …
[ Hall J ]

[ Hall J ]

Spectral clustering is popular among practitioners and theoreticians alike. While performance guarantees for spectral clustering are well understood, recent studies have focused on enforcing "fairness" in clusters, requiring them to be "balanced" with respect to a categorical sensitive node attribute (e.g. the race distribution in clusters must match the race distribution in the population). In this paper, we consider a setting where sensitive attributes indirectly manifest in an auxiliary representation graph rather than being directly observed. This graph specifies node pairs that can represent each other with respect to sensitive attributes and is observed in addition to the usual similarity graph. Our goal is to find clusters in the similarity graph while respecting a new individual-level fairness constraint encoded by the representation graph. We develop variants of unnormalized and normalized spectral clustering for this task and analyze their performance under a fair planted partition model induced by the representation graph. This model uses both the cluster membership of the nodes and the structure of the representation graph to generate random similarity graphs. To the best of our knowledge, these are the first consistency results for constrained spectral clustering under an individual-level fairness constraint. Numerical results corroborate our theoretical findings.
[ Hall J ]

Adversarial reprogramming, introduced by Elsayed, Goodfellow, and Sohl-Dickstein, seeks to repurpose a neural network to perform a different task, by manipulating its input without modifying its weights. We prove that two-layer ReLU neural networks with random weights can be adversarially reprogrammed to achieve arbitrarily high accuracy on Bernoulli data models over hypercube vertices, provided the network width is no greater than its input dimension. We also substantially strengthen a recent result of Phuong and Lampert on directional convergence of gradient flow, and obtain as a corollary that training two-layer ReLU neural networks on orthogonally separable datasets can cause their adversarial reprogramming to fail. We support these theoretical results by experiments that demonstrate that, as long as batch normalisation layers are suitably initialised, even untrained networks with random weights are susceptible to adversarial reprogramming. This is in contrast to observations in several recent works that suggested that adversarial reprogramming is not possible for untrained networks to any degree of reliability.
[ Hall J ]
Two-sample tests are important in statistics and machine learning, both as tools for scientific discovery as well as to detect distribution shifts.This led to the development of many sophisticated test procedures going beyond the standard supervised learning frameworks, whose usage can require specialized knowledge about two-sample testing. We use a simple test that takes the mean discrepancy of a witness function as the test statistic and prove that minimizing a squared loss leads to a witness with optimal testing power. This allows us to leverage recent advancements in AutoML. Without any user input about the problems at hand, and using the same method for all our experiments, our AutoML two-sample test achieves competitive performance on a diverse distribution shift benchmark as well as on challenging two-sample testing problems.
[ Hall J ]
[ Hall J ]
[ Hall J ]
[ Hall J ]

[ Hall J ]

[ Hall J ]

[ Hall J ]
[ Hall J ]

[ Hall J ]

[ Hall J ]

The success of AlphaZero (AZ) has demonstrated that neural-network-based Go AIs can surpass human performance by a large margin. Given that the state space of Go is extremely large and a human player can play the game from any legal state, we ask whether adversarial states exist for Go AIs that may lead them to play surprisingly wrong actions.In this paper, we first extend the concept of adversarial examples to the game of Go: we generate perturbed states that are ``semantically'' equivalent to the original state by adding meaningless moves to the game, and an adversarial state is a perturbed state leading to an undoubtedly inferior action that is obvious even for Go beginners. However, searching the adversarial state is challenging due to the large, discrete, and non-differentiable search space. To tackle this challenge, we develop the first adversarial attack on Go AIs that can efficiently search for adversarial states by strategically reducing the search space. This method can also be extended to other board games such as NoGo. Experimentally, we show that the actions taken by both Policy-Value neural network (PV-NN) and Monte Carlo tree search (MCTS) can be misled by adding one or two meaningless stones; for example, …
[ Hall J ]
Non-rigid point cloud registration is a key component in many computer vision and computer graphics applications. The high complexity of the unknown non-rigid motion make this task a challenging problem. In this paper, we break down this problem via hierarchical motion decomposition. Our method called Neural Deformation Pyramid (NDP) represents non-rigid motion using a pyramid architecture. Each pyramid level, denoted by a Multi-Layer Perception (MLP), takes as input a sinusoidally encoded 3D point and outputs its motion increments from the previous level. The sinusoidal function starts with a low input frequency and gradually increases when the pyramid level goes down. This allows a multi-level rigid to nonrigid motion decomposition and also speeds up the solving by ×50 times compared to the existing MLP-based approach. Our method achieves advanced partial-to-partial non-rigid point cloud registration results on the 4DMatch/4DLoMatchbenchmark under both no-learned and supervised settings.
[ Hall J ]

Human vision possesses a special type of visual processing systems called peripheral vision. Partitioning the entire visual field into multiple contour regions based on the distance to the center of our gaze, the peripheral vision provides us the ability to perceive various visual features at different regions. In this work, we take a biologically inspired approach and explore to model peripheral vision in deep neural networks for visual recognition. We propose to incorporate peripheral position encoding to the multi-head self-attention layers to let the network learn to partition the visual field into diverse peripheral regions given training data. We evaluate the proposed network, dubbed PerViT, on ImageNet-1K and systematically investigate the inner workings of the model for machine perception, showing that the network learns to perceive visual data similarly to the way that human vision does. The performance improvements in image classification over the baselines across different model sizes demonstrate the efficacy of the proposed method.
[ Hall J ]

Understanding how the brain encodes external stimuli and how these stimuli can be decoded from the measured brain activities are long-standing and challenging questions in neuroscience. In this paper, we focus on reconstructing the complex image stimuli from fMRI (functional magnetic resonance imaging) signals. Unlike previous works that reconstruct images with single objects or simple shapes, our work aims to reconstruct image stimuli that are rich in semantics, closer to everyday scenes, and can reveal more perspectives. However, data scarcity of fMRI datasets is the main obstacle to applying state-of-the-art deep learning models to this problem. We find that incorporating an additional text modality is beneficial for the reconstruction problem compared to directly translating brain signals to images. Therefore, the modalities involved in our method are: (i) voxel-level fMRI signals, (ii) observed images that trigger the brain signals, and (iii) textual description of the images. To further address data scarcity, we leverage an aligned vision-language latent space pre-trained on massive datasets. Instead of training models from scratch to find a latent space shared by the three modalities, we encode fMRI signals into this pre-aligned latent space. Then, conditioned on embeddings in this space, we reconstruct images with a generative model. …
[ Hall J ]

Recently, transformer-based networks have shown impressive results in semantic segmentation. Yet for real-time semantic segmentation, pure CNN-based approaches still dominate in this field, due to the time-consuming computation mechanism of transformer. We propose RTFormer, an efficient dual-resolution transformer for real-time semantic segmenation, which achieves better trade-off between performance and efficiency than CNN-based models. To achieve high inference efficiency on GPU-like devices, our RTFormer leverages GPU-Friendly Attention with linear complexity and discards the multi-head mechanism. Besides, we find that cross-resolution attention is more efficient to gather global context information for high-resolution branch by spreading the high level knowledge learned from low-resolution branch. Extensive experiments on mainstream benchmarks demonstrate the effectiveness of our proposed RTFormer, it achieves state-of-the-art on Cityscapes, CamVid and COCOStuff, and shows promising results on ADE20K.
[ Hall J ]

[ Hall J ]

We introduce ASPiRe (Adaptive Skill Prior for RL), a new approach that leverages prior experience to accelerate reinforcement learning. Unlike existing methods that learn a single skill prior from a large and diverse dataset, our framework learns a library of different distinction skill priors (i.e., behavior priors) from a collection of specialized datasets, and learns how to combine them to solve a new task. This formulation allows the algorithm to acquire a set of specialized skill priors that are more reusable for downstream tasks; however, it also brings up additional challenges of how to effectively combine these unstructured sets of skill priors to form a new prior for new tasks. Specifically, it requires the agent not only to identify which skill prior(s) to use but also how to combine them (either sequentially or concurrently) to form a new prior. To achieve this goal, ASPiRe includes Adaptive Weight Module (AWM) that learns to infer an adaptive weight assignment between different skill priors and uses them to guide policy learning for downstream tasks via weighted Kullback-Leibler divergences. Our experiments demonstrate that ASPiRe can significantly accelerate the learning of new downstream tasks in the presence of multiple priors and show improvement on competitive …
[ Hall J ]

As a pioneering work exploring transformer architecture for 3D point cloud understanding, Point Transformer achieves impressive results on multiple highly competitive benchmarks. In this work, we analyze the limitations of the Point Transformer and propose our powerful and efficient Point Transformer V2 model with novel designs that overcome the limitations of previous work. In particular, we first propose group vector attention, which is more effective than the previous version of vector attention. Inheriting the advantages of both learnable weight encoding and multi-head attention, we present a highly effective implementation of grouped vector attention with a novel grouped weight encoding layer. We also strengthen the position information for attention by an additional position encoding multiplier. Furthermore, we design novel and lightweight partition-based pooling methods which enable better spatial alignment and more efficient sampling. Extensive experiments show that our model achieves better performance than its predecessor and achieves state-of-the-art on several challenging 3D point cloud understanding benchmarks, including 3D point cloud segmentation on ScanNet v2 and S3DIS and 3D point cloud classification on ModelNet40. Our code will be available at https://github.com/Gofinge/PointTransformerV2.
[ Hall J ]
Multi-task learning (MTL) encapsulates multiple learned tasks in a single model and often lets those tasks learn better jointly. Multi-tasking models have become successful and often essential for many sophisticated systems such as autonomous driving and indoor robots. However, when deploying MTL onto those real-world systems that are often resource-constrained or latency-sensitive, two prominent challenges arise: (i) during training, simultaneously optimizing all tasks is often difficult due to gradient conflicts across tasks, and the challenge is amplified when a growing number of tasks have to be squeezed into one compact model; (ii) at inference, current MTL regimes have to activate nearly the entire model even to just execute a single task. Yet most real systems demand only one or two tasks at each moment, while flexibly switching between tasks per need: therefore such “all tasks activated” inference is also highly inefficient and non-scalable in practice. In this paper, we present a model-accelerator co-design framework to enable efficient on-device MTL, that tackles both training and inference bottlenecks. Our framework, dubbed M³ViT, customizes mixture-of-experts (MoE) layers into a vision transformer (ViT) backbone for MTL, and sparsely activates task-specific experts during training, which effectively disentangles the parameter spaces to avoid different tasks’ training …
[ Hall J ]

Pre-trained transformer models have achieved remarkable success in natural language processing (NLP) and have recently become competitive alternatives to Convolution Neural Networks (CNN) and Recurrent Neural Networks (RNN) in vision and speech tasks, respectively. Due to excellent computational efficiency and scalability, transformer models can be trained on exceedingly large amounts of data; however, model sizes can grow tremendously. As high performance, large-scale, and pre-trained transformer models become available for users to download and fine-tune for customized downstream tasks, the deployment of these models becomes challenging due to the vast amount of operations and large memory footprint. To address this challenge, we introduce methods to deeply compress pre-trained transformer models across three major application domains: NLP, speech, and vision. Specifically, we quantize transformer backbones down to 4-bit and further achieve 50% fine-grained structural sparsity on pre-trained BERT, Wav2vec2.0 and Vision Transformer (ViT) models to achieve 16x compression while maintaining model accuracy. This is achieved by identifying the critical initialization for quantization/sparsity aware fine-tuning, as well as novel techniques including quantizers with zero-preserving format and scheduled dropout. These hardware-friendly techniques need only to be applied in the fine-tuning phase for downstream tasks; hence, are especially suitable for acceleration and deployment of pre-trained …
[ Hall J ]

Graph neural networks (GNNs), which propagate the node features through the edges and learn how to transform the aggregated features under label supervision, have achieved great success in supervised feature extraction for both node-level and graph-level classification tasks. However, GNNs typically treat the graph structure as given and ignore how the edges are formed. This paper introduces a graph generative process to model how the observed edges are generated by aggregating the node interactions over a set of overlapping node communities, each of which contributes to the edges via a logical OR mechanism. Based on this generative model, we partition each edge into the summation of multiple community-specific weighted edges and use them to define community-specific GNNs. A variational inference framework is proposed to jointly learn a GNN-based inference network that partitions the edges into different communities, these community-specific GNNs, and a GNN-based predictor that combines community-specific GNNs for the end classification task. Extensive evaluations on real-world graph datasets have verified the effectiveness of the proposed method in learning discriminative representations for both node-level and graph-level classification tasks.
[ Hall J ]

Vision Transformers (ViT) become widely-adopted architectures for various vision tasks. Masked auto-encoding for feature pretraining and multi-scale hybrid convolution-transformer architectures can further unleash the potentials of ViT, leading to state-of-the-art performances on image classification, detection and semantic segmentation. In this paper, our MCMAE framework demonstrates that multi-scale hybrid convolution-transformer can learn more discriminative representations via the mask auto-encoding scheme. However, directly using the original masking strategy leads to the heavy computational cost and pretraining-finetuning discrepancy. To tackle the issue, we adopt the masked convolution to prevent information leakage in the convolution blocks. A simple block-wise masking strategy is proposed to ensure computational efficiency. We also propose to more directly supervise the multi-scale features of the encoder to boost multi-scale features. Based on our pretrained MCMAE models, MCMAE-Base improves ImageNet-1K finetuning accuracy by 1.4% compared with MAE-Base. On object detection, MCMAE-Base finetuned for only 25 epochs surpasses MAE-Base fined-tuned for 100 epochs by 2.9% box AP and 2.2% mask AP respectively. Code and pretrained models are available at \url{https://github.com/Alpha-VL/ConvMAE}.
[ Hall J ]

Answering complex queries over knowledge graphs (KG) is an important yet challenging task because of the KG incompleteness issue and cascading errors during reasoning. Recent query embedding (QE) approaches embed the entities and relations in a KG and the first-order logic (FOL) queries into a low dimensional space, making the query can be answered by dense similarity searching. However, previous works mainly concentrate on the target answers, ignoring intermediate entities' usefulness, which is essential for relieving the cascading error problem in logical query answering. In addition, these methods are usually designed with their own geometric or distributional embeddings to handle logical operators like union, intersection, and negation, with the sacrifice of the accuracy of the basic operator -- projection, and they could not absorb other embedding methods to their models. In this work, we propose a Neural and Symbolic Entangled framework (ENeSy) for complex query answering, which enables the neural and symbolic reasoning to enhance each other to alleviate the cascading error and KG incompleteness. The projection operator in ENeSy could be any embedding method with the capability of link prediction, and the other FOL operators are handled without parameters. With both neural and symbolic reasoning results contained, ENeSy answers …
[ Hall J ]
Recently Transformer has been largely explored in tracking and shown state-of-the-art (SOTA) performance. However, existing efforts mainly focus on fusing and enhancing features generated by convolutional neural networks (CNNs). The potential of Transformer in representation learning remains under-explored. In this paper, we aim to further unleash the power of Transformer by proposing a simple yet efficient fully-attentional tracker, dubbed SwinTrack, within classic Siamese framework. In particular, both representation learning and feature fusion in SwinTrack leverage the Transformer architecture, enabling better feature interactions for tracking than pure CNN or hybrid CNN-Transformer frameworks. Besides, to further enhance robustness, we present a novel motion token that embeds historical target trajectory to improve tracking by providing temporal context. Our motion token is lightweight with negligible computation but brings clear gains. In our thorough experiments, SwinTrack exceeds existing approaches on multiple benchmarks. Particularly, on the challenging LaSOT, SwinTrack sets a new record with 0.713 SUC score. It also achieves SOTA results on other benchmarks. We expect SwinTrack to serve as a solid baseline for Transformer tracking and facilitate future research. Our codes and results are released at https://github.com/LitingLin/SwinTrack.
[ Hall J ]
We propose a new method for object pose estimation without CAD models. The previous feature-matching-based method OnePose has shown promising results under a one-shot setting which eliminates the need for CAD models or object-specific training. However, OnePose relies on detecting repeatable image keypoints and is thus prone to failure on low-textured objects. We propose a keypoint-free pose estimation pipeline to remove the need for repeatable keypoint detection. Built upon the detector-free feature matching method LoFTR, we devise a new keypoint-free SfM method to reconstruct a semi-dense point-cloud model for the object. Given a query image for object pose estimation, a 2D-3D matching network directly establishes 2D-3D correspondences between the query image and the reconstructed point-cloud model without first detecting keypoints in the image. Experiments show that the proposed pipeline outperforms existing one-shot CAD-model-free methods by a large margin and is comparable to CAD-model-based methods on LINEMOD even for low-textured objects. We also collect a new dataset composed of 80 sequences of 40 low-textured objects to facilitate future research on one-shot object pose estimation. The supplementary material, code and dataset are available on the project page: https://zju3dv.github.io/oneposeplusplus/.
[ Hall J ]
Our environment is filled with rich and dynamic acoustic information. When we walk into a cathedral, the reverberations as much as appearance inform us of the sanctuary's wide open space. Similarly, as an object moves around us, we expect the sound emitted to also exhibit this movement. While recent advances in learned implicit functions have led to increasingly higher quality representations of the visual world, there have not been commensurate advances in learning spatial auditory representations. To address this gap, we introduce Neural Acoustic Fields (NAFs), an implicit representation that captures how sounds propagate in a physical scene. By modeling acoustic propagation in a scene as a linear time-invariant system, NAFs learn to continuously map all emitter and listener location pairs to a neural impulse response function that can then be applied to arbitrary sounds. We demonstrate NAFs on both synthetic and real data, and show that the continuous nature of NAFs enables us to render spatial acoustics for a listener at arbitrary locations. We further show that the representation learned by NAFs can help improve visual learning with sparse views. Finally we show that a representation informative of scene structure emerges during the learning of NAFs.
[ Hall J ]
[ Hall J ]

Recent work shows that in complex model classes, interpolators can achieve statistical generalization and even be optimal for statistical learning. However, despite increasing interest in learning models with good causal properties, there is no understanding of whether such interpolators can also achieve causal generalization. To address this gap, we study causal learning from observational data through the lens of interpolation and its counterpart---regularization. Under a simple linear causal model, we derive precise asymptotics for the causal risk of the min-norm interpolator and ridge regressors in the high-dimensional regime. We find a large range of behavior that can be precisely characterized by a new measure of confounding strength. When confounding strength is positive, which holds under independent causal mechanisms---a standard assumption in causal learning---we find that interpolators cannot be optimal. Indeed, causal learning requires stronger regularization than statistical learning. Beyond this assumption, when confounding is negative, we observe a phenomenon of self-induced regularization due to positive alignment between statistical and causal signals. Here, causal learning requires weaker regularization than statistical learning, interpolators can be optimal, and optimal regularization can even be negative.
[ Hall J ]

[ Hall J ]

[ Hall J ]

Message passing neural networks (MPNNs) have become a dominant flavor of graph neural networks (GNNs) in recent years. Yet, MPNNs come with notable limitations; namely, they are at most as powerful as the 1-dimensional Weisfeiler-Leman (1-WL) test in distinguishing graphs in a graph isomorphism testing frame-work. To this end, researchers have drawn inspiration from the k-WL hierarchy to develop more expressive GNNs. However, current k-WL-equivalent GNNs are not practical for even small values of k, as k-WL becomes combinatorially more complex as k grows. At the same time, several works have found great empirical success in graph learning tasks without highly expressive models, implying that chasing expressiveness with a “coarse-grained ruler” of expressivity like k-WL is often unneeded in practical tasks. To truly understand the expressiveness-complexity tradeoff, one desires a more “fine-grained ruler,” which can more gradually increase expressiveness. Our work puts forth such a proposal: Namely, we first propose the (k, c)(≤)-SETWL hierarchy with greatly reduced complexity from k-WL, achieved by moving from k-tuples of nodes to sets with ≤k nodes defined over ≤c connected components in the induced original graph. We show favorable theoretical results for this model in relation to k-WL, and concretize it via (k, c)(≤)-SETGNN, …
[ Hall J ]

[ Hall J ]

Stochastic gradient descent (SGD) has achieved great success due to its superior performance in both optimization and generalization. Most of existing generalization analyses are made for single-pass SGD, which is a less practical variant compared to the commonly-used multi-pass SGD. Besides, theoretical analyses for multi-pass SGD often concern a worst-case instance in a class of problems, which may be pessimistic to explain the superior generalization ability for some particular problem instance. The goal of this paper is to provide an instance-dependent excess risk bound of multi-pass SGD for least squares in the interpolation regime, which is expressed as a function of the iteration number, stepsize, and data covariance. We show that the excess risk of SGD can be exactly decomposed into the excess risk of GD and a positive fluctuation error, suggesting that SGD always performs worse, instance-wisely, than GD, in generalization. On the other hand, we show that although SGD needs more iterations than GD to achieve the same level of excess risk, it saves the number of stochastic gradient evaluations, and therefore is preferable in terms of computational time.
[ Hall J ]

Stochastic and adversarial data are two widely studied settings in online learning. But many optimizationtasks are neither i.i.d. nor fully adversarial, which makes it of fundamental interest to get a better theoretical understanding of the world between these extremes. In this work we establish novel regret bounds for online convex optimization in a setting that interpolates between stochastic i.i.d. and fully adversarial losses. By exploiting smoothness of the expected losses, these bounds replace a dependence on the maximum gradient length by the variance of the gradients, which was previously known only for linear losses. In addition, they weaken the i.i.d. assumption by allowing, for example, adversarially poisoned rounds, which were previously considered in the expert and bandit setting. Our results extend this to the online convex optimization framework. In the fully i.i.d. case, our bounds match the rates one would expect from results in stochastic acceleration, and in the fully adversarial case they gracefully deteriorate to match the minimax regret. We further provide lower bounds showing that our regret upper bounds aretight for all intermediate regimes in terms of the stochastic variance and theadversarial variation of the loss gradients.
[ Hall J ]

We consider the problem of learning the optimal threshold policy for control problems. Threshold policies make control decisions by evaluating whether an element of the system state exceeds a certain threshold, whose value is determined by other elements of the system state. By leveraging the monotone property of threshold policies, we prove that their policy gradients have a surprisingly simple expression. We use this simple expression to build an off-policy actor-critic algorithm for learning the optimal threshold policy. Simulation results show that our policy significantly outperforms other reinforcement learning algorithms due to its ability to exploit the monotone property.In addition, we show that the Whittle index, a powerful tool for restless multi-armed bandit problems, is equivalent to the optimal threshold policy for an alternative problem. This observation leads to a simple algorithm that finds the Whittle index by learning the optimal threshold policy in the alternative problem. Simulation results show that our algorithm learns the Whittle index much faster than several recent studies that learn the Whittle index through indirect means.
[ Hall J ]

SATNet is a differentiable constraint solver with a custom backpropagation algorithm, which can be used as a layer in a deep-learning system. It is a promising proposal for bridging deep learning and logical reasoning. In fact, SATNet has been successfully applied to learn, among others, the rules of a complex logical puzzle, such as Sudoku, just from input and output pairs where inputs are given as images. In this paper, we show how to improve the learning of SATNet by exploiting symmetries in the target rules of a given but unknown logical puzzle or more generally a logical formula. We present SymSATNet, a variant of SATNet that translates the given symmetries of the target rules to a condition on the parameters of SATNet and requires that the parameters should have a particular parametric form that guarantees the condition. The requirement dramatically reduces the number of parameters to learn for the rules with enough symmetries, and makes the parameter learning of SymSATNet much easier than that of SATNet. We also describe a technique for automatically discovering symmetries of the target rules from examples. Our experiments with Sudoku and Rubik's cube show the substantial improvement of SymSATNet over the baseline SATNet.
[ Hall J ]
AlphaZero, an approach to reinforcement learning that couples neural networks and Monte Carlo tree search (MCTS), has produced state-of-the-art strategies for traditional board games like chess, Go, shogi, and Hex. While researchers and game commentators have suggested that AlphaZero uses concepts that humans consider important, it is unclear how these concepts are captured in the network. We investigate AlphaZero's internal representations in the game of Hex using two evaluation techniques from natural language processing (NLP): model probing and behavioral tests. In doing so, we introduce several new evaluation tools to the RL community, and illustrate how evaluations other than task performance can be used to provide a more complete picture of a model's strengths and weaknesses. Our analyses in the game of Hex reveal interesting patterns and generate some testable hypotheses about how such models learn in general. For example, we find that the MCTS discovers concepts before the neural network learns to encode them. We also find that concepts related to short-term end-game planning are best encoded in the final layers of the model, whereas concepts related to long-term planning are encoded in the middle layers of the model.
[ Hall J ]

Meta-reinforcement learning algorithms provide a data-driven way to acquire policies that quickly adapt to many tasks with varying rewards or dynamics functions. However, learned meta-policies are often effective only on the exact task distribution on which they were trained and struggle in the presence of distribution shift of test-time rewards or transition dynamics. In this work, we develop a framework for meta-RL algorithms that are able to behave appropriately under test-time distribution shifts in the space of tasks. Our framework centers on an adaptive approach to distributional robustness that trains a population of meta-policies to be robust to varying levels of distribution shift. When evaluated on a potentially shifted test-time distribution of tasks, this allows us to choose the meta-policy with the most appropriate level of robustness, and use it to perform fast adaptation. We formally show how our framework allows for improved regret under distribution shift, and empirically show its efficacy on simulated robotics problems under a wide range of distribution shifts.
[ Hall J ]
We propose an online training procedure for a transformer-based automated theorem prover. Our approach leverages a new search algorithm, HyperTree Proof Search (HTPS), that learns from previous proof searches through online training, allowing it to generalize to domains far from the training distribution. We report detailed ablations of our pipeline’s main components by studying performance on three environments of increasing complexity. In particular, we show that with HTPS alone, a model trained on annotated proofs manages to prove 65.4% of a held-out set of Metamath theorems, significantly outperforming the previous state of the art of 56.5% by GPT-f. Online training on these unproved theorems increases accuracy to 82.6%. With a similar computational budget, we improve the state of the art on the Lean-based miniF2F-curriculum dataset from 31% to 42% proving accuracy.
[ Hall J ]

Reinforcement learning algorithms are typically designed to learn a performant policy that can repeatedly and autonomously complete a task, usually starting from scratch. However, in many real-world situations, the goal might not be to learn a policy that can do the task repeatedly, but simply to perform a new task successfully once in a single trial. For example, imagine a disaster relief robot tasked with retrieving an item from a fallen building, where it cannot get direct supervision from humans. It must retrieve this object within one test-time trial, and must do so while tackling unknown obstacles, though it may leverage knowledge it has of the building before the disaster. We formalize this problem setting, which we call single-life reinforcement learning (SLRL), where an agent must complete a task within a single episode without interventions, utilizing its prior experience while contending with some form of novelty. SLRL provides a natural setting to study the challenge of autonomously adapting to unfamiliar situations, and we find that algorithms designed for standard episodic reinforcement learning often struggle to recover from out-of-distribution states in this setting. Motivated by this observation, we propose an algorithm, Q-weighted adversarial learning (QWALE), which employs a distribution matching strategy …
[ Hall J ]
Masked Image Modeling (MIM) has recently been established as a potent pre-training paradigm. A pretext task is constructed by masking patches in an input image, and this masked content is then predicted by a neural network using visible patches as sole input. This pre-training leads to state-of-the-art performance when finetuned for high-level semantic tasks, e.g. image classification and object detection. In this paper we instead seek to learn representations that transfer well to a wide variety of 3D vision and lower-level geometric downstream tasks, such as depth prediction or optical flow estimation. Inspired by MIM, we propose an unsupervised representation learning task trained from pairs of images showing the same scene from different viewpoints. More precisely, we propose the pretext task of cross-view completion where the first input image is partially masked, and this masked content has to be reconstructed from the visible content and the second image. In single-view MIM, the masked content often cannot be inferred precisely from the visible portion only, so the model learns to act as a prior influenced by high-level semantics. In contrast, this ambiguity can be resolved with cross-view completion from the second unmasked image, on the condition that the model is able …
[ Hall J ]

Video action detection requires annotations at every frame, which drastically increases the labeling cost. In this work, we focus on efficient labeling of videos for action detection to minimize this cost. We propose active sparse labeling (ASL), a novel active learning strategy for video action detection. Sparse labeling will reduce the annotation cost but poses two main challenges; 1) how to estimate the utility of annotating a single frame for action detection as detection is performed at video level?, and 2) how these sparse labels can be used for action detection which require annotations on all the frames? This work attempts to address these challenges within a simple active learning framework. For the first challenge, we propose a novel frame-level scoring mechanism aimed at selecting most informative frames in a video. Next, we introduce a novel loss formulation which enables training of action detection model with these sparsely selected frames. We evaluate the proposed approach on two different action detection benchmark datasets, UCF-101-24 and J-HMDB-21, and observed that active sparse labeling can be very effective in saving annotation costs. We demonstrate that the proposed approach performs better than random selection, outperforming all other baselines, with performance comparable to supervised approach …
[ Hall J ]

Evaluations of Deep Reinforcement Learning (DRL) methods are an integral part of scientific progress of the field. Beyond designing DRL methods for general intelligence, designing task-specific methods is becoming increasingly prominent for real-world applications. In these settings, the standard evaluation practice involves using a few instances of Markov Decision Processes (MDPs) to represent the task. However, many tasks induce a large family of MDPs owing to variations in the underlying environment, particularly in real-world contexts. For example, in traffic signal control, variations may stem from intersection geometries and traffic flow levels. The select MDP instances may thus inadvertently cause overfitting, lacking the statistical power to draw conclusions about the method's true performance across the family. In this article, we augment DRL evaluations to consider parameterized families of MDPs. We show that in comparison to evaluating DRL methods on select MDP instances, evaluating the MDP family often yields a substantially different relative ranking of methods, casting doubt on what methods should be considered state-of-the-art. We validate this phenomenon in standard control benchmarks and the real-world application of traffic signal control. At the same time, we show that accurately evaluating on an MDP family is nontrivial. Overall, this work identifies new challenges …
[ Hall J ]
Controlling the behavior of language models (LMs) without re-training is a major open problem in natural language generation. While recent works have demonstrated successes on controlling simple sentence attributes (e.g., sentiment), there has been little progress on complex, fine-grained controls (e.g., syntactic structure). To address this challenge, we develop a new non-autoregressive language model based on continuous diffusions that we call Diffusion-LM. Building upon the recent successes of diffusion models in continuous domains, Diffusion-LM iteratively denoises a sequence of Gaussian vectors into word vectors, yielding a sequence of intermediate latent variables. The continuous, hierarchical nature of these intermediate variables enables a simple gradient-based algorithm to perform complex, controllable generation tasks. We demonstrate successful control of Diffusion-LM for six challenging fine-grained control tasks, significantly outperforming prior work.
[ Hall J ]

The success of deep learning comes from its ability to capture the hierarchical structure of data by learning high-level representations defined in terms of low-level ones. In this paper we explore self-supervised learning of hierarchical representations of speech by applying multiple levels of Contrastive Predictive Coding (CPC). We observe that simply stacking two CPC models does not yield significant improvements over single-level architectures. Inspired by the fact that speech is often described as a sequence of discrete units unevenly distributed in time, we propose a model in which the output of a low-level CPC module is non-uniformly downsampled to directly minimize the loss of a high-level CPC module. The latter is designed to also enforce a prior of separability and discreteness in its representations by enforcing dissimilarity of successive high-level representations through focused negative sampling, and by quantization of the prediction targets. Accounting for the structure of the speech signal improves upon single-level CPC features and enhances the disentanglement of the learned representations, as measured by downstream speech recognition tasks, while resulting in a meaningful segmentation of the signal that closely resembles phone boundaries.
[ Hall J ]

Neural networks have achieved tremendous success in a large variety of applications. However, their memory footprint and computational demand can render them impractical in application settings with limited hardware or energy resources. In this work, we propose a novel algorithm to find efficient low-rank subnetworks. Remarkably, these subnetworks are determined and adapted already during the training phase and the overall time and memory resources required by both training and evaluating them is significantly reduced. The main idea is to restrict the weight matrices to a low-rank manifold and to update the low-rank factors rather than the full matrix during training. To derive training updates that are restricted to the prescribed manifold, we employ techniques from dynamic model order reduction for matrix differential equations. Moreover, our method automatically and dynamically adapts the ranks during training to achieve a desired approximation accuracy.The efficiency of the proposed method is demonstrated through a variety of numerical experiments on fully-connected and convolutional networks.
[ Hall J ]

The simulation of human neurons and neurotransmission mechanisms has been realized in deep neural networks based on the theoretical implementations of activation functions. However, recent studies have reported that the threshold potential of neurons exhibits different values according to the locations and types of individual neurons, and that the activation functions have limitations in terms of representing this variability. Therefore, this study proposes a simple yet effective activation function that facilitates different thresholds and adaptive activations according to the positions of units and the contexts of inputs. Furthermore, the proposed activation function mathematically exhibits a more generalized form of Swish activation function, and thus we denoted it as Adaptive SwisH (ASH). ASH highlights informative features that exhibit large values in the top percentiles in an input, whereas it rectifies low values. Most importantly, ASH exhibits trainable, adaptive, and context-aware properties compared to other activation functions. Furthermore, ASH represents general formula of the previously studied activation function and provides a reasonable mathematical background for the superior performance. To validate the effectiveness and robustness of ASH, we implemented ASH into many deep learning models for various tasks, including classification, detection, segmentation, and image generation. Experimental analysis demonstrates that our activation function can …
[ Hall J ]

Designing an incentive-compatible auction mechanism that maximizes the auctioneer's revenue while minimizes the bidders’ ex-post regret is an important yet intricate problem in economics. Remarkable progress has been achieved through learning the optimal auction mechanism by neural networks. In this paper, we consider the popular additive valuation and symmetric valuation setting; i.e., the valuation for a set of items is defined as the sum of all items’ valuations in the set, and the valuation distribution is invariant when the bidders and/or the items are permutated. We prove that permutation-equivariant neural networks have significant advantages: the permutation-equivariance decreases the expected ex-post regret, improves the model generalizability, while maintains the expected revenue invariant. This implies that the permutation-equivariance helps approach the theoretically optimal dominant strategy incentive compatible condition, and reduces the required sample complexity for desired generalization. Extensive experiments fully support our theory. To our best knowledge, this is the first work towards understanding the benefits of permutation-equivariance in auction mechanisms.
[ Hall J ]

Currently, Sharpness-Aware Minimization (SAM) is proposed to seek the parameters that lie in a flat region to improve the generalization when training neural networks. In particular, a minimax optimization objective is defined to find the maximum loss value centered on the weight, out of the purpose of simultaneously minimizing loss value and loss sharpness. For the sake of simplicity, SAM applies one-step gradient ascent to approximate the solution of the inner maximization. However, one-step gradient ascent may not be sufficient and multi-step gradient ascents will cause additional training costs. Based on this observation, we propose a novel random smoothing based SAM (R-SAM) algorithm. To be specific, R-SAM essentially smooths the loss landscape, based on which we are able to apply the one-step gradient ascent on the smoothed weights to improve the approximation of the inner maximization. Further, we evaluate our proposed R-SAM on CIFAR and ImageNet datasets. The experimental results illustrate that R-SAM can consistently improve the performance on ResNet and Vision Transformer (ViT) training.
[ Hall J ]
On-device training enables the model to adapt to new data collected from the sensors by fine-tuning a pre-trained model. Users can benefit from customized AI models without having to transfer the data to the cloud, protecting the privacy. However, the training memory consumption is prohibitive for IoT devices that have tiny memory resources. We propose an algorithm-system co-design framework to make on-device training possible with only 256KB of memory. On-device training faces two unique challenges: (1) the quantized graphs of neural networks are hard to optimize due to low bit-precision and the lack of normalization; (2) the limited hardware resource (memory and computation) does not allow full backpropagation. To cope with the optimization difficulty, we propose Quantization- Aware Scaling to calibrate the gradient scales and stabilize 8-bit quantized training. To reduce the memory footprint, we propose Sparse Update to skip the gradient computation of less important layers and sub-tensors. The algorithm innovation is implemented by a lightweight training system, Tiny Training Engine, which prunes the backward computation graph to support sparse updates and offload the runtime auto-differentiation to compile time. Our framework is the first practical solution for on-device transfer learning of visual recognition on tiny IoT devices (e.g., a …
[ Hall J ]
In real-world federated learning scenarios, participants could have their own personalized labels incompatible with those from other clients, due to using different label permutations or tackling completely different tasks or domains. However, most existing FL approaches cannot effectively tackle such extremely heterogeneous scenarios since they often assume that (1) all participants use a synchronized set of labels, and (2) they train on the same tasks from the same domain. In this work, to tackle these challenges, we introduce Factorized-FL, which allows to effectively tackle label- and task-heterogeneous federated learning settings by factorizing the model parameters into a pair of rank-1 vectors, where one captures the common knowledge across different labels and tasks and the other captures knowledge specific to the task for each local model. Moreover, based on the distance in the client-specific vector space, Factorized-FL performs a selective aggregation scheme to utilize only the knowledge from the relevant participants for each client. We extensively validate our method on both label- and domain-heterogeneous settings, on which it outperforms the state-of-the-art personalized federated learning methods. The code is available at https://github.com/wyjeong/Factorized-FL.
[ Hall J ]

The prototypical network is a prototype classifier based on meta-learning and is widely used for few-shot learning because it classifies unseen examples by constructing class-specific prototypes without adjusting hyper-parameters during meta-testing.Interestingly, recent research has attracted a lot of attention, showing that training a new linear classifier, which does not use a meta-learning algorithm, performs comparably with the prototypical network.However, the training of a new linear classifier requires the retraining of the classifier every time a new class appears.In this paper, we analyze how a prototype classifier works equally well without training a new linear classifier or meta-learning.We experimentally find that directly using the feature vectors, which is extracted by using standard pre-trained models to construct a prototype classifier in meta-testing, does not perform as well as the prototypical network and training new linear classifiers on the feature vectors of pre-trained models.Thus, we derive a novel generalization bound for a prototypical classifier and show that the transformation of a feature vector can improve the performance of prototype classifiers.We experimentally investigate several normalization methods for minimizing the derived bound and find that the same performance can be obtained by using the L2 normalization and minimizing the ratio of the within-class variance to …
[ Hall J ]

Generalization and invariance are two essential properties of machine learning models. Generalization captures a model's ability to classify unseen data while invariance measures consistency of model predictions on transformations of the data. Existing research suggests a positive relationship: a model generalizing well should be invariant to certain visual factors. Building on this qualitative implication we make two contributions. First, we introduce effective invariance (EI), a simple and reasonable measure of model invariance which does not rely on image labels. Given predictions on a test image and its transformed version, EI measures how well the predictions agree and with what level of confidence. Second, using invariance scores computed by EI, we perform large-scale quantitative correlation studies between generalization and invariance, focusing on rotation and grayscale transformations. From a model-centric view, we observe generalization and invariance of different models exhibit a strong linear relationship, on both in-distribution and out-of-distribution datasets. From a dataset-centric view, we find a certain model's accuracy and invariance linearly correlated on different test sets. Apart from these major findings, other minor but interesting insights are also discussed.
[ Hall J ]
Numerous methods have been developed to explain the inner mechanism of deep neural network (DNN) based classifiers. Existing explanation methods are often limited to explaining predictions of a pre-specified class, which answers the question “why is the input classified into this class?” However, such explanations with respect to a single class are inherently insufficient because they do not capture features with class-discriminative power. That is, features that are important for predicting one class may also be important for other classes. To capture features with true class-discriminative power, we should instead ask “why is the input classified into this class, but not others?” To answer this question, we propose a weighted contrastive framework for explaining DNNs. Our framework can easily convert any existing back-propagation explanation methods to build class-contrastive explanations. We theoretically validate our weighted contrast explanation in general back-propagation explanations, and show that our framework enables class-contrastive explanations with significant improvements in both qualitative and quantitative experiments. Based on the results, we point out an important blind spot in the current explainable artificial intelligence (XAI) study, where explanations towards the predicted logits and the probabilities are obfuscated. We suggest that these two aspects should be distinguished explicitly any time explanation …
[ Hall J ]

A deeper network structure generally handles more complicated non-linearity and performs more competitively. Nowadays, advanced network designs often contain a large number of repetitive structures (e.g., Transformer). They empower the network capacity to a new level but also increase the model size inevitably, which is unfriendly to either model restoring or transferring. In this study, we are the first to investigate the representative potential of fixed random weights with limited unique values by learning diverse masks and introduce the Parameter-Efficient Masking Networks (PEMN). It also naturally leads to a new paradigm for model compression to diminish the model size. Concretely, motivated by the repetitive structures in modern neural networks, we utilize one random initialized layer, accompanied with different masks, to convey different feature mappings and represent repetitive network modules. Therefore, the model can be expressed as \textit{one-layer} with a bunch of masks, which significantly reduce the model storage cost. Furthermore, we enhance our strategy by learning masks for a model filled by padding a given random weights vector. In this way, our method can further lower the space complexity, especially for models without many repetitive architectures. We validate the potential of PEMN learning masks on random weights with limited unique …
[ Hall J ]
[ Hall J ]
Recent advances on large-scale pre-training have shown great potentials of leveraging a large set of Pre-Trained Models (PTMs) for improving Out-of-Distribution (OoD) generalization, for which the goal is to perform well on possible unseen domains after fine-tuning on multiple training domains. However, maximally exploiting a zoo of PTMs is challenging since fine-tuning all possible combinations of PTMs is computationally prohibitive while accurate selection of PTMs requires tackling the possible data distribution shift for OoD tasks. In this work, we propose ZooD, a paradigm for PTMs ranking and ensemble with feature selection. Our proposed metric ranks PTMs by quantifying inter-class discriminability and inter-domain stability of the features extracted by the PTMs in a leave-one-domain-out cross-validation manner. The top-K ranked models are then aggregated for the target OoD task. To avoid accumulating noise induced by model ensemble, we propose an efficient variational EM algorithm to select informative features. We evaluate our paradigm on a diverse model zoo consisting of 35 models for various OoD tasks and demonstrate: (i) model ranking is better correlated with fine-tuning ranking than previous methods and up to 9859x faster than brute-force fine-tuning; (ii) OoD generalization after model ensemble with feature selection outperforms the state-of-the-art methods and the …
[ Hall J ]

Multi-label learning (MLL) learns from the examples each associated with multiple labels simultaneously, where the high cost of annotating all relevant labels for each training example is challenging for real-world applications. To cope with the challenge, we investigate single-positive multi-label learning (SPMLL) where each example is annotated with only one relevant label and show that one can successfully learn a theoretically grounded multi-label classifier for the problem. In this paper, a novel SPMLL method named SMILE, i.e., Single-positive MultI-label learning with Label Enhancement, is proposed. Specifically, an unbiased risk estimator is derived, which could be guaranteed to approximately converge to the optimal risk minimizer of fully supervised learning and shows that one positive label of each instance is sufficient to train the predictive model. Then, the corresponding empirical risk estimator is established via recovering the latent soft label as a label enhancement process, where the posterior density of the latent soft labels is approximate to the variational Beta density parameterized by an inference model. Experiments on benchmark datasets validate the effectiveness of the proposed method.
[ Hall J ]
[ Hall J ]

[ Hall J ]

In data-parallel optimization of machine learning models, workers collaborate to improve their estimates of the model: more accurate gradients allow them to use larger learning rates and optimize faster. We consider the setting in which all workers sample from the same dataset, and communicate over a sparse graph (decentralized). In this setting, current theory fails to capture important aspects of real-world behavior. First, the ‘spectral gap’ of the communication graph is not predictive of its empirical performance in (deep) learning. Second, current theory does not explain that collaboration enables larger learning rates than training alone. In fact, it prescribes smaller learning rates, which further decrease as graphs become larger, failing to explain convergence in infinite graphs. This paper aims to paint an accurate picture of sparsely-connected distributed optimization when workers share the same data distribution. We quantify how the graph topology influences convergence in a quadratic toy problem and provide theoretical results for general smooth and (strongly) convex objectives. Our theory matches empirical observations in deep learning, and accurately describes the relative merits of different graph topologies.
[ Hall J ]

[ Hall J ]

[ Hall J ]

The literature on adversarial attacks in computer vision typically focuses on pixel-level perturbations. These tend to be very difficult to interpret. Recent work that manipulates the latent representations of image generators to create "feature-level" adversarial perturbations gives us an opportunity to explore perceptible, interpretable adversarial attacks. We make three contributions. First, we observe that feature-level attacks provide useful classes of inputs for studying representations in models. Second, we show that these adversaries are uniquely versatile and highly robust. We demonstrate that they can be used to produce targeted, universal, disguised, physically-realizable, and black-box attacks at the ImageNet scale. Third, we show how these adversarial images can be used as a practical interpretability tool for identifying bugs in networks. We use these adversaries to make predictions about spurious associations between features and classes which we then test by designing "copy/paste" attacks in which one natural image is pasted into another to cause a targeted misclassification. Our results suggest that feature-level attacks are a promising approach for rigorous interpretability research. They support the design of tools to better understand what a model has learned and diagnose brittle feature associations. Code is available at https://github.com/thestephencasper/featureleveladv.
[ Hall J ]

Monte Carlo (MC) integration is the de facto method for approximating the predictive distribution of Bayesian neural networks (BNNs). But, even with many MC samples, Gaussian-based BNNs could still yield bad predictive performance due to the posterior approximation's error. Meanwhile, alternatives to MC integration are expensive. In this work, we experimentally show that the key to good MC-approximated predictive distributions is the quality of the approximate posterior itself. However, previous methods for obtaining accurate posterior approximations are expensive and non-trivial to implement. We, therefore, propose to refine Gaussian approximate posteriors with normalizing flows. When applied to last-layer BNNs, it yields a simple, cost-efficient, post hoc method for improving pre-existing parametric approximations. We show that the resulting posterior approximation is competitive with even the gold-standard full-batch Hamiltonian Monte Carlo.
[ Hall J ]

[ Hall J ]

This paper proposes Branch & Learn, a framework for Predict+Optimize to tackle optimization problems containing parameters that are unknown at the time of solving. Given an optimization problem solvable by a recursive algorithm satisfying simple conditions, we show how a corresponding learning algorithm can be constructed directly and methodically from the recursive algorithm. Our framework applies also to iterative algorithms by viewing them as a degenerate form of recursion. Extensive experimentation shows better performance for our proposal over classical and state of the art approaches.
[ Hall J ]
We propose a general framework to design posterior sampling methods for model-based RL. We show that the proposed algorithms can be analyzed by reducing regret to Hellinger distance in conditional probability estimation. We further show that optimistic posterior sampling can control this Hellinger distance, when we measure model error via data likelihood. This technique allows us to design and analyze unified posterior sampling algorithms with state-of-the-art sample complexity guarantees for many model-based RL settings. We illustrate our general result in many special cases, demonstrating the versatility of our framework.
[ Hall J ]

We initiate a formal study of reproducibility in optimization. We define a quantitative measure of reproducibility of optimization procedures in the face of noisy or error-prone operations such as inexact or stochastic gradient computations or inexact initialization. We then analyze several convex optimization settings of interest such as smooth, non-smooth, and strongly-convex objective functions and establish tight bounds on the limits of reproducibility in each setting. Our analysis reveals a fundamental trade-off between computation and reproducibility: more computation is necessary (and sufficient) for better reproducibility.
[ Hall J ]

Recent works show that adversarial examples exist for random neural networks [Daniely and Schacham, 2020] and that these examples can be found using a single step of gradient ascent [Bubeck et al., 2021]. In this work, we extend this line of work to ``lazy training'' of neural networks -- a dominant model in deep learning theory in which neural networks are provably efficiently learnable. We show that over-parametrized neural networks that are guaranteed to generalize well and enjoy strong computational guarantees remain vulnerable to attacks generated using a single step of gradient ascent.
[ Hall J ]

Computing the Jacobian of the solution of an optimization problem is a central problem in machine learning, with applications in hyperparameter optimization, meta-learning, optimization as a layer, and dataset distillation, to name a few. Unrolled differentiation is a popular heuristic that approximates the solution using an iterative solver and differentiates it through the computational path. This work provides a non-asymptotic convergence-rate analysis of this approach on quadratic objectives for gradient descent and the Chebyshev method. We show that to ensure convergence of the Jacobian, we can either 1) choose a large learning rate leading to a fast asymptotic convergence but accept that the algorithm may have an arbitrarily long burn-in phase or 2) choose a smaller learning rate leading to an immediate but slower convergence. We refer to this phenomenon as the curse of unrolling.Finally, we discuss open problems relative to this approach, such as deriving a practical update rule for the optimal unrolling strategy and making novel connections with the field of Sobolev orthogonal polynomials.
[ Hall J ]

Studying the properties of stochastic noise to optimize complex non-convex functions has been an active area of research in the field of machine learning. Prior work~\citep{zhou2019pgd, wei2019noise} has shown that the noise of stochastic gradient descent improves optimization by overcoming undesirable obstacles in the landscape. Moreover, injecting artificial Gaussian noise has become a popular idea to quickly escape saddle points. Indeed, in the absence of reliable gradient information, the noise is used to explore the landscape, but it is unclear what type of noise is optimal in terms of exploration ability. In order to narrow this gap in our knowledge, we study a general type of continuous-time non-Markovian process, based on fractional Brownian motion, that allows for the increments of the process to be correlated. This generalizes processes based on Brownian motion, such as the Ornstein-Uhlenbeck process. We demonstrate how to discretize such processes which gives rise to the new algorithm ``fPGD''. This method is a generalization of the known algorithms PGD and Anti-PGD~\citep{orvieto2022anti}. We study the properties of fPGD both theoretically and empirically, demonstrating that it possesses exploration abilities that, in some cases, are favorable over PGD and Anti-PGD. These results open the field to novel ways to exploit …
[ Hall J ]

[ Hall J ]
[ Hall J ]
[ Hall J ]

[ Hall J ]
Great efforts have been devoted to causal discovery from observational data, and it is well known that introducing some background knowledge attained from experiments or human expertise can be very helpful. However, it remains unknown that \emph{what causal relations are identifiable given background knowledge in the presence of latent confounders}. In this paper, we solve the problem with sound and complete orientation rules when the background knowledge is given in a \emph{local} form. Furthermore, based on the solution to the problem, this paper proposes a general active learning framework for causal discovery in the presence of latent confounders, with its effectiveness and efficiency validated by experiments.
[ Hall J ]

[ Hall J ]

[ Hall J ]

This paper investigates the network load balancing problem in data centers (DCs) where multiple load balancers (LBs) are deployed, using the multi-agent reinforcement learning (MARL) framework. The challenges of this problem consist of the heterogeneous processing architecture and dynamic environments, as well as limited and partial observability of each LB agent in distributed networking systems, which can largely degrade the performance of in-production load balancing algorithms in real-world setups. Centralised training and distributed execution (CTDE) RL scheme has been proposed to improve MARL performance, yet it incurs -- especially in distributed networking systems, which prefer distributed and plug-and-play design schemes -- additional communication and management overhead among agents. We formulate the multi-agent load balancing problem as a Markov potential game, with a carefully and properly designed workload distribution fairness as the potential function. A fully distributed MARL algorithm is proposed to approximate the Nash equilibrium of the game. Experimental evaluations involve both an event-driven simulator and a real-world system, where the proposed MARL load balancing algorithm shows close-to-optimal performance in simulations and superior results over in-production LBs in the real-world system.
[ Hall J ]

The fair-ranking problem, which asks to rank a given set of items to maximize utility subject to group fairness constraints, has received attention in the fairness, information retrieval, and machine learning literature. Recent works, however, observe that errors in socially-salient (including protected) attributes of items can significantly undermine fairness guarantees of existing fair-ranking algorithms and raise the problem of mitigating the effect of such errors. We study the fair-ranking problem under a model where socially-salient attributes of items are randomly and independently perturbed. We present a fair-ranking framework that incorporates group fairness requirements along with probabilistic information about perturbations in socially-salient attributes. We provide provable guarantees on the fairness and utility attainable by our framework and show that it is information-theoretically impossible to significantly beat these guarantees. Our framework works for multiple non-disjoint attributes and a general class of fairness constraints that includes proportional and equal representation. Empirically, we observe that, compared to baselines, our algorithm outputs rankings with higher fairness, and has a similar or better fairness-utility trade-off compared to baselines.
[ Hall J ]

The Off-Policy Evaluation (OPE) problem consists in evaluating the performance of new policies from the data collected by another one. OPE is crucial when evaluating a new policy online is too expensive or risky. Many of the state-of-the-art OPE estimators are based on the Inverse Propensity Scoring (IPS) technique, which provides an unbiased estimator when the full support assumption holds, i.e., when the logging policy assigns a non-zero probability to each action. However, there are several scenarios where this assumption does not hold in practice, i.e., there is deficient support, and the IPS estimator is biased in the general case.In this paper, we consider two alternative estimators for the deficient support OPE problem. We first show how to adapt an estimator that was originally proposed for a different domain to the deficient support setting.Then, we propose another estimator, which is a novel contribution of this paper.These estimators exploit additional information about the actions, which we call side information, in order to make reliable estimates on the unsupported actions. Under alternative assumptions that do not require full support, we show that the considered estimators are unbiased.We also provide a theoretical analysis of the concentration when relaxing all the assumptions. Finally, we …
[ Hall J ]

From the earliest years of our lives, humans use language to express our beliefs and desires. Being able to talk to artificial agents about our preferences would thus fulfill a central goal of value alignment. Yet today, we lack computational models explaining such language use. To address this challenge, we formalize learning from language in a contextual bandit setting and ask how a human might communicate preferences over behaviors. We study two distinct types of language: instructions, which provide information about the desired policy, and descriptions, which provide information about the reward function. We show that the agent's degree of autonomy determines which form of language is optimal: instructions are better in low-autonomy settings, but descriptions are better when the agent will need to act independently. We then define a pragmatic listener agent that robustly infers the speaker's reward function by reasoning about how the speaker expresses themselves. We validate our models with a behavioral experiment, demonstrating that (1) our speaker model predicts human behavior, and (2) our pragmatic listener successfully recovers humans' reward functions. Finally, we show that this form of social learning can integrate with and reduce regret in traditional reinforcement learning. We hope these insights facilitate a …
[ Hall J ]
Large language models generate complex, open-ended outputs: instead of outputting a class label they write summaries, generate dialogue, or produce working code. In order to asses the reliability of these open-ended generation systems, we aim to identify qualitative categories of erroneous behavior, beyond identifying individual errors. To hypothesize and test for such qualitative errors, we draw inspiration from human cognitive biases---systematic patterns of deviation from rational judgement. Specifically, we use cognitive biases as motivation to (i) generate hypotheses for problems that models may have, and (ii) develop experiments that elicit these problems. Using code generation as a case study, we find that OpenAI’s Codex errs predictably based on how the input prompt is framed, adjusts outputs towards anchors, and is biased towards outputs that mimic frequent training examples. We then use our framework to elicit high-impact errors such as incorrectly deleting files. Our results indicate that experimental methodology from cognitive science can help characterize how machine learning systems behave.
[ Hall J ]
Information encoding in neural circuits depends on how well time-varying stimuli are encoded by neural populations.Slow neuronal timescales, noise and network chaos can compromise reliable and rapid population response to external stimuli.A dynamic balance of externally incoming currents by strong recurrent inhibition was previously proposed as a mechanism to accurately and robustly encode a time-varying stimulus in balanced networks of binary neurons, but a theory for recurrent rate networks was missing. Here, we develop a non-stationary dynamic mean-field theory that transparently explains how a tight balance of excitatory currents by recurrent inhibition improves information encoding. We demonstrate that the mutual information rate of a time-varying input increases linearly with the tightness of balance, both in the presence of additive noise and with recurrently generated chaotic network fluctuations. We corroborated our findings in numerical experiments and demonstrated that recurrent networks with positive firing rates trained to transmit a time-varying stimulus generically use recurrent inhibition to increase the information rate. We also found that networks trained to transmit multiple independent time-varying signals spontaneously form multiple local inhibitory clusters, one for each input channel.Our findings suggest that feedforward excitatory input and local recurrent inhibition - as observed in many biological circuits - is …
[ Hall J ]

[ Hall J ]

Elimination algorithms for bandit identification, which prune the plausible correct answers sequentially until only one remains, are computationally convenient since they reduce the problem size over time. However, existing elimination strategies are often not fully adaptive (they update their sampling rule infrequently) and are not easy to extend to combinatorial settings, where the set of answers is exponentially large in the problem dimension. On the other hand, most existing fully-adaptive strategies to tackle general identification problems are computationally demanding since they repeatedly test the correctness of every answer, without ever reducing the problem size. We show that adaptive methods can be modified to use elimination in both their stopping and sampling rules, hence obtaining the best of these two worlds: the algorithms (1) remain fully adaptive, (2) suffer a sample complexity that is never worse of their non-elimination counterpart, and (3) provably eliminate certain wrong answers early. We confirm these benefits experimentally, where elimination improves significantly the computational complexity of adaptive methods on common tasks like best-arm identification in linear bandits.
[ Hall J ]
We propose a model for online graph problems where algorithms are given access to an oracle that predicts (e.g., based on modeling assumptions or past data) the degrees of nodes in the graph. Within this model, we study the classic problem of online bipartite matching, and a natural greedy matching algorithm called MinPredictedDegree, which uses predictions of the degrees of offline nodes. For the bipartite version of a stochastic graph model due to Chung, Lu, and Vu where the expected values of the offline degrees are known and used as predictions, we show that MinPredictedDegree stochastically dominates any other online algorithm, i.e., it is optimal for graphs drawn from this model. Since the "symmetric" version of the model, where all online nodes are identical, is a special case of the well-studied "known i.i.d. model", it follows that the competitive ratio of MinPredictedDegree on such inputs is at least 0.7299. For the special case of graphs with power law degree distributions, we show that MinPredictedDegree frequently produces matchings almost as large as the true maximum matching on such graphs. We complement these results with an extensive empirical evaluation showing that MinPredictedDegree compares favorably to state-of-the-art online algorithms for online matching.
[ Hall J ]

[ Hall J ]
[ Hall J ]
[ Hall J ]

[ Hall J ]
[ Hall J ]
[ Hall J ]

[ Hall J ]
[ Hall J ]

As autonomous systems rapidly become ubiquitous, there is a growing need for a legal and regulatory framework toaddress when and how such a system harms someone. There have been several attempts within the philosophy literature to define harm, but none of them has proven capable of dealing with with the many examples that have been presented, leading some to suggest that the notion of harm should be abandoned and ``replaced by more well-behaved notions''. As harm is generally something that is caused, most of these definitions have involved causality at some level. Yet surprisingly, none of them makes use of causal models and the definitions of actual causality that they can express. In this paper we formally define a qualitative notion of harm that uses causal models and is based on a well-known definition of actual causality (Halpern, 2016). The key novelty of our definition is that it is based on contrastive causation and uses a default utility to which the utility of actual outcomes is compared. We show that our definition is able to handle the examples from the literature, and illustrate its importance for reasoning about situations involving autonomous systems.
[ Hall J ]
[ Hall J ]

We study two of the most popular performance metrics in medical image segmentation, Accuracy and Dice, when the target labels are noisy. For both metrics, several statements related to characterization and volume properties of the set of optimal segmentations are proved, and associated experiments are provided. Our main insights are: (i) the volume of the solutions to both metrics may deviate significantly from the expected volume of the target, (ii) the volume of a solution to Accuracy is always less than or equal to the volume of a solution to Dice and (iii) the optimal solutions to both of these metrics coincide when the set of feasible segmentations is constrained to the set of segmentations with the volume equal to the expected volume of the target.
[ Hall J ]
[ Hall J ]

[ Hall J ]
[ Hall J ]

[ Hall J ]
[ Hall J ]
[ Hall J ]
[ Hall J ]

[ Hall J ]

[ Hall J ]
[ Hall J ]
[ Hall J ]

[ Hall J ]

[ Hall J ]

[ Hall J ]

[ Hall J ]
Is a sample rich enough to determine, at least locally, the parameters of a neural network? To answer this question, we introduce a new local parameterization of a given deep ReLU neural network by fixing the values of some of its weights. This allows us to define local lifting operators whose inverses are charts of a smooth manifold of a high dimensional space. The function implemented by the deep ReLU neural network composes the local lifting with a linear operator which depends on the sample. We derive from this convenient representation a geometrical necessary and sufficient condition of local identifiability. Looking at tangent spaces, the geometrical condition provides: 1/ a sharp and testable necessary condition of identifiability and 2/ a sharp and testable sufficient condition of local identifiability. The validity of the conditions can be tested numerically using backpropagation and matrix rank computations.
[ Hall J ]

Conditional independence (CI) testing is frequently used in data analysis and machine learning for various scientific fields and it forms the basis of constraint-based causal discovery. Oftentimes, CI testing relies on strong, rather unrealistic assumptions. One of these assumptions is homoskedasticity, in other words, a constant conditional variance is assumed. We frame heteroskedasticity in a structural causal model framework and present an adaptation of the partial correlation CI test that works well in the presence of heteroskedastic noise, given that expert knowledge about the heteroskedastic relationships is available. Further, we provide theoretical consistency results for the proposed CI test which carry over to causal discovery under certain assumptions. Numerical causal discovery experiments demonstrate that the adapted partial correlation CI test outperforms the standard test in the presence of heteroskedasticity and is on par for the homoskedastic case. Finally, we discuss the general challenges and limits as to how expert knowledge about heteroskedasticity can be accounted for in causal discovery.
[ Hall J ]

[ Hall J ]
We study compressive sensing with a deep generative network prior. Initial theoretical guarantees for efficient recovery from compressed linear measurements have been developed for signals in the range of a ReLU network with Gaussian weights and logarithmic expansivity: that is when each layer is larger than the previous one by a logarithmic factor. It was later shown that constant expansivity is sufficient for recovery. It has remained open whether the expansivity can be relaxed, allowing for networks with contractive layers (as often the case of real generators). In this work we answer this question, proving that a signal in the range of a Gaussian generative network can be recovered from few linear measurements provided that the width of the layers is proportional to the input layer size (up to log factors). This condition allows the generative network to have contractive layers. Our result is based on showing that Gaussian matrices satisfy a matrix concentration inequality which we term Range Restricted Weight Distribution Condition (R2WDC) and which weakens the Weight Distribution Condition (WDC) upon which previous theoretical guarantees were based. The WDC has also been used to analyze other signal recovery problems with generative network priors. By replacing the WDC with …
[ Hall J ]
We give a simple, generic conformal prediction method for sequential prediction that achieves target empirical coverage guarantees on adversarial data. It is computationally lightweight --- comparable to split conformal prediction --- but does not require having a held-out validation set, and so all data can be used for training models from which to derive a conformal score. Furthermore, it gives stronger than marginal coverage guarantees in two ways. First, it gives threshold-calibrated prediction sets that have correct empirical coverage even conditional on the threshold used to form the prediction set from the conformal score. Second, the user can specify an arbitrary collection of subsets of the feature space --- possibly intersecting --- and the coverage guarantees will also hold conditional on membership in each of these subsets. We call our algorithm MVP, short for MultiValid Prediction. We give both theory and an extensive set of empirical evaluations.
[ Hall J ]
Hierarchical clustering over graphs is a fundamental task in data mining and machine learning with applications in many domains including phylogenetics, social network analysis, and information retrieval. Specifically, we consider the recently popularized objective function for hierarchical clustering due to Dasgupta~\cite{Dasgupta16}, namely, minimum cost hierarchical partitioning. Previous algorithms for (approximately) minimizing this objective function require linear time/space complexity. In many applications the underlying graph can be massive in size making it computationally challenging to process the graph even using a linear time/space algorithm. As a result, there is a strong interest in designing algorithms that can perform global computation using only sublinear resources (space, time, and communication). The focus of this work is to study hierarchical clustering for massive graphs under three well-studied models of sublinear computation which focus on space, time, and communication, respectively, as the primary resources to optimize: (1) (dynamic) streaming model where edges are presented as a stream, (2) query model where the graph is queried using neighbor and degree queries, (3) massively parallel computation (MPC) model where the edges of the graph are partitioned over several machines connected via a communication channel.We design sublinear algorithms for hierarchical clustering in all three models above. At the …
[ Hall J ]

[ Hall J ]
[ Hall J ]

[ Hall J ]

Machine learning technologies have been used in a wide range of practical systems.In practical situations, it is natural to expect the input-output pairs of a machine learning model to satisfy some requirements.However, it is difficult to obtain a model that satisfies requirements by just learning from examples.A simple solution is to add a module that checks whether the input-output pairs meet the requirements and then modifies the model's outputs. Such a module, which we call a {\em concurrent verifier} (CV), can give a certification, although how the generalizability of the machine learning model changes using a CV is unclear. This paper gives a generalization analysis of learning with a CV. We analyze how the learnability of a machine learning model changes with a CV and show a condition where we can obtain a guaranteed hypothesis using a verifier only in the inference time.We also show that typical error bounds based on Rademacher complexity will be no larger than that of the original model when using a CV in multi-class classification and structured prediction settings.
[ Hall J ]

[ Hall J ]

[ Hall J ]
We study the problem of model selection in bandit scenarios in the presence of nested policy classes, with the goal of obtaining simultaneous adversarial and stochastic (``best of both worlds") high-probability regret guarantees. Our approach requires that each base learner comes with a candidate regret bound that may or may not hold, while our meta algorithm plays each base learner according to a schedule that keeps the base learner's candidate regret bounds balanced until they are detected to violate their guarantees. We develop careful mis-specification tests specifically designed to blend the above model selection criterion with the ability to leverage the (potentially benign) nature of the environment. We recover the model selection guarantees of the CORRAL algorithm for adversarial environments, but with the additional benefit of achieving high probability regret bounds. More importantly, our model selection results also hold simultaneously in stochastic environments under gap assumptions. These are the first theoretical results that achieve best-of-both world (stochastic and adversarial) guarantees while performing model selection in contextual bandit scenarios.
[ Hall J ]

We introduce Logical Credal Networks (or LCNs for short) -- an expressive probabilistic logic that generalizes prior formalisms that combine logic and probability. Given imprecise information represented by probability bounds and conditional probability bounds on logic formulas, an LCN specifies a set of probability distributions over all its interpretations. Our approach allows propositional and first-order logic formulas with few restrictions, e.g., without requiring acyclicity. We also define a generalized Markov condition that allows us to identify implicit independence relations between atomic formulas. We evaluate our method on benchmark problems such as random networks, Mastermind games with uncertainty and credit card fraud detection. Our results show that the LCN outperforms existing approaches; its advantage lies in aggregating multiple sources of imprecise information.
[ Hall J ]

Modular Reinforcement Learning (RL) decentralizes the control of multi-joint robots by learning policies for each actuator. Previous work on modular RL has proven its ability to control morphologically different agents with a shared actuator policy. However, with the increase in the Degree of Freedom (DoF) of robots, training a morphology-generalizable modular controller becomes exponentially difficult. Motivated by the way the human central nervous system controls numerous muscles, we propose a Synergy-Oriented LeARning (SOLAR) framework that exploits the redundant nature of DoF in robot control. Actuators are grouped into synergies by an unsupervised learning method, and a synergy action is learned to control multiple actuators in synchrony. In this way, we achieve a low-rank control at the synergy level. We extensively evaluate our method on a variety of robot morphologies, and the results show its superior efficiency and generalizability, especially on robots with a large DoF like Humanoids++ and UNIMALs.
[ Hall J ]

We present LogiGAN, an unsupervised adversarial pre-training framework for improving logical reasoning abilities of language models. Upon automatic identification of logical reasoning phenomena in massive text corpus via detection heuristics, we train language models to predict the masked-out logical statements. Inspired by the facilitation effect of reflective thinking in human learning, we analogically simulate the learning-thinking process with an adversarial Generator-Verifier architecture to assist logic learning. LogiGAN implements a novel sequential GAN approach that (a) circumvents the non-differentiable challenge of the sequential GAN by leveraging the Generator as a sentence-level generative likelihood scorer with a learning objective of reaching scoring consensus with the Verifier; (b) is computationally feasible for large-scale pre-training with arbitrary target length. Both base and large size language models pre-trained with LogiGAN demonstrate obvious performance improvement on 12 datasets requiring general reasoning abilities, revealing the fundamental role of logic in broad reasoning, as well as the effectiveness of LogiGAN. Ablation studies on LogiGAN components reveal the relative orthogonality between linguistic and logic abilities and suggest that reflective thinking's facilitation effect might also generalize to machine learning.
[ Hall J ]

We present a self-supervised depth estimation approach using a unified volumetric feature fusion for surround-view images. Given a set of surround-view images, our method constructs a volumetric feature map by extracting image feature maps from surround-view images and fuse the feature maps into a shared, unified 3D voxel space. The volumetric feature map then can be used for estimating a depth map at each surround view by projecting it into an image coordinate. A volumetric feature contains 3D information at its local voxel coordinate; thus our method can also synthesize a depth map at arbitrary rotated viewpoints by projecting the volumetric feature map into the target viewpoints. Furthermore, assuming static camera extrinsics in the multi-camera system, we propose to estimate a canonical camera motion from the volumetric feature map. Our method leverages 3D spatio- temporal context to learn metric-scale depth and the canonical camera motion in a self-supervised manner. Our method outperforms the prior arts on DDAD and nuScenes datasets, especially estimating more accurate metric-scale depth and consistent depth between neighboring views.
[ Hall J ]

In this paper, we study the problem of unsupervised object segmentation from single images. We do not introduce a new algorithm, but systematically investigate the effectiveness of existing unsupervised models on challenging real-world images. We firstly introduce four complexity factors to quantitatively measure the distributions of object- and scene-level biases in appearance and geometry for datasets with human annotations. With the aid of these factors, we empirically find that, not surprisingly, existing unsupervised models catastrophically fail to segment generic objects in real-world images, although they can easily achieve excellent performance on numerous simple synthetic datasets, due to the vast gap in objectness biases between synthetic and real images. By conducting extensive experiments on multiple groups of ablated real-world datasets, we ultimately find that the key factors underlying the colossal failure of existing unsupervised models on real-world images are the challenging distributions of object- and scene-level biases in appearance and geometry. Because of this, the inductive biases introduced in existing unsupervised models can hardly capture the diverse object distributions. Our research results suggest that future work should exploit more explicit objectness biases in the network design.
[ Hall J ]

We propose a model-based reinforcement learning framework to derive untargeted poisoning attacks against federated learning (FL) systems. Our framework first approximates the distribution of the clients' aggregated data using model updates from the server. The learned distribution is then used to build a simulator of the FL environment, which is utilized to learn an adaptive attack policy through reinforcement learning. Our framework is capable of learning strong attacks automatically even when the server adopts a robust aggregation rule. We further derive an upper bound on the attacker's performance loss due to inaccurate distribution estimation. Experimental results on real-world datasets demonstrate that the proposed attack framework significantly outperforms state-of-the-art poisoning attacks. This indicates the importance of developing adaptive defenses for FL systems.
[ Hall J ]

Probabilistic circuits (PCs) are a tractable representation of probability distributions allowing for exact and efficient computation of likelihoods and marginals. There has been significant recent progress on improving the scale and expressiveness of PCs. However, PC training performance plateaus as model size increases. We discover that most capacity in existing large PC structures is wasted: fully-connected parameter layers are only sparsely used. We propose two operations: pruning and growing, that exploit the sparsity of PC structures. Specifically, the pruning operation removes unimportant sub-networks of the PC for model compression and comes with theoretical guarantees. The growing operation increases model capacity by increasing the dimensions of latent states. By alternatingly applying pruning and growing, we increase the capacity that is meaningfully used, allowing us to significantly scale up PC learning. Empirically, our learner achieves state-of-the-art likelihoods on MNIST-family image datasets and an Penn Tree Bank language data compared to other PC learners and less tractable deep generative models such as flow-based models and variational autoencoders (VAEs).
[ Hall J ]

While preference modelling is becoming one of the pillars of machine learning, the problem of preference explanation remains challenging and underexplored. In this paper, we propose \textsc{Pref-SHAP}, a Shapley value-based model explanation framework for pairwise comparison data. We derive the appropriate value functions for preference models and further extend the framework to model and explain \emph{context specific} information, such as the surface type in a tennis game. To demonstrate the utility of \textsc{Pref-SHAP}, we apply our method to a variety of synthetic and real-world datasets and show that richer and more insightful explanations can be obtained over the baseline.
[ Hall J ]

There has been a significant research effort focused on explaining predictive models, for example through post-hoc explainability and recourse methods. Most of the proposed techniques operate upon a single, fixed, predictive model. However, it is well-known that given a dataset and a predictive task, there may be a multiplicity of models that solve the problem (nearly) equally well. In this work, we investigate the implications of this kind of model indeterminacy on the post-hoc explanations of predictive models. We show how it can lead to explanatory multiplicity, and we explore the underlying drivers. We show how predictive multiplicity, and the related concept of epistemic uncertainty, are not reliable indicators of explanatory multiplicity. We further illustrate how a set of models showing very similar aggregate performance on a test dataset may show large variations in their local explanations, i.e., for a specific input. We explore these effects for Shapley value based explanations on three risk assessment datasets. Our results indicate that model indeterminacy may have a substantial impact on explanations in practice, leading to inconsistent and even contradicting explanations.
[ Hall J ]
Fully cooperative, partially observable multi-agent problems are ubiquitous in the real world. In this paper, we focus on a specific subclass of coordination problems in which humans are able to discover self-explaining deviations (SEDs). SEDs are actions that deviate from the common understanding of what reasonable behavior would be in normal circumstances. They are taken with the intention of causing another agent or other agents to realize, using theory of mind, that the circumstance must be abnormal. We motivate this idea with a real world example and formalize its definition. Next, we introduce an algorithm for improvement maximizing SEDs (IMPROVISED). Lastly, we evaluate IMPROVISED both in an illustrative toy setting and the popular benchmark setting Hanabi, where we show that it can produce so called finesse plays.
[ Hall J ]
[ Hall J ]

Linear systems occur throughout engineering and the sciences, most notably as differential equations. In many cases the forcing function for the system is unknown, and interest lies in using noisy observations of the system to infer the forcing, as well as other unknown parameters. In differential equations, the forcing function is an unknown function of the independent variables (typically time and space), and can be modelled as a Gaussian process (GP). In this paper we show how the adjoint of a linear system can be used to efficiently infer forcing functions modelled as GPs, after using a truncated basis expansion of the GP kernel. We show how exact conjugate Bayesian inference for the truncated GP can be achieved, in many cases with substantially lower computation than would be required using MCMC methods. We demonstrate the approach on systems of both ordinary and partial differential equations, and show that the basis expansion approach approximates well the true forcing with a modest number of basis vectors. Finally, we show how to infer point estimates for the non-linear model parameters, such as the kernel length-scales, using Bayesian optimisation.
[ Hall J ]
We propose a new fast algorithm to estimate any sparse generalized linear model with convex or non-convex separable penalties. Our algorithm is able to solve problems with millions of samples and features in seconds, by relying on coordinate descent, working sets and Anderson acceleration. It handles previously unaddressed models, and is extensively shown to improve state-of-art algorithms. We provide a flexible, scikit-learn compatible package, which easily handles customized datafits and penalties.
[ Hall J ]

Behavior cloning of expert demonstrations can speed up learning optimal policies in a more sample-efficient way over reinforcement learning. However, the policy cannot extrapolate well to unseen states outside of the demonstration data, creating covariate shift (agent drifting away from demonstrations) and compounding errors. In this work, we tackle this issue by extending the region of attraction around the demonstrations so that the agent can learn how to get back onto the demonstrated trajectories if it veers off-course. We train a generative backwards dynamics model and generate short imagined trajectories from states in the demonstrations. By imitating both demonstrations and these model rollouts, the agent learns the demonstrated paths and how to get back onto these paths. With optimal or near-optimal demonstrations, the learned policy will be both optimal and robust to deviations, with a wider region of attraction. On continuous control domains, we evaluate the robustness when starting from different initial states unseen in the demonstration data. While both our method and other imitation learning baselines can successfully solve the tasks for initial states in the training distribution, our method exhibits considerably more robustness to different initial states.
[ Hall J ]

Recent work has shown that augmenting environments with language descriptions improves policy learning. However, for environments with complex language abstractions, learning how to ground language to observations is difficult due to sparse, delayed rewards. We propose Language Dynamics Distillation (LDD), which pretrains a model to predict environment dynamics given demonstrations with language descriptions, and then fine-tunes these language-aware pretrained representations via reinforcement learning (RL). In this way, the model is trained to both maximize expected reward and retain knowledge about how language relates to environment dynamics. On SILG, a benchmark of five tasks with language descriptions that evaluate distinct generalization challenges on unseen environments (NetHack, ALFWorld, RTFM, Messenger, and Touchdown), LDD outperforms tabula-rasa RL, VAE pretraining, and methods that learn from unlabeled demonstrations in inverse RL and reward shaping with pretrained experts. In our analyses, we show that language descriptions in demonstrations improve sample-efficiency and generalization across environments, and that dynamics modeling with expert demonstrations is more effective than with non-experts.
[ Hall J ]
We study the recent progress on dynamic view synthesis (DVS) from monocular video. Though existing approaches have demonstrated impressive results, we show a discrepancy between the practical capture process and the existing experimental protocols, which effectively leaks in multi-view signals during training. We define effective multi-view factors (EMFs) to quantify the amount of multi-view signal present in the input capture sequence based on the relative camera-scene motion. We introduce two new metrics: co-visibility masked image metrics and correspondence accuracy, which overcome the issue in existing protocols. We also propose a new iPhone dataset that includes more diverse real-life deformation sequences. Using our proposed experimental protocol, we show that the state-of-the-art approaches observe a 1-2 dB drop in masked PSNR in the absence of multi-view cues and 4-5 dB drop when modeling complex motion. Code and data can be found at http://hangg7.com/dycheck.
[ Hall J ]

We present VAEL, a neuro-symbolic generative model integrating variational autoencoders (VAE) with the reasoning capabilities of probabilistic logic (L) programming. Besides standard latent subsymbolic variables, our model exploits a probabilistic logic program to define a further structured representation, which is used for logical reasoning. The entire process is end-to-end differentiable. Once trained, VAEL can solve new unseen generation tasks by (i) leveraging the previously acquired knowledge encoded in the neural component and (ii) exploiting new logical programs on the structured latent space. Our experiments provide support on the benefits of this neuro-symbolic integration both in terms of task generalization and data efficiency. To the best of our knowledge, this work is the first to propose a general-purpose end-to-end framework integrating probabilistic logic programming into a deep generative model.
[ Hall J ]

Test-time training adapts to a new test distribution on the fly by optimizing a model for each test input using self-supervision.In this paper, we use masked autoencoders for this one-sample learning problem.Empirically, our simple method improves generalization on many visual benchmarks for distribution shifts.Theoretically, we characterize this improvement in terms of the bias-variance trade-off.
[ Hall J ]

Complex systems are often decomposed into modular subsystems for engineering tractability. Although various equation based white-box modeling techniques make use of such structure, learning based methods have yet to incorporate these ideas broadly. We present a modular simulation framework for modeling homogeneous multibody dynamical systems, which combines ideas from graph neural networks and neural differential equations. We learn to model the individual dynamical subsystem as a neural ODE module. Full simulation of the composite system is orchestrated via spatio-temporal message passing between these modules. An arbitrary number of modules can be combined to simulate systems of a wide variety of coupling topologies. We evaluate our framework on a variety of systems and show that message passing allows coordination between multiple modules over time for accurate predictions and in certain cases, enables zero-shot generalization to new system configurations. Furthermore, we show that our models can be transferred to new system configurations with lower data requirement and training effort, compared to those trained from scratch.
[ Hall J ]

The two key characteristics of a normalizing flow is that it is invertible (in particular, dimension preserving) and that it monitors the amount by which it changes the likelihood of data points as samples are propagated along the network. Recently, multiple generalizations of normalizing flows have been introduced that relax these two conditions \citep{nielsen2020survae,huang2020augmented}. On the other hand, neural networks only perform a forward pass on the input, there is neither a notion of an inverse of a neural network nor is there one of its likelihood contribution. In this paper we argue that certain neural network architectures can be enriched with a stochastic inverse pass and that their likelihood contribution can be monitored in a way that they fall under the generalized notion of a normalizing flow mentioned above. We term this enrichment \emph{flowification}. We prove that neural networks only containing linear and convolutional layers and invertible activations such as LeakyReLU can be flowified and evaluate them in the generative setting on image datasets.
[ Hall J ]
[ Hall J ]

Traditional machine learning follows a close-set assumption that the training and test set share the same label space. While in many practical scenarios, it is inevitable that some test samples belong to unknown classes (open-set). To fix this issue, Open-Set Recognition (OSR), whose goal is to make correct predictions on both close-set samples and open-set samples, has attracted rising attention. In this direction, the vast majority of literature focuses on the pattern of open-set samples. However, how to evaluate model performance in this challenging task is still unsolved. In this paper, a systematic analysis reveals that most existing metrics are essentially inconsistent with the aforementioned goal of OSR: (1) For metrics extended from close-set classification, such as Open-set F-score, Youden's index, and Normalized Accuracy, a poor open-set prediction can escape from a low performance score with a superior close-set prediction. (2) Novelty detection AUC, which measures the ranking performance between close-set and open-set samples, ignores the close-set performance. To fix these issues, we propose a novel metric named OpenAUC. Compared with existing metrics, OpenAUC enjoys a concise pairwise formulation that evaluates open-set performance and close-set performance in a coupling manner. Further analysis shows that OpenAUC is free from the aforementioned …
[ Hall J ]

Contrastive learning is a highly effective method for learning representations from unlabeled data. Recent works show that contrastive representations can transfer across domains, leading to simple state-of-the-art algorithms for unsupervised domain adaptation. In particular, a linear classifier trained to separate the representations on the source domain can also predict classes on the target domain accurately, even though the representations of the two domains are far from each other. We refer to this phenomenon as linear transferability. This paper analyzes when and why contrastive representations exhibit linear transferability in a general unsupervised domain adaptation setting. We prove that linear transferability can occur when data from the same class in different domains (e.g., photo dogs and cartoon dogs) are more related with each other than data from different classes in different domains (e.g., photo dogs and cartoon cats) are. Our analyses are in a realistic regime where the source and target domains can have unbounded density ratios and be weakly related, and they have distant representations across domains.
[ Hall J ]
While large pretrained foundation models (FMs) have shown remarkable zero-shot classification robustness to dataset-level distribution shifts, their robustness to subpopulation or group shifts is relatively underexplored. We study this problem, and find that foundation models such as CLIP may not be robust to various group shifts. Across 9 robustness benchmarks, zero-shot classification with their embeddings results in gaps of up to 80.7 percentage points (pp) between average and worst-group accuracy. Unfortunately, existing methods to improve robustness require retraining, which can be prohibitively expensive on large foundation models. We also find that efficient ways to improve model inference (e.g. via adapters, lightweight networks that transform FM embeddings) do not consistently improve and can sometimes hurt group robustness compared to zero-shot. We therefore develop an adapter training strategy to effectively and efficiently improve FM group robustness. Our motivating observation is that while poor robustness results from groups in the same class being embedded far apart in the foundation model "embedding space," standard adapter training may not actually bring these points closer together. We thus propose contrastive adapting, which contrastively trains adapters to bring sample embeddings close to both their ground-truth class embeddings and same-class sample embeddings. Across the 9 robustness benchmarks, contrastive …
[ Hall J ]

Analysis of neural network optimization in the mean-field regime is important as the setting allows for feature learning. Existing theory has been developed mainly for neural networks in finite dimensions, i.e., each neuron has a finite-dimensional parameter. However, the setting of infinite-dimensional input naturally arises in machine learning problems such as nonparametric functional data analysis and graph classification. In this paper, we develop a new mean-field analysis of two-layer neural network in an infinite-dimensional parameter space. We first give a generalization error bound, which shows that the regularized empirical risk minimizer properly generalizes when the data size is sufficiently large, despite the neurons being infinite-dimensional. Next, we present two gradient-based optimization algorithms for infinite-dimensional mean-field networks, by extending the recently developed particle optimization framework to the infinite-dimensional setting. We show that the proposed algorithms converge to the (regularized) global optimal solution, and moreover, their rates of convergence are of polynomial order in the online setting and exponential order in the finite sample setting, respectively. To our knowledge this is the first quantitative global optimization guarantee of neural network on infinite-dimensional input and in the presence of feature learning.
[ Hall J ]

[ Hall J ]
In recent years, the neural stochastic differential equation (NSDE) has gained attention for modeling stochastic representations with great success in various types of applications. However, it typically loses expressivity when the data representation is manifold-valued. To address this issue, we suggest a principled method for expressing the stochastic representation with the Riemannian neural SDE (RNSDE), which extends the conventional Euclidean NSDE. Empirical results for various tasks demonstrate that the proposed method significantly outperforms baseline methods.
[ Hall J ]
Sketch design concepts are recurring patterns found in parametric CAD sketches. Though rarely explicitly formalized by the CAD designers, these concepts are implicitly used in design for modularity and regularity. In this paper, we propose a learning based approach that discovers the modular concepts by induction over raw sketches. We propose the dual implicit-explicit representation of concept structures that allows implicit detection and explicit generation, and the separation of structure generation and parameter instantiation for parameterized concept generation, to learn modular concepts by end-to-end training. We demonstrate the design concept learning on a large scale CAD sketch dataset and show its applications for design intent interpretation and auto-completion.
[ Hall J ]

Massive datasets and high-capacity models have driven many recent advancements in computer vision and natural language understanding. This work presents a platform to enable similar success stories in Embodied AI. We propose ProcTHOR, a framework for procedural generation of Embodied AI environments. ProcTHOR enables us to sample arbitrarily large datasets of diverse, interactive, customizable, and performant virtual environments to train and evaluate embodied agents across navigation, interaction, and manipulation tasks. We demonstrate the power and potential of ProcTHOR via a sample of 10,000 generated houses and a simple neural model. Models trained using only RGB images on ProcTHOR, with no explicit mapping and no human task supervision produce state-of-the-art results across 6 embodied AI benchmarks for navigation, rearrangement, and arm manipulation, including the presently running Habitat 2022, AI2-THOR Rearrangement 2022, and RoboTHOR challenges. We also demonstrate strong 0-shot results on these benchmarks, via pre-training on ProcTHOR with no fine-tuning on the downstream benchmark, often beating previous state-of-the-art systems that access the downstream training data.
[ Hall J ]
As the scope of machine learning broadens, we observe a recurring theme of algorithmic monoculture: the same systems, or systems that share components (e.g. datasets, models), are deployed by multiple decision-makers. While sharing offers advantages like amortizing effort, it also has risks. We introduce and formalize one such risk, outcome homogenization: the extent to which particular individuals or groups experience the same outcomes across different deployments. If the same individuals or groups exclusively experience undesirable outcomes, this may institutionalize systemic exclusion and reinscribe social hierarchy. We relate algorithmic monoculture and outcome homogenization by proposing the component sharing hypothesis: if algorithmic systems are increasingly built on the same data or models, then they will increasingly homogenize outcomes. We test this hypothesis on algorithmic fairness benchmarks, demonstrating that increased data-sharing reliably exacerbates homogenization and individual-level effects generally exceed group-level effects. Further, given the current regime in AI of foundation models, i.e. pretrained models that can be adapted to myriad downstream tasks, we test whether model-sharing homogenizes outcomes across tasks. We observe mixed results: we find that for both vision and language settings, the specific methods for adapting a foundation model significantly influence the degree of outcome homogenization. We also …
[ Hall J ]

Modern autonomous systems rely on perception modules to process complex sensor measurements into state estimates. These estimates are then passed to a controller, which uses them to make safety-critical decisions. It is therefore important that we design perception systems to minimize errors that reduce the overall safety of the system. We develop a risk-driven approach to designing perception systems that accounts for the effect of perceptual errors on the performance of the fully-integrated, closed-loop system. We formulate a risk function to quantify the effect of a given perceptual error on overall safety, and show how we can use it to design safer perception systems by including a risk-dependent term in the loss function and generating training data in risk-sensitive regions. We evaluate our techniques on a realistic vision-based aircraft detect and avoid application and show that risk-driven design reduces collision risk by 37% over a baseline system.
[ Hall J ]
Modern deep neural networks tend to be evaluated on static test sets. One shortcoming of this is the fact that these deep neural networks cannot be easily evaluated for robustness issues with respect to specific scene variations. For example, it is hard to study the robustness of these networks to variations of object scale, object pose, scene lighting and 3D occlusions. The main reason is that collecting real datasets with fine-grained naturalistic variations of sufficient scale can be extremely time-consuming and expensive. In this work, we present Counterfactual Simulation Testing, a counterfactual framework that allows us to study the robustness of neural networks with respect to some of these naturalistic variations by building realistic synthetic scenes that allow us to ask counterfactual questions to the models, ultimately providing answers to questions such as "Would your classification still be correct if the object were viewed from the top?" or "Would your classification still be correct if the object were partially occluded by another object?". Our method allows for a fair comparison of the robustness of recently released, state-of-the-art Convolutional Neural Networks and Vision Transformers, with respect to these naturalistic variations. We find evidence that ConvNext is more robust to pose and …
[ Hall J ]

In this paper, we study the generalization performance of overparameterized 3-layer NTK models. We show that, for a specific set of ground-truth functions (which we refer to as the "learnable set"), the test error of the overfitted 3-layer NTK is upper bounded by an expression that decreases with the number of neurons of the two hidden layers. Different from 2-layer NTK where there exists only one hidden-layer, the 3-layer NTK involves interactions between two hidden-layers. Our upper bound reveals that, between the two hidden-layers, the test error descends faster with respect to the number of neurons in the second hidden-layer (the one closer to the output) than with respect to that in the first hidden-layer (the one closer to the input). We also show that the learnable set of 3-layer NTK without bias is no smaller than that of 2-layer NTK models with various choices of bias in the neurons. However, in terms of the actual generalization performance, our results suggest that 3-layer NTK is much less sensitive to the choices of bias than 2-layer NTK, especially when the input dimension is large.
[ Hall J ]
Variational quantum circuits have been widely employed in quantum simulation and quantum machine learning in recent years. However, quantum circuits with random structures have poor trainability due to the exponentially vanishing gradient with respect to the circuit depth and the qubit number. This result leads to a general standpoint that deep quantum circuits would not be feasible for practical tasks. In this work, we propose an initialization strategy with theoretical guarantees for the vanishing gradient problem in general deep quantum circuits. Specifically, we prove that under proper Gaussian initialized parameters, the norm of the gradient decays at most polynomially when the qubit number and the circuit depth increase. Our theoretical results hold for both the local and the global observable cases, where the latter was believed to have vanishing gradients even for very shallow circuits. Experimental results verify our theoretical findings in quantum simulation and quantum chemistry.
[ Hall J ]

Deep generative models have experienced great empirical successes in distribution learning. Many existing experiments have demonstrated that deep generative networks can efficiently generate high-dimensional complex data from a low-dimensional easy-to-sample distribution. However, this phenomenon can not be justified by existing theories. The widely held manifold hypothesis speculates that real-world data sets, such as natural images and signals, exhibit low-dimensional geometric structures. In this paper, we take such low-dimensional data structures into consideration by assuming that data distributions are supported on a low-dimensional manifold. We prove approximation and estimation theories of deep generative networks for estimating distributions on a low-dimensional manifold under the Wasserstein-1 loss. We show that the Wasserstein-1 loss converges to zero at a fast rate depending on the intrinsic dimension instead of the ambient data dimension. Our theory leverages the low-dimensional geometric structures in data sets and justifies the practical power of deep generative models. We require no smoothness assumptions on the data distribution which is desirable in practice.
[ Hall J ]

The beauty of physics is that there is usually a conserved quantity in an always-changing system, known as the constant of motion. Finding the constant of motion is important in understanding the dynamics of the system, but typically requires mathematical proficiency and manual analytical work. In this paper, we present a neural network that can simultaneously learn the dynamics of the system and the constants of motion from data. By exploiting the discovered constants of motion, it can produce better predictions on dynamics and can work on a wider range of systems than Hamiltonian-based neural networks. In addition, the training progresses of our method can be used as an indication of the number of constants of motion in a system which could be useful in studying a novel physical system.
[ Hall J ]

[ Hall J ]

We study the generalisation properties of majority voting on finite ensembles of classifiers, proving margin-based generalisation bounds via the PAC-Bayes theory. These provide state-of-the-art guarantees on a number of classification tasks. Our central results leverage the Dirichlet posteriors studied recently by Zantedeschi et al. (2021) for training voting classifiers; in contrast to that work our bounds apply to non-randomised votes via the use of margins. Our contributions add perspective to the debate on the ``margins theory'' proposed by Schapire et al. (1998) for the generalisation of ensemble classifiers.
[ Hall J ]

We revisit the problem of stochastic online learning with feedbackgraphs, with the goal of devising algorithms that are optimal, up toconstants, both asymptotically and in finite time. We show that,surprisingly, the notion of optimal finite-time regret is not auniquely defined property in this context and that, in general, itis decoupled from the asymptotic rate. We discuss alternativechoices and propose a notion of finite-time optimality that we argueis \emph{meaningful}. For that notion, we give an algorithm thatadmits quasi-optimal regret both in finite-time and asymptotically.
[ Hall J ]
We consider the online restless bandits with average-reward and multiple actions, where the state of each arm evolves according to a Markov decision process (MDP), and the reward of pulling an arm depends on both the current state of the corresponding MDP and the action taken. Since finding the optimal control is typically intractable for restless bandits, existing learning algorithms are often computationally expensive or with a regret bound that is exponential in the number of arms and states. In this paper, we advocate \textit{index-aware reinforcement learning} (RL) solutions to design RL algorithms operating on a much smaller dimensional subspace by exploiting the inherent structure in restless bandits. Specifically, we first propose novel index policies to address dimensionality concerns, which are provably optimal. We then leverage the indices to develop two low-complexity index-aware RL algorithms, namely, (i) GM-R2MAB, which has access to a generative model; and (ii) UC-R2MAB, which learns the model using an upper confidence style online exploitation method. We prove that both algorithms achieve a sub-linear regret that is only polynomial in the number of arms and states. A key differentiator between our algorithms and existing ones stems from the fact that our RL algorithms contain a novel …
[ Hall J ]

Provably efficient Model-Based Reinforcement Learning (MBRL) based on optimism or posterior sampling (PSRL) is ensured to attain the global optimality asymptotically by introducing the complexity measure of the model. However, the complexity might grow exponentially for the simplest nonlinear models, where global convergence is impossible within finite iterations. When the model suffers a large generalization error, which is quantitatively measured by the model complexity, the uncertainty can be large. The sampled model that current policy is greedily optimized upon will thus be unsettled, resulting in aggressive policy updates and over-exploration. In this work, we propose Conservative Dual Policy Optimization (CDPO) that involves a Referential Update and a Conservative Update. The policy is first optimized under a reference model, which imitates the mechanism of PSRL while offering more stability. A conservative range of randomness is guaranteed by maximizing the expectation of model value. Without harmful sampling procedures, CDPO can still achieve the same regret as PSRL. More importantly, CDPO enjoys monotonic policy improvement and global optimality simultaneously. Empirical results also validate the exploration efficiency of CDPO.
[ Hall J ]
[ Hall J ]

[ Hall J ]

[ Hall J ]

We introduce MultiScan, a scalable RGBD dataset construction pipeline leveraging commodity mobile devices to scan indoor scenes with articulated objects and web-based semantic annotation interfaces to efficiently annotate object and part semantics and part mobility parameters. We use this pipeline to collect 273 scans of 117 indoor scenes containing 10957 objects and 5129 parts. The resulting MultiScan dataset provides RGBD streams with per-frame camera poses, textured 3D surface meshes, richly annotated part-level and object-level semantic labels, and part mobility parameters. We validate our dataset on instance segmentation and part mobility estimation tasks and benchmark methods for these tasks from prior work. Our experiments show that part segmentation and mobility estimation in real 3D scenes remain challenging despite recent progress in 3D object segmentation.
[ Hall J ]

Vertical federated learning (VFL) is a privacy-preserving machine learning paradigm that can learn models from features distributed on different platforms in a privacy-preserving way. Since in real-world applications the data may contain bias on fairness-sensitive features (e.g., gender), VFL models may inherit bias from training data and become unfair for some user groups. However, existing fair machine learning methods usually rely on the centralized storage of fairness-sensitive features to achieve model fairness, which are usually inapplicable in federated scenarios. In this paper, we propose a fair vertical federated learning framework (FairVFL), which can improve the fairness of VFL models. The core idea of FairVFL is to learn unified and fair representations of samples based on the decentralized feature fields in a privacy-preserving way. Specifically, each platform with fairness-insensitive features first learns local data representations from local features. Then, these local representations are uploaded to a server and aggregated into a unified representation for the target task. In order to learn a fair unified representation, we send it to each platform storing fairness-sensitive features and apply adversarial learning to remove bias from the unified representation inherited from the biased data. Moreover, for protecting user privacy, we further propose a contrastive adversarial …
[ Hall J ]

Our goal is to synthesize realistic underwater scenes with various fish species in different fish cages, which can be utilized to train computer vision models to automate fish counting and sizing tasks. It is a challenging problem to prepare a sufficiently diverse labeled dataset of images from aquatic environments. We solve this challenge by introducing an adaptive bio-inspired fish simulation. The behavior of caged fish changes based on the species, size and number of fish, and the size and shape of the cage, among other variables. However, a method to autonomously achieve schooling behavior for caged fish did not exist. In this paper, we propose a method for achieving schooling behavior for any given combination of variables, using multi-agent deep reinforcement learning (DRL) in various fish cages in arbitrary environments. Furthermore, to visually reproduce the underwater scene in different locations and seasons, we incorporate a physically-based underwater simulation.
[ Hall J ]

Nonlinear dynamics are ubiquitous in science and engineering applications, but the physics of most complex systems is far from being fully understood. Discovering interpretable governing equations from measurement data can help us understand and predict the behavior of complex dynamic systems. Although extensive work has recently been done in this field, robustly distilling explicit model forms from very sparse data with considerable noise remains intractable. Moreover, quantifying and propagating the uncertainty of the identified system from noisy data is challenging, and relevant literature is still limited. To bridge this gap, we develop a novel Bayesian spline learning framework to identify parsimonious governing equations of nonlinear (spatio)temporal dynamics from sparse, noisy data with quantified uncertainty. The proposed method utilizes spline basis to handle the data scarcity and measurement noise, upon which a group of derivatives can be accurately computed to form a library of candidate model terms. The equation residuals are used to inform the spline learning in a Bayesian manner, where approximate Bayesian uncertainty calibration techniques are employed to approximate posterior distributions of the trainable parameters. To promote the sparsity, an iterative sequential-threshold Bayesian learning approach is developed, using the alternative direction optimization strategy to systematically approximate L0 sparsity constraints. …
[ Hall J ]

Graph neural networks (GNNs) have shown superiority in many prediction tasks over graphs due to their impressive capability of capturing nonlinear relations in graph-structured data. However, for node classification tasks, often, only marginal improvement of GNNs has been observed in practice over their linear counterparts. Previous works provide very few understandings of this phenomenon. In this work, we resort to Bayesian learning to give an in-depth investigation of the functions of non-linearity in GNNs for node classification tasks. Given a graph generated from the statistical model CSBM, we observe that the max-a-posterior estimation of a node label given its own and neighbors' attributes consists of two types of non-linearity, the transformation of node attributes and a ReLU-activated feature aggregation from neighbors. The latter surprisingly matches the type of non-linearity used in many GNN models. By further imposing Gaussian assumption on node attributes, we prove that the superiority of those ReLU activations is only significant when the node attributes are far more informative than the graph structure, which nicely explains previous empirical observations. A similar argument is derived when there is a distribution shift of node attributes between the training and testing datasets. Finally, we verify our theory on both synthetic …
[ Hall J ]
Graph search is one of the most successful algorithmic trends in near neighbor search. Several of the most popular and empirically successful algorithms are, at their core, a greedy walk along a pruned near neighbor graph. However, graph traversal applications often suffer from poor memory access patterns, and near neighbor search is no exception to this rule. Our measurements show that popular search indices such as the hierarchical navigable small-world graph (HNSW) can have poor cache miss performance. To address this issue, we formulate the graph traversal problem as a cache hit maximization task and propose multiple graph reordering as a solution. Graph reordering is a memory layout optimization that groups commonly-accessed nodes together in memory. We mathematically formalize the connection between the graph layout and the cache complexity of search. We present exhaustive experiments applying several reordering algorithms to a leading graph-based near neighbor method based on the HNSW index. We find that reordering improves the query time by up to 40%, we present analysis and improvements for existing graph layout methods, and we demonstrate that the time needed to reorder the graph is negligible compared to the time required to construct the index.
[ Hall J ]
[ Hall J ]
In this paper, we study the gyrovector space structure (gyro-structure) of matrix manifolds. Our work is motivated by the success of hyperbolic neural networks (HNNs) that have demonstrated impressive performance in a variety of applications. At the heart of HNNs is the theory of gyrovector spaces that provides a powerful tool for studying hyperbolic geometry. Here we focus on two matrix manifolds, i.e., Symmetric Positive Definite (SPD) and Grassmann manifolds, and consider connecting the Riemannian geometry of these manifolds with the basic operations, i.e., the binary operation and scalar multiplication on gyrovector spaces. Our work reveals some interesting facts about SPD and Grassmann manifolds. First, SPD matrices with an Affine-Invariant (AI) or a Log-Euclidean (LE) geometry have rich structure with strong connection to hyperbolic geometry. Second, linear subspaces, when equipped with our proposed basic operations, form what we call gyrocommutative and gyrononreductive gyrogroups. Furthermore, they share remarkable analogies with gyrovector spaces. We demonstrate the applicability of our approach for human activity understanding and question answering.
[ Hall J ]
[ Hall J ]

Joint visual and language modeling on large-scale datasets has recently shown good progress in multi-modal tasks when compared to single modal learning. However, robustness of these approaches against real-world perturbations has not been studied. In this work, we perform the first extensive robustness study of video-language models against various real-world perturbations. We focus on text-to-video retrieval and propose two large-scale benchmark datasets, MSRVTT-P and YouCook2-P, which utilize 90 different visual and 35 different text perturbations. The study reveals some interesting initial findings from the studied models: 1) models are more robust when text is perturbed versus when video is perturbed, 2) models that are pre-trained are more robust than those trained from scratch, 3) models attend more to scene and objects rather than motion and action. We hope this study will serve as a benchmark and guide future research in robust video-language learning. The benchmark introduced in this study along with the code and datasets is available at https://bit.ly/3CNOly4.
[ Hall J ]

Graph Neural Networks (GNNs) have achieved great success on a node classification task. Despite the broad interest in developing and evaluating GNNs, they have been assessed with limited benchmark datasets. As a result, the existing evaluation of GNNs lacks fine-grained analysis from various characteristics of graphs. Motivated by this, we conduct extensive experiments with a synthetic graph generator that can generate graphs having controlled characteristics for fine-grained analysis. Our empirical studies clarify the strengths and weaknesses of GNNs from four major characteristics of real-world graphs with class labels of nodes, i.e., 1) class size distributions (balanced vs. imbalanced), 2) edge connection proportions between classes (homophilic vs. heterophilic), 3) attribute values (biased vs. random), and 4) graph sizes (small vs. large). In addition, to foster future research on GNNs, we publicly release our codebase that allows users to evaluate various GNNs with various graphs. We hope this work offers interesting insights for future research.
[ Hall J ]
Despite the considerable progress in automatic abdominal multi-organ segmentation from CT/MRI scans in recent years, a comprehensive evaluation of the models' capabilities is hampered by the lack of a large-scale benchmark from diverse clinical scenarios. Constraint by the high cost of collecting and labeling 3D medical data, most of the deep learning models to date are driven by datasets with a limited number of organs of interest or samples, which still limits the power of modern deep models and makes it difficult to provide a fully comprehensive and fair estimate of various methods. To mitigate the limitations, we present AMOS, a large-scale, diverse, clinical dataset for abdominal organ segmentation. AMOS provides 500 CT and 100 MRI scans collected from multi-center, multi-vendor, multi-modality, multi-phase, multi-disease patients, each with voxel-level annotations of 15 abdominal organs, providing challenging examples and test-bed for studying robust segmentation algorithms under diverse targets and scenarios. We further benchmark several state-of-the-art medical segmentation models to evaluate the status of the existing methods on this new challenging dataset. We have made our datasets, benchmark servers, and baselines publicly available, and hope to inspire future research. Information can be found at https://amos22.grand-challenge.org.
[ Hall J ]
The past few years have seen the development of many benchmarks for Neural Architecture Search (NAS), fueling rapid progress in NAS research. However, recent work, which shows that good hyperparameter settings can be more important than using the best architecture, calls for a shift in focus towards Joint Architecture and Hyperparameter Search (JAHS). Therefore, we present JAHS-Bench-201, the first collection of surrogate benchmarks for JAHS, built to also facilitate research on multi-objective, cost-aware and (multi) multi-fidelity optimization algorithms. To the best of our knowledge, JAHS-Bench-201 is based on the most extensive dataset of neural network performance data in the public domain. It is composed of approximately 161 million data points and 20 performance metrics for three deep learning tasks, while featuring a 14-dimensional search and fidelity space that extends the popular NAS-Bench-201 space. With JAHS-Bench-201, we hope to democratize research on JAHS and lower the barrier to entry of an extremely compute intensive field, e.g., by reducing the compute time to run a JAHS algorithm from 5 days to only a few seconds.
[ Hall J ]
Distribution shifts occur when the test distribution differs from the training distribution, and can considerably degrade performance of machine learning models deployed in the real world. While recent works have studied robustness to distribution shifts, distribution shifts arising from the passage of time have the additional structure of timestamp metadata. Real-world examples of such shifts are underexplored, and it is unclear whether existing models can leverage trends in past distribution shifts to reliably extrapolate into the future. To address this gap, we curate Wild-Time, a benchmark of 5 datasets that reflect temporal distribution shifts arising in a variety of real-world applications, including drug discovery, patient prognosis, and news classification. On these datasets, we systematically benchmark 13 approaches with various inductive biases. We evaluate methods in domain-generalization, continual learning, self-supervised learning, and ensemble learning, which leverage timestamps to extract the common structure of the distribution shifts. We extend several domain-generalization methods to the temporal distribution shift setting by treating windows of time as different domains. Finally, we propose two evaluation strategies to evaluate model performance under temporal distribution shifts---evaluation with a fixed time split (Eval-Fix) and evaluation with a data stream (Eval-Stream). Eval-Fix, our primary evaluation strategy, aims to provide a …
[ Hall J ]

Despite the prevalence of recent success in learning from static graphs, learning from time-evolving graphs remains an open challenge. In this work, we design new, more stringent evaluation procedures for link prediction specific to dynamic graphs, which reflect real-world considerations, to better compare the strengths and weaknesses of methods. First, we create two visualization techniques to understand the reoccurring patterns of edges over time and show that many edges reoccur at later time steps. Based on this observation, we propose a pure memorization-based baseline called EdgeBank. EdgeBank achieves surprisingly strong performance across multiple settings which highlights that the negative edges used in the current evaluation are easy. To sample more challenging negative edges, we introduce two novel negative sampling strategies that improve robustness and better match real-world applications. Lastly, we introduce six new dynamic graph datasets from a diverse set of domains missing from current benchmarks, providing new challenges and opportunities for future research. Our code repository is accessible at https://github.com/fpour/DGB.git.
[ Hall J ]

Despite impressive successes, deep reinforcement learning (RL) systems still fall short of human performance on generalization to new tasks and environments that differ from their training. As a benchmark tailored for studying RL generalization, we introduce Avalon, a set of tasks in which embodied agents in highly diverse procedural 3D worlds must survive by navigating terrain, hunting or gathering food, and avoiding hazards. Avalon is unique among existing RL benchmarks in that the reward function, world dynamics, and action space are the same for every task, with tasks differentiated solely by altering the environment; its 20 tasks, ranging in complexity from eat and throw to hunt and navigate, each create worlds in which the agent must perform specific skills in order to survive. This setup enables investigations of generalization within tasks, between tasks, and to compositional tasks that require combining skills learned from previous tasks. Avalon includes a highly efficient simulator, a library of baselines, and a benchmark with scoring metrics evaluated against hundreds of hours of human performance, all of which are open-source and publicly available. We find that standard RL baselines make progress on most tasks but are still far from human performance, suggesting Avalon is challenging enough …
[ Hall J ]

Progress in reinforcement learning (RL) research is often driven by the design of new, challenging environments---a costly undertaking requiring skills orthogonal to that of a typical machine learning researcher. The complexity of environment development has only increased with the rise of procedural-content generation (PCG) as the prevailing paradigm for producing varied environments capable of testing the robustness and generalization of RL agents. Moreover, existing environments often require complex build processes, making reproducing results difficult. To address these issues, we introduce GriddlyJS, a web-based Integrated Development Environment (IDE) based on the Griddly engine. GriddlyJS allows researchers to easily design and debug arbitrary, complex PCG grid-world environments, as well as visualize, evaluate, and record the performance of trained agent models. By connecting the RL workflow to the advanced functionality enabled by modern web standards, GriddlyJS allows publishing interactive agent-environment demos that reproduce experimental results directly to the web. To demonstrate the versatility of GriddlyJS, we use it to quickly develop a complex compositional puzzle-solving environment alongside arbitrary human-designed environment configurations and their solutions for use in a automatic curriculum learning and offline RL context. The GriddlyJS IDE is open source and freely available at https://griddly.ai.
[ Hall J ]
Visual correspondence of 2D animation is the core of many applications and deserves careful study. Existing correspondence datasets for 2D cartoon suffer from simple frame composition and monotonic movements, making them insufficient to simulate real animations. In this work, we present a new 2D animation visual correspondence dataset, AnimeRun, by converting open source 3D movies to full scenes in 2D style, including simultaneous moving background and interactions of multiple subjects. Statistics show that our proposed dataset not only resembles real anime more in image composition, but also possesses richer and more complex motion patterns compared to existing datasets. With this dataset, we establish a comprehensive benchmark by evaluating several existing optical flow and segment matching methods, and analyze shortcomings of these methods on animation data. Data are available at https://lisiyao21.github.io/projects/AnimeRun.
[ Hall J ]

Benefiting from language flexibility and compositionality, humans naturally intend to use language to command an embodied agent for complex tasks such as navigation and object manipulation. In this work, we aim to fill the blank of the last mile of embodied agents---object manipulation by following human guidance, e.g., “move the red mug next to the box while keeping it upright.” To this end, we introduce an Automatic Manipulation Solver (AMSolver) system and build a Vision-and-Language Manipulation benchmark (VLMbench) based on it, containing various language instructions on categorized robotic manipulation tasks. Specifically, modular rule-based task templates are created to automatically generate robot demonstrations with language instructions, consisting of diverse object shapes and appearances, action types, and motion constraints. We also develop a keypoint-based model 6D-CLIPort to deal with multi-view observations and language input and output a sequence of 6 degrees of freedom (DoF) actions. We hope the new simulator and benchmark will facilitate future research on language-guided robotic manipulation.
[ Hall J ]

Augmented Reality or AR filters on selfies have become very popular on social media platforms for a variety of applications, including marketing, entertainment and aesthetics. Given the wide adoption of AR face filters and the importance of faces in our social structures and relations, there is increased interest by the scientific community to analyze the impact of such filters from a psychological, artistic and sociological perspective. However, there are few quantitative analyses in this area mainly due to a lack of publicly available datasets of facial images with applied AR filters. The proprietary, close nature of most social media platforms does not allow users, scientists and practitioners to access the code and the details of the available AR face filters. Scraping faces from these platforms to collect data is ethically unacceptable and should, therefore, be avoided in research. In this paper, we present OpenFilter, a flexible framework to apply AR filters available in social media platforms on existing large collections of human faces. Moreover, we share FairBeauty and B-LFW, two beautified versions of the publicly available FairFace and LFW datasets and we outline insights derived from the analysis of these beautified datasets.
[ Hall J ]
Forecasting future world events is a challenging but valuable task. Forecasts of climate, geopolitical conflict, pandemics and economic indicators help shape policy and decision making. In these domains, the judgment of expert humans contributes to the best forecasts. Given advances in language modeling, can these forecasts be automated? To this end, we introduce Autocast, a dataset containing thousands of forecasting questions and an accompanying news corpus. Questions are taken from forecasting tournaments, ensuring high quality, real-world importance, and diversity. The news corpus is organized by date, allowing us to precisely simulate the conditions under which humans made past forecasts (avoiding leakage from the future). Motivated by the difficulty of forecasting numbers across orders of magnitude (e.g. global cases of COVID-19 in 2022), we also curate IntervalQA, a dataset of numerical questions and metrics for calibration. We test language models on our forecasting task and find that performance is far below a human expert baseline. However, performance improves with increased model size and incorporation of relevant information from the news corpus. In sum, Autocast poses a novel challenge for large language models and improved performance could bring large practical benefits.
[ Hall J ]

In stereo vision, self-similar or bland regions can make it difficult to match patches between two images. Active stereo-based methods mitigate this problem by projecting a pseudo-random pattern on the scene so that each patch of an image pair can be identified without ambiguity. However, the projected pattern significantly alters the appearance of the image. If this pattern acts as a form of adversarial noise, it could negatively impact the performance of deep learning-based methods, which are now the de-facto standard for dense stereo vision. In this paper, we propose the Active-Passive SimStereo dataset and a corresponding benchmark to evaluate the performance gap between passive and active stereo images for stereo matching algorithms. Using the proposed benchmark and an additional ablation study, we show that the feature extraction and matching modules of a selection of twenty selected deep learning-based stereo matching methods generalize to active stereo without a problem. However, the disparity refinement modules of three of the twenty architectures (ACVNet, CascadeStereo, and StereoNet) are negatively affected by the active stereo patterns due to their reliance on the appearance of the input images.
[ Hall J ]

Generic motion understanding from video involves not only tracking objects, but also perceiving how their surfaces deform and move. This information is useful to make inferences about 3D shape, physical properties and object interactions. While the problem of tracking arbitrary physical points on surfaces over longer video clips has received some attention, no dataset or benchmark for evaluation existed, until now. In this paper, we first formalize the problem, naming it tracking any point (TAP). We introduce a companion benchmark,TAP-Vid, which is composed of both real-world videos with accurate human annotations of point tracks, and synthetic videos with perfect ground-truth point tracks. Central to the construction of our benchmark is a novel semi-automatic crowdsourced pipeline which uses optical flow estimates to compensate for easier, short-term motion like camera shake, allowing annotators to focus on harder sections of the video. We validate our pipeline on synthetic data and propose a simple end-to-end point tracking model, TAP-Net, showing that it outperforms all prior methods on our benchmark when trained on synthetic data.
[ Hall J ]

We present a new text-to-SQL dataset for electronic health records (EHRs). The utterances were collected from 222 hospital staff, including physicians, nurses, insurance review and health records teams, and more. To construct the QA dataset on structured EHR data, we conducted a poll at a university hospital and templatized the responses to create seed questions. Then, we manually linked them to two open-source EHR databases—MIMIC-III and eICU—and included them with various time expressions and held-out unanswerable questions in the dataset, which were all collected from the poll. Our dataset poses a unique set of challenges: the model needs to 1) generate SQL queries that reflect a wide range of needs in the hospital, including simple retrieval and complex operations such as calculating survival rate, 2) understand various time expressions to answer time-sensitive questions in healthcare, and 3) distinguish whether a given question is answerable or unanswerable based on the prediction confidence. We believe our dataset, EHRSQL, could serve as a practical benchmark to develop and assess QA models on structured EHR data and take one step further towards bridging the gap between text-to-SQL research and its real-life deployment in healthcare. EHRSQL is available at https://github.com/glee4810/EHRSQL.
[ Hall J ]
Human-designed visual manuals are crucial components in shape assembly activities. They provide step-by-step guidance on how we should move and connect different parts in a convenient and physically-realizable way. While there has been an ongoing effort in building agents that perform assembly tasks, the information in human-design manuals has been largely overlooked. We identify that this is due to 1) a lack of realistic 3D assembly objects that have paired manuals and 2) the difficulty of extracting structured information from purely image-based manuals. Motivated by this observation, we present IKEA-Manual, a dataset consisting of 102 IKEA objects paired with assembly manuals. We provide fine-grained annotations on the IKEA objects and assembly manuals, including decomposed assembly parts, assembly plans, manual segmentation, and 2D-3D correspondence between 3D parts and visual manuals. We illustrate the broad application of our dataset on four tasks related to shape assembly: assembly plan generation, part segmentation, pose estimationand 3D part assembly.
[ Hall J ]

In the last years, neural networks (NN) have evolved from laboratory environments to the state-of-the-art for many real-world problems. It was shown that NN models (i.e., their weights and biases) evolve on unique trajectories in weight space during training. Following, a population of such neural network models (referred to as model zoo) would form structures in weight space. We think that the geometry, curvature and smoothness of these structures contain information about the state of training and can reveal latent properties of individual models. With such model zoos, one could investigate novel approaches for (i) model analysis, (ii) discover unknown learning dynamics, (iii) learn rich representations of such populations, or (iv) exploit the model zoos for generative modelling of NN weights and biases. Unfortunately, the lack of standardized model zoos and available benchmarks significantly increases the friction for further research about populations of NNs. With this work, we publish a novel dataset of model zoos containing systematically generated and diverse populations of NN models for further research. In total the proposed model zoo dataset is based on eight image datasets, consists of 27 model zoos trained with varying hyperparameter combinations and includes 50’360 unique NN models as well as their …
[ Hall J ]

The ability to estimate 3D human body pose and movement, also known as human pose estimation (HPE), enables many applications for home-based health monitoring, such as remote rehabilitation training. Several possible solutions have emerged using sensors ranging from RGB cameras, depth sensors, millimeter-Wave (mmWave) radars, and wearable inertial sensors. Despite previous efforts on datasets and benchmarks for HPE, few dataset exploits multiple modalities and focuses on home-based health monitoring. To bridge the gap, we present mRI, a multi-modal 3D human pose estimation dataset with mmWave, RGB-D, and Inertial Sensors. Our dataset consists of over 160k synchronized frames from 20 subjects performing rehabilitation exercises and supports the benchmarks of HPE and action detection. We perform extensive experiments using our dataset and delineate the strength of each modality. We hope that the release of mRI can catalyze the research in pose estimation, multi-modal learning, and action understanding, and more importantly facilitate the applications of home-based health monitoring.
[ Hall J ]
The recent advances of deep learning have dramatically changed how machine learning, especially in the domain of natural language processing, can be applied to legal domain. However, this shift to the data-driven approaches calls for larger and more diverse datasets, which are nevertheless still small in number, especially in non-English languages. Here we present the first large-scale benchmark of Korean legal AI datasets, LBOX OPEN, that consists of one legal corpus, two classification tasks, two legal judgement prediction (LJP) tasks, and one summarization task. The legal corpus consists of 147k Korean precedents (259M tokens), of which 63k are sentenced in last 4 years and 96k are from the first and the second level courts in which factual issues are reviewed. The two classification tasks are case names (11.3k) and statutes (2.8k) prediction from the factual description of individual cases. The LJP tasks consist of (1) 10.5k criminal examples where the model is asked to predict fine amount, imprisonment with labor, and imprisonment without labor ranges for the given facts, and (2) 4.7k civil examples where the inputs are facts and claim for relief and outputs are the degrees of claim acceptance. The summarization task consists of the Supreme Court precedents …
[ Hall J ]

Large language models produce human-like text that drive a growing number of applications. However, recent literature and, increasingly, real world observations, have demonstrated that these models can generate language that is toxic, biased, untruthful or otherwise harmful. Though work to evaluate language model harms is under way, translating foresight about which harms may arise into rigorous benchmarks is not straightforward. To facilitate this translation, we outline six ways of characterizing harmful text which merit explicit consideration when designing new benchmarks. We then use these characteristics as a lens to identify trends and gaps in existing benchmarks. Finally, we apply them in a case study of the Perspective API, a toxicity classifier that is widely used in harm benchmarks. Our characteristics provide one piece of the bridge that translates between foresight and effective evaluation.
[ Hall J ]

The unbiased learning to rank (ULTR) problem has been greatly advanced by recent deep learning techniques and well-designed debias algorithms. However, promising results on the existing benchmark datasets may not be extended to the practical scenario due to some limitations of existing datasets. First, their semantic feature extractions are outdated while state-of-the-art large-scale pre-trained language models like BERT cannot be utilized due to the lack of original text. Second, display features are incomplete; thus in-depth study on ULTR is impossible such as the displayed abstract for analyzing the click necessary bias. Third, synthetic user feedback has been adopted by most existing datasets and real-world user feedback is greatly missing. To overcome these disadvantages, we introduce the Baidu-ULTR dataset. It involves randomly sampled 1.2 billion searching sessions and 7,008 expert annotated queries(397,572 query document pairs). Baidu-ULTR is the first billion-level dataset for ULTR. Particularly, it offers: (1)the original semantic features and pre-trained language models of different sizes; (2)sufficient display information such as position, displayed height, and displayed abstract, enabling the comprehensive study of multiple displayed biases; and (3)rich user feedback on search result pages (SERPs) like dwelling time, allowing for user engagement optimization and promoting the exploration of multi-task learning in …
[ Hall J ]

Analyzing the planet at scale with satellite imagery and machine learning is a dream that has been constantly hindered by the cost of difficult-to-access highly-representative high-resolution imagery. To remediate this, we introduce here the WorldStratified dataset. The largest and most varied such publicly available dataset, at Airbus SPOT 6/7 satellites' high resolution of up to 1.5 m/pixel, empowered by European Space Agency's Phi-Lab as part of the ESA-funded QueryPlanet project, we curate 10,000 sq km of unique locations to ensure stratified representation of all types of land-use across the world: from agriculture to ice caps, from forests to multiple urbanization densities. We also enrich those with locations typically under-represented in ML datasets: sites of humanitarian interest, illegal mining sites, and settlements of persons at risk. We temporally-match each high-resolution image with multiple low-resolution images from the freely accessible lower-resolution Sentinel-2 satellites at 10 m/pixel. We accompany this dataset with an open-source Python package to: rebuild or extend the WorldStrat dataset, train and infer baseline algorithms, and learn with abundant tutorials, all compatible with the popular EO-learn toolbox. We hereby hope to foster broad-spectrum applications of ML to satellite imagery, and possibly develop from free public low-resolution Sentinel2 imagery the same …
[ Hall J ]

Molecular optimization is a fundamental goal in the chemical sciences and is of central interest to drug and material design. In recent years, significant progress has been made in solving challenging problems across various aspects of computational molecular optimizations, emphasizing high validity, diversity, and, most recently, synthesizability. Despite this progress, many papers report results on trivial or self-designed tasks, bringing additional challenges to directly assessing the performance of new methods. Moreover, the sample efficiency of the optimization---the number of molecules evaluated by the oracle---is rarely discussed, despite being an essential consideration for realistic discovery applications.To fill this gap, we have created an open-source benchmark for practical molecular optimization, PMO, to facilitate the transparent and reproducible evaluation of algorithmic advances in molecular optimization. This paper thoroughly investigates the performance of 25 molecular design algorithms on 23 single-objective (scalar) optimization tasks with a particular focus on sample efficiency. Our results show that most ``state-of-the-art'' methods fail to outperform their predecessors under a limited oracle budget allowing 10K queries and that no existing algorithm can efficiently solve certain molecular optimization problems in this setting. We analyze the influence of the optimization algorithm choices, molecular assembly strategies, and oracle landscapes on the optimization performance …
[ Hall J ]

Although online handwriting verification has made great progress recently, the verification performances are still far behind the real usage owing to the small scale of the datasets as well as the limited biometric mediums. Therefore, this paper proposes a new handwriting verification benchmark dataset named Multimodal Signature and Digit String (MSDS), which consists of two subsets: MSDS-ChS (Chinese Signatures) and MSDS-TDS (Token Digit Strings), contributed by 402 users, with 20 genuine samples and 20 skilled forgeries per user per subset. MSDS-ChS consists of handwritten Chinese signatures, which, to the best of our knowledge, is the largest publicly available Chinese signature dataset for handwriting verification, at least eight times larger than existing online datasets. Meanwhile, MSDS-TDS consists of handwritten Token Digit Strings, i.e, the actual phone numbers of users, which have not been explored yet. Extensive experiments with different baselines are respectively conducted for MSDS-ChS and MSDS-TDS. Surprisingly, verification performances of state-of-the-art methods on MSDS-TDS are generally better than those on MSDS-ChS, which indicates that the handwritten Token Digit String could be a more effective biometric than handwritten Chinese signature. This is a promising discovery that could inspire us to explore new biometric traits. The MSDS dataset is available at https://github.com/HCIILAB/MSDS.
[ Hall J ]

Emphatic Temporal Difference (TD) methods are a class of off-policy Reinforcement Learning (RL) methods involving the use of followon traces. Despite the theoretical success of emphatic TD methods in addressing the notorious deadly triad of off-policy RL, there are still two open problems. First, followon traces typically suffer from large variance, making them hard to use in practice. Second, though Yu (2015) confirms the asymptotic convergence of some emphatic TD methods for prediction problems, there is still no finite sample analysis for any emphatic TD method for prediction, much less control. In this paper, we address those two open problems simultaneously via using truncated followon traces in emphatic TD methods. Unlike the original followon traces, which depend on all previous history, truncated followon traces depend on only finite history, reducing variance and enabling the finite sample analysis of our proposed emphatic TD methods for both prediction and control.
[ Hall J ]

Active learning prioritizes the labeling of the most informative data samples. However, the performance of active learning heuristics depends on both the structure of the underlying model architecture and the data. We propose IALE, an imitation learning scheme that imitates the selection of the best-performing expert heuristic at each stage of the learning cycle in a batch-mode pool-based setting. We use Dagger to train a transferable policy on a dataset and later apply it to different datasets and deep classifier architectures. The policy reflects on the best choices from multiple expert heuristics given the current state of the active learning process, and learns to select samples in a complementary way that unifies the expert strategies. Our experiments on well-known image datasets show that we outperform state of the art imitation learners and heuristics.
[ Hall J ]

In rank aggregation (RA), a collection of preferences from different users are summarized into a total order under the assumption of homogeneity of users. Model misspecification in RA arises since the homogeneity assumption fails to be satisfied in the complex real-world situation. Existing robust RAs usually resort to an augmentation of the ranking model to account for additional noises, where the collected preferences can be treated as a noisy perturbation of idealized preferences. Since the majority of robust RAs rely on certain perturbation assumptions, they cannot generalize well to agnostic noise-corrupted preferences in the real world. In this paper, we propose CoarsenRank, which possesses robustness against model misspecification. Specifically, the properties of our CoarsenRank are summarized as follows: (1) CoarsenRank is designed for mild model misspecification, which assumes there exist the ideal preferences (consistent with model assumption) that locate in a neighborhood of the actual preferences. (2) CoarsenRank then performs regular RAs over a neighborhood of the preferences instead of the original data set directly. Therefore, CoarsenRank enjoys robustness against model misspecification within a neighborhood. (3) The neighborhood of the data set is defined via their empirical data distributions. Further, we put an exponential prior on the unknown size of …
[ Hall J ]

The Bayesian treatment of neural networks dictates that a prior distribution is specified over their weight and bias parameters. This poses a challenge because modern neural networks are characterized by a large number of parameters, and the choice of these priors has an uncontrolled effect on the induced functional prior, which is the distribution of the functions obtained by sampling the parameters from their prior distribution. We argue that this is a hugely limiting aspect of Bayesian deep learning, and this work tackles this limitation in a practical and effective way. Our proposal is to reason in terms of functional priors, which are easier to elicit, and to “tune” the priors of neural network parameters in a way that they reflect such functional priors. Gaussian processes offer a rigorous framework to define prior distributions over functions, and we propose a novel and robust framework to match their prior with the functional prior of neural networks based on the minimization of their Wasserstein distance. We provide vast experimental evidence that coupling these priors with scalable Markov chain Monte Carlo sampling offers systematically large performance improvements over alternative choices of priors and state-of-the-art approximate Bayesian deep learning approaches. We consider this work …
[ Hall J ]

Fourier phase retrieval is a classical problem that deals with the recovery of an image from the amplitude measurements of its Fourier coefficients. Conventional methods solve this problem via iterative (alternating) minimization by leveraging some prior knowledge about the structure of the unknown image. The inherent ambiguities about shift and flip in the Fourier measurements make this problem especially difficult; and most of the existing methods use several random restarts with different permutations. In this paper, we assume that a known (learned) reference is added to the signal before capturing the Fourier amplitude measurements. Our method is inspired by the principle of adding a reference signal in holography. To recover the signal, we implement an iterative phase retrieval method as an unrolled network. Then we use back propagation to learn the reference that provides us the best reconstruction for a fixed number of phase retrieval iterations. We performed a number of simulations on a variety of datasets under different conditions and found that our proposed method for phase retrieval via unrolled network and learned reference provides near-perfect recovery at fixed (small) computational cost. We compared our method with standard Fourier phase retrieval methods and observed significant performance enhancement using the …
[ Hall J ]
In this work, the paper Strategic Classification Made Practical is evaluated through a reproduction study. We successfully reproduced the original results using the same dataset and hyperparameters. In addition, we conducted an additional experiment that tests the framework's performance a dataset containing both strategic and non-strategic users. The results show significant decrease in accuracy of linear models proportional to the number of non-strategic users. The non-linear RNN model achieves good performance regardless of the proportion of strategic users. The results provide insight into the limitations of the claims that the original approach is flexible and practical.
[ Hall J ]

The studied paper proposes a novel output layer for graph neural networks (the graph edit network - GEN). The objective of this reproduction is to assess the possibility of its re-implementation in the Python programming language and the adherence of the provided code to the methodology, described in the source material. Additionally, we rigorously evaluate the functions used to create the synthetic data sets, on which the models are evaluated. Finally, we also pay attention to the claim that the proposed architecture scales well to larger graphs.
Invited Talk: Alondra Nelson
Blueprint for an AI Bill of Rights Making Automated Systems Work for the American People
Among the great challenges posed to democracy today is the use of technology, data, and automated systems in ways that threaten the rights of the American public. Too often, these tools are used to limit our opportunities and prevent our access to critical resources or services. These problems are well documented. In America and around the world, systems supposed to help with patient care have proven unsafe, ineffective, or biased. Algorithms used in hiring and credit decisions have been found to reflect and reproduce existing unwanted inequities or embed new harmful bias and discrimination. Unchecked social media data collection has been used to threaten people’s opportunities, undermine their privacy, or pervasively track their activity—often without their knowledge or consent.
These outcomes are deeply harmful—but they are not inevitable. Automated systems have brought about extraordinary benefits, from technology that helps farmers grow food more efficiently and computers that predict storm paths, to algorithms that can identify diseases in patients. These tools now drive important decisions across sectors, while data is helping to revolutionize global industries. Fueled by the power of American innovation, these tools hold the potential to redefine every part of our society and make life better for everyone.
This important progress must not come at the price of civil rights or democratic values, foundational American principles that President Biden has affirmed as a cornerstone of his Administration. To advance President Biden’s vision, the White House Office of Science and Technology Policy has identified five principles that should guide the design, use, and deployment of automated systems to protect the American public in the age of artificial intelligence.
The Blueprint for an AI Bill of Rights is a guide for a society that protects all people from these threats—and uses technologies in ways that reinforce our highest values. Responding to the experiences of the American public, and informed by insights from researchers, technologists, advocates, journalists, and policymakers, this framework is accompanied by From Principles to Practice—a handbook for anyone seeking to incorporate these protections into policy and practice, including detailed steps toward actualizing these principles in the technological design process. These principles help provide guidance whenever automated systems can meaningfully impact the public’s rights, opportunities, or access to critical needs.
Bio :Poster Session 4 Wed 30 Nov 04:00 p.m.
[ Hall J ]

Real-world datasets exhibit imbalances of varying types and degrees. Several techniques based on re-weighting and margin adjustment of loss are often used to enhance the performance of neural networks, particularly on minority classes. In this work, we analyze the class-imbalanced learning problem by examining the loss landscape of neural networks trained with re-weighting and margin based techniques. Specifically, we examine the spectral density of Hessian of class-wise loss, through which we observe that the network weights converges to a saddle point in the loss landscapes of minority classes. Following this observation, we also find that optimization methods designed to escape from saddle points can be effectively used to improve generalization on minority classes. We further theoretically and empirically demonstrate that Sharpness-Aware Minimization (SAM), a recent technique that encourages convergence to a flat minima, can be effectively used to escape saddle points for minority classes. Using SAM results in a 6.2\% increase in accuracy on the minority classes over the state-of-the-art Vector Scaling Loss, leading to an overall average increase of 4\% across imbalanced datasets. The code is available at https://github.com/val-iisc/Saddle-LongTail.
[ Hall J ]
Deep active learning aims to reduce the annotation cost for the training of deep models, which is notoriously data-hungry. Until recently, deep active learning methods were ineffectual in the low-budget regime, where only a small number of examples are annotated. The situation has been alleviated by recent advances in representation and self-supervised learning, which impart the geometry of the data representation with rich information about the points. Taking advantage of this progress, we study the problem of subset selection for annotation through a “covering” lens, proposing ProbCover – a new active learning algorithm for the low budget regime, which seeks to maximize Probability Coverage. We then describe a dual way to view the proposed formulation, from which one can derive strategies suitable for the high budget regime of active learning, related to existing methods like Coreset. We conclude with extensive experiments, evaluating ProbCover in the low-budget regime. We show that our principled active learning strategy improves the state-of-the-art in the low-budget regime in several image recognition benchmarks. This method is especially beneficial in the semi-supervised setting, allowing state-of-the-art semi-supervised methods to match the performance of fully supervised methods, while using much fewer labels nonetheless. Code is available at https://github.com/avihu111/TypiClust.
[ Hall J ]

Improving the performance of deep networks in data-limited regimes has warranted much attention. In this work, we empirically show that “winning tickets” (small sub-networks) obtained via magnitude pruning based on the lottery ticket hypothesis, apart from being sparse are also effective recognizers in data-limited regimes. Based on extensive experiments, we find that in low data regimes (datasets of 50-100 examples per class), sparse winning tickets substantially outperform the original dense networks. This approach, when combined with augmentations or fine-tuning from a self-supervised backbone network, shows further improvements in performance by as much as 16% (absolute) on low-sample datasets and long-tailed classification. Further, sparse winning tickets are more robust to synthetic noise and distribution shifts compared to their dense counterparts. Our analysis of winning tickets on small datasets indicates that, though sparse, the networks retain density in the initial layers and their representations are more generalizable. Code is available at https://github.com/VITA-Group/DataEfficientLTH.
[ Hall J ]
Models can fail in unpredictable ways during deployment due to task ambiguity, when multiple behaviors are consistent with the provided training data. An example is an object classifier trained on red squares and blue circles: when encountering blue squares, the intended behavior is undefined. We investigate whether pretrained models are better active learners, capable of disambiguating between the possible tasks a user may be trying to specify. Intriguingly, we find that better active learning is an emergent property of the pretraining process: pretrained models require up to 5 times fewer labels when using uncertainty-based active learning, while non-pretrained models see no or even negative benefit. We find these gains come from an ability to select examples with attributes that disambiguate the intended behavior, such as rare product categories or atypical backgrounds. These attributes are far more linearly separable in pretrained model's representation spaces vs non-pretrained models, suggesting a possible mechanism for this behavior.
[ Hall J ]

We develop an algorithm which can learn from partially labeled and unsegmented sequential data. Most sequential loss functions, such as Connectionist Temporal Classification (CTC), break down when many labels are missing. We address this problem with Star Temporal Classification (STC) which uses a special star token to allow alignments which include all possible tokens whenever a token could be missing. We express STC as the composition of weighted finite-state transducers (WFSTs) and use GTN (a framework for automatic differentiation with WFSTs) to compute gradients. We perform extensive experiments on automatic speech recognition. These experiments show that STC can close the performance gap with supervised baseline to about 1% WER when up to 70% of the labels are missing. We also perform experiments in handwriting recognition to show that our method easily applies to other temporal classification tasks.
[ Hall J ]

We present three novel strategies to incorporate a parametric body model into a pixel-aligned implicit model for single-view clothed human reconstruction. Firstly, we introduce ray-based sampling, a novel technique that transforms a parametric model into a set of highly informative, pixel-aligned 2D feature maps. Next, we propose a new type of feature based on blendweights. Blendweight-based labels serve as soft human parsing labels and help to improve the structural fidelity of reconstructed meshes. Finally, we show how we can extract and capitalize on body part orientation information from a parametric model to further improve reconstruction quality. Together, these three techniques form our S-PIFu framework, which significantly outperforms state-of-the-arts methods in all metrics. Our code is available at https://github.com/kcyt/SPIFu.
[ Hall J ]

Consider the problem setting of Interaction-Grounded Learning (IGL), in which a learner's goal is to optimally interact with the environment with no explicit reward to ground its policies. The agent observes a context vector, takes an action, and receives a feedback vector, using this information to effectively optimize a policy with respect to a latent reward function. Prior analyzed approaches fail when the feedback vector contains the action, which significantly limits IGL’s success in many potential scenarios such as Brain-computer interface (BCI) or Human-computer interface (HCI) applications. We address this by creating an algorithm and analysis which allows IGL to work even when the feedback vector contains the action, encoded in any fashion. We provide theoretical guarantees and large-scale experiments based on supervised datasets to demonstrate the effectiveness of the new approach.
[ Hall J ]

During initial iterations of training in most Reinforcement Learning (RL) algorithms, agents perform a significant number of random exploratory steps. In the real world, this can limit the practicality of these algorithms as it can lead to potentially dangerous behavior. Hence safe exploration is a critical issue in applying RL algorithms in the real world. This problem has been recently well studied under the Constrained Markov Decision Process (CMDP) Framework, where in addition to single-stage rewards, an agent receives single-stage costs or penalties as well depending on the state transitions. The prescribed cost functions are responsible for mapping undesirable behavior at any given time-step to a scalar value. The goal then is to find a feasible policy that maximizes reward returns while constraining the cost returns to be below a prescribed threshold during training as well as deployment.We propose an On-policy Model-based Safe Deep RL algorithm in which we learn the transition dynamics of the environment in an online manner as well as find a feasible optimal policy using the Lagrangian Relaxation-based Proximal Policy Optimization. We use an ensemble of neural networks with different initializations to tackle epistemic and aleatoric uncertainty issues faced during environment model learning. We compare our …
[ Hall J ]
We present Neural Correspondence Prior (NCP), a new paradigm for computing correspondences between 3D shapes. Our approach is fully unsupervised and can lead to high quality correspondences even in challenging cases such as sparse point clouds or non-isometric meshes, where current methods fail. Our first key observation is that, in line with neural priors observed in other domains, recent network architectures on 3D data, even without training, tend to produce pointwise features that induce plausible maps between rigid or non-rigid shapes. Secondly, we show that given a noisy map as input, training a feature extraction network with the input map as supervision, tends to remove artifacts from the input and can act as a powerful correspondence denoising mechanism, both between individual pairs and within a collection. With these observations in hand, we propose a two-stage unsupervised paradigm for shape matching, by (i) performing unsupervised training by adapting an existing approach to obtain an initial set of noisy matches, (ii) using these matches to train a network in a supervised manner. We demonstrate that this approach significantly improves the accuracy of the maps, especially when trained within a collection. We show that NCP is data-efficient, fast, and achieves state-of-the-art results on …
[ Hall J ]

Neural networks are often trained with empirical risk minimization; however, it has been shown that a shift between training and testing distributions can cause unpredictable performance degradation. On this issue, a research direction, invariant learning, has been proposed to extract causal features insensitive to the distributional changes. This work proposes EDNIL, an invariant learning framework containing a multi-head neural network to absorb data biases. We show that this framework does not require prior knowledge about environments or strong assumptions about the pre-trained model. We also reveal that the proposed algorithm has theoretical connections to recent studies discussing properties of variant and invariant features. Finally, we demonstrate that models trained with EDNIL are empirically more robust against distributional shifts.
[ Hall J ]

[ Hall J ]
A large amount of recent research has the far-reaching goal of finding training methods for deep neural networks that can serve as alternatives to backpropagation~(BP). A prominent example is predictive coding (PC), which is a neuroscience-inspired method that performs inference on hierarchical Gaussian generative models. These methods, however, fail to keep up with modern neural networks, as they are unable to replicate the dynamics of complex layers and activation functions. In this work, we solve this problem by generalizing PC to arbitrary probability distributions, enabling the training of architectures, such as transformers, that are hard to approximate with only Gaussian assumptions. We perform three experimental analyses. First, we study the gap between our method and the standard formulation of PC on multiple toy examples. Second, we test the reconstruction quality on variational autoencoders, where our method reaches the same reconstruction quality as BP. Third, we show that our method allows us to train transformer networks and achieve performance comparable with BP on conditional language models. More broadly, this method allows neuroscience-inspired learning to be applied to multiple domains, since the internal distributions can be flexibly adapted to the data, tasks, and architectures used.
[ Hall J ]

Generative flow networks (GFlowNets) are a method for learning a stochastic policy for generating compositional objects, such as graphs or strings, from a given unnormalized density by sequences of actions, where many possible action sequences may lead to the same object. We find previously proposed learning objectives for GFlowNets, flow matching and detailed balance, which are analogous to temporal difference learning, to be prone to inefficient credit propagation across long action sequences. We thus propose a new learning objective for GFlowNets, trajectory balance, as a more efficient alternative to previously used objectives. We prove that any global minimizer of the trajectory balance objective can define a policy that samples exactly from the target distribution. In experiments on four distinct domains, we empirically demonstrate the benefits of the trajectory balance objective for GFlowNet convergence, diversity of generated samples, and robustness to long action sequences and large action spaces.
[ Hall J ]

Equilibrium systems are a powerful way to express neural computations. As special cases, they include models of great current interest in both neuroscience and machine learning, such as deep neural networks, equilibrium recurrent neural networks, deep equilibrium models, or meta-learning. Here, we present a new principle for learning such systems with a temporally- and spatially-local rule. Our principle casts learning as a \emph{least-control} problem, where we first introduce an optimal controller to lead the system towards a solution state, and then define learning as reducing the amount of control needed to reach such a state. We show that incorporating learning signals within a dynamics as an optimal control enables transmitting activity-dependent credit assignment information, avoids storing intermediate states in memory, and does not rely on infinitesimal learning signals. In practice, our principle leads to strong performance matching that of leading gradient-based learning methods when applied to an array of problems involving recurrent neural networks and meta-learning. Our results shed light on how the brain might learn and offer new ways of approaching a broad class of machine learning problems.
[ Hall J ]

Allowing agents to share information through communication is crucial for solving complex tasks in multi-agent reinforcement learning. In this work, we consider the question of whether a given communication protocol can express an arbitrary policy. By observing that many existing protocols can be viewed as instances of graph neural networks (GNNs), we demonstrate the equivalence of joint action selection to node labelling. With standard GNN approaches provably limited in their expressive capacity, we draw from existing GNN literature and consider augmenting agent observations with: (1) unique agent IDs and (2) random noise. We provide a theoretical analysis as to how these approaches yield universally expressive communication, and also prove them capable of targeting arbitrary sets of actions for identical agents. Empirically, these augmentations are found to improve performance on tasks where expressive communication is required, whilst, in general, the optimal communication protocol is found to be task-dependent.
[ Hall J ]
In this paper, we advocate for two stages in a neural network's decision making process. The first is the existing feed-forward inference framework where patterns in given data are sensed and associated with previously learned patterns. The second stage is a slower reflection stage where we ask the network to reflect on its feed-forward decision by considering and evaluating all available choices. Together, we term the two stages as introspective learning. We use gradients of trained neural networks as a measurement of this reflection. A simple three-layered Multi Layer Perceptron is used as the second stage that predicts based on all extracted gradient features. We perceptually visualize the post-hoc explanations from both stages to provide a visual grounding to introspection. For the application of recognition, we show that an introspective network is 4% more robust and 42% less prone to calibration errors when generalizing to noisy data. We also illustrate the value of introspective networks in downstream tasks that require generalizability and calibration including active learning, out-of-distribution detection, and uncertainty estimation. Finally, we ground the proposed machine introspection to human introspection for the application of image quality assessment.
[ Hall J ]
[ Hall J ]

Advanced deep neural networks (DNNs), designed by either human or AutoML algorithms, are growing increasingly complex. Diverse operations are connected by complicated connectivity patterns, e.g., various types of skip connections. Those topological compositions are empirically effective and observed to smooth the loss landscape and facilitate the gradient flow in general. However, it remains elusive to derive any principled understanding of their effects on the DNN capacity or trainability, and to understand why or in which aspect one specific connectivity pattern is better than another. In this work, we theoretically characterize the impact of connectivity patterns on the convergence of DNNs under gradient descent training in fine granularity. By analyzing a wide network's Neural Network Gaussian Process (NNGP), we are able to depict how the spectrum of an NNGP kernel propagates through a particular connectivity pattern, and how that affects the bound of convergence rates. As one practical implication of our results, we show that by a simple filtration of "unpromising" connectivity patterns, we can trim down the number of models to evaluate, and significantly accelerate the large-scale neural architecture search without any overhead.
[ Hall J ]

In computer-aided drug discovery (CADD), virtual screening (VS) is used for comparing a library of compounds against known active ligands to identify the drug candidates that are most likely to bind to a molecular target. Most VS methods to date have focused on using canonical compound representations (e.g., SMILES strings, Morgan fingerprints) or generating alternative fingerprints of the compounds by training progressively more complex variational autoencoders (VAEs) and graph neural networks (GNNs). Although VAEs and GNNs led to significant improvements in VS performance, these methods suffer from reduced performance when scaling to large virtual compound datasets. The performance of these methods has shown only incremental improvements in the past few years. To address this problem, we developed a novel method using multiparameter persistence (MP) homology that produces topological fingerprints of the compounds as multidimensional vectors. Our primary contribution is framing the VS process as a new topology-based graph ranking problem by partitioning a compound into chemical substructures informed by the periodic properties of its atoms and extracting their persistent homology features at multiple resolution levels. We show that the margin loss fine-tuning of pretrained Triplet networks attains highly competitive results in differentiating between compounds in the embedding space and ranking …
[ Hall J ]
We present Spartan, a method for training sparse neural network models with a predetermined level of sparsity. Spartan is based on a combination of two techniques: (1) soft top-k masking of low-magnitude parameters via a regularized optimal transportation problem and (2) dual averaging-based parameter updates with hard sparsification in the forward pass. This scheme realizes an exploration-exploitation tradeoff: early in training, the learner is able to explore various sparsity patterns, and as the soft top-k approximation is gradually sharpened over the course of training, the balance shifts towards parameter optimization with respect to a fixed sparsity mask. Spartan is sufficiently flexible to accommodate a variety of sparsity allocation policies, including both unstructured and block-structured sparsity, global and per-layer sparsity budgets, as well as general cost-sensitive sparsity allocation mediated by linear models of per-parameter costs. On ImageNet-1K classification, we demonstrate that training with Spartan yields 95% sparse ResNet-50 models and 90% block sparse ViT-B/16 models while incurring absolute top-1 accuracy losses of less than 1% compared to fully dense training.
[ Hall J ]

We study the problem of clustering graphs with additional side-information of node features. The problem is extensively studied, and several existing methods exploit Graph Neural Networks to learn node representations. However, most of the existing methods focus on generic representations instead of their cluster-ability or do not scale to large scale graph datasets. In this work, we propose S3GC which uses contrastive learning along with Graph Neural Networks and node features to learn clusterable features. We empirically demonstrate that S3GC is able to learn the correct cluster structure even when graph information or node features are individually not informative enough to learn correct clusters. Finally, using extensive evaluation on a variety of benchmarks, we demonstrate that S3GC is able to significantly outperform state-of-the-art methods in terms of clustering accuracy -- with as much as 5% gain in NMI -- while being scalable to graphs of size 100M.
[ Hall J ]

In accelerated MRI reconstruction, the anatomy of a patient is recovered from a set of undersampled and noisy measurements. Deep learning approaches have been proven to be successful in solving this ill-posed inverse problem and are capable of producing very high quality reconstructions. However, current architectures heavily rely on convolutions, that are content-independent and have difficulties modeling long-range dependencies in images. Recently, Transformers, the workhorse of contemporary natural language processing, have emerged as powerful building blocks for a multitude of vision tasks. These models split input images into non-overlapping patches, embed the patches into lower-dimensional tokens and utilize a self-attention mechanism that does not suffer from the aforementioned weaknesses of convolutional architectures. However, Transformers incur extremely high compute and memory cost when 1) the input image resolution is high and 2) when the image needs to be split into a large number of patches to preserve fine detail information, both of which are typical in low-level vision problems such as MRI reconstruction, having a compounding effect. To tackle these challenges, we propose HUMUS-Net, a hybrid architecture that combines the beneficial implicit bias and efficiency of convolutions with the power of Transformer blocks in an unrolled and multi-scale network. HUMUS-Net extracts …
[ Hall J ]

We study embedding table placement for distributed recommender systems, which aims to partition and place the tables on multiple hardware devices (e.g., GPUs) to balance the computation and communication costs. Although prior work has explored learning-based approaches for the device placement of computational graphs, embedding table placement remains to be a challenging problem because of 1) the operation fusion of embedding tables, and 2) the generalizability requirement on unseen placement tasks with different numbers of tables and/or devices. To this end, we present DreamShard, a reinforcement learning (RL) approach for embedding table placement. DreamShard achieves the reasoning of operation fusion and generalizability with 1) a cost network to directly predict the costs of the fused operation, and 2) a policy network that is efficiently trained on an estimated Markov decision process (MDP) without real GPU execution, where the states and the rewards are estimated with the cost network. Equipped with sum and max representation reductions, the two networks can directly generalize to any unseen tasks with different numbers of tables and/or devices without fine-tuning. Extensive experiments show that DreamShard substantially outperforms the existing human expert and RNN-based strategies with up to 19% speedup over the strongest baseline on large-scale synthetic …
[ Hall J ]
Continual learning faces a crucial challenge of catastrophic forgetting. To address this challenge, experience replay (ER) that maintains a tiny subset of samples from previous tasks has been commonly used. Existing ER works usually focus on refining the learning objective for each task with a static memory construction policy. In this paper, we formulate the dynamic memory construction in ER as a combinatorial optimization problem, which aims at directly minimizing the global loss across all experienced tasks. We first apply three tactics to solve the problem in the offline setting as a starting point. To provide an approximate solution to this problem under the online continual learning setting, we further propose the Global Pseudo-task Simulation (GPS), which mimics future catastrophic forgetting of the current task by permutation. Our empirical results and analyses suggest that the GPS consistently improves accuracy across four commonly used vision benchmarks. We have also shown that our GPS can serve as the unified framework for integrating various memory construction policies in existing ER works.
[ Hall J ]

Objective-space decomposition algorithms (ODAs) are widely studied for solving multi-objective integer programs. However, they often encounter difficulties in handling scalarized problems, which could cause infeasibility or repetitive nondominated points and thus induce redundant runtime. To mitigate the issue, we present a graph neural network (GNN) based method to learn the reduction rule in the ODA. We formulate the algorithmic procedure of generic ODAs as a Markov decision process, and parameterize the policy (reduction rule) with a novel two-stage GNN to fuse information from variables, constraints and especially objectives for better state representation. We train our model with imitation learning and deploy it on a state-of-the-art ODA. Results show that our method significantly improves the solving efficiency of the ODA. The learned policy generalizes fairly well to larger problems or more objectives, and the proposed GNN outperforms existing ones for integer programming in terms of test and generalization accuracy.
[ Hall J ]

Although reinforcement learning has found widespread use in dense reward settings, training autonomous agents with sparse rewards remains challenging. To address this difficulty, prior work has shown promising results when using not only task-specific demonstrations but also task-agnostic albeit somewhat related demonstrations. In most cases, the available demonstrations are distilled into an implicit prior, commonly represented via a single deep net. Explicit priors in the form of a database that can be queried have also been shown to lead to encouraging results. To better benefit from available demonstrations, we develop a method to Combine Explicit and Implicit Priors (CEIP). CEIP exploits multiple implicit priors in the form of normalizing flows in parallel to form a single complex prior. Moreover, CEIP uses an effective explicit retrieval and push-forward mechanism to condition the implicit priors. In three challenging environments, we find the proposed CEIP method to improve upon sophisticated state-of-the-art techniques.
[ Hall J ]

Deep learning models have been found with a tendency of relying on shortcuts, i.e., decision rules that perform well on standard benchmarks but fail when transferred to more challenging testing conditions. Such reliance may hinder deep learning models from learning other task-related features and seriously affect their performance and robustness. Although recent studies have shown some characteristics of shortcuts, there are few investigations on how to help the deep learning models to solve shortcut problems. This paper proposes a framework to address this issue by setting up roadblocks on shortcuts. Specifically, roadblocks are placed when the model is urged to learn to complete a gently modified task to ensure that the learned knowledge, including shortcuts, is insufficient the complete the task. Therefore, the model trained on the modified task will no longer over-rely on shortcuts. Extensive experiments demonstrate that the proposed framework significantly improves the training of networks on both synthetic and real-world datasets in terms of both classification accuracy and feature diversity. Moreover, the visualization results show that the mechanism behind the proposed our method is consistent with our expectations. In summary, our approach can effectively disable the shortcuts and thus learn more robust features.
[ Hall J ]
Graph convolution networks (GCNs) for recommendations have emerged as an important research topic due to their ability to exploit higher-order neighbors. Despite their success, most of them suffer from the popularity bias brought by a small number of active users and popular items. Also, a real-world user-item bipartite graph contains many noisy interactions, which may hamper the sensitive GCNs. Graph contrastive learning show promising performance for solving the above challenges in recommender systems. Most existing works typically perform graph augmentation to create multiple views of the original graph by randomly dropping edges/nodes or relying on predefined rules, and these augmented views always serve as an auxiliary task by maximizing their correspondence. However, we argue that the graph structures generated from these vanilla approaches may be suboptimal, and maximizing their correspondence will force the representation to capture information irrelevant for the recommendation task. Here, we propose a Contrastive Graph Structure Learning via Information Bottleneck (CGI) for recommendation, which adaptively learns whether to drop an edge or node to obtain optimized graph structures in an end-to-end manner. Moreover, we innovatively introduce the Information Bottleneck into the contrastive learning process to avoid capturing irrelevant information among different views and help enrich the final …
[ Hall J ]
Conditional generative adversarial networks (cGANs) have shown superior results in class-conditional generation tasks. To simultaneously control multiple conditions, cGANs require multi-label training datasets, where multiple labels can be assigned to each data instance. Nevertheless, the tremendous annotation cost limits the accessibility of multi-label datasets in real-world scenarios. Therefore, in this study we explore the practical setting called the single positive setting, where each data instance is annotated by only one positive label with no explicit negative labels. To generate multi-label data in the single positive setting, we propose a novel sampling approach called single-to-multi-label (S2M) sampling, based on the Markov chain Monte Carlo method. As a widely applicable “add-on” method, our proposed S2M sampling method enables existing unconditional and conditional GANs to draw high-quality multi-label data with a minimal annotation cost. Extensive experiments on real image datasets verify the effectiveness and correctness of our method, even when compared to a model trained with fully annotated datasets.
[ Hall J ]

Structure-based drug design (SBDD) aims to discover drug candidates by finding molecules (ligands) that bind tightly to a disease-related protein (targets), which is the primary approach to computer-aided drug discovery. Recently, applying deep generative models for three-dimensional (3D) molecular design conditioned on protein pockets to solve SBDD has attracted much attention, but their formulation as probabilistic modeling often leads to unsatisfactory optimization performance. On the other hand, traditional combinatorial optimization methods such as genetic algorithms (GA) have demonstrated state-of-the-art performance in various molecular optimization tasks. However, they do not utilize protein target structure to inform design steps but rely on a random-walk-like exploration, which leads to unstable performance and no knowledge transfer between different tasks despite the similar binding physics. To achieve a more stable and efficient SBDD, we propose Reinforced Genetic Algorithm (RGA) that uses neural models to prioritize the profitable design steps and suppress random-walk behavior. The neural models take the 3D structure of the targets and ligands as inputs and are pre-trained using native complex structures to utilize the knowledge of the shared binding physics from different targets and then fine-tuned during optimization. We conduct thorough empirical studies on optimizing binding affinity to various disease targets and …
[ Hall J ]
Few-shot classification aims to learn a classifier to recognize unseen classes during training, where the learned model can easily become over-fitted based on the biased distribution formed by only a few training examples. A recent solution to this problem is calibrating the distribution of these few sample classes by transferring statistics from the base classes with sufficient examples, where how to decide the transfer weights from base classes to novel classes is the key. However, principled approaches for learning the transfer weights have not been carefully studied. To this end, we propose a novel distribution calibration method by learning the adaptive weight matrix between novel samples and base classes, which is built upon a hierarchical Optimal Transport (H-OT) framework. By minimizing the high-level OT distance between novel samples and base classes, we can view the learned transport plan as the adaptive weight information for transferring the statistics of base classes. The learning of the cost function between a base class and novel class in the high-level OT leads to the introduction of the low-level OT, which considers the weights of all the data samples in the base class. Experimental results on standard benchmarks demonstrate that our proposed plug-and-play model outperforms …
[ Hall J ]

CLIP yielded impressive results on zero-shot transfer learning tasks and is considered as a foundation model like BERT or GPT3. CLIP vision models that have a rich representation are pre-trained using the InfoNCE objective and natural language supervision before they are fine-tuned on particular tasks. Though CLIP excels at zero-shot transfer learning, it suffers from an explaining away problem, that is, it focuses on one or few features, while neglecting other relevant features. This problem is caused by insufficiently extracting the covariance structure in the original multi-modal data. We suggest to use modern Hopfield networks to tackle the problem of explaining away. Their retrieved embeddings have an enriched covariance structure derived from co-occurrences of features in the stored embeddings. However, modern Hopfield networks increase the saturation effect of the InfoNCE objective which hampers learning. We propose to use the InfoLOOB objective to mitigate this saturation effect. We introduce the novel "Contrastive Leave One Out Boost" (CLOOB), which uses modern Hopfield networks for covariance enrichment together with the InfoLOOB objective. In experiments we compare CLOOB to CLIP after pre-training on the Conceptual Captions and the YFCC dataset with respect to their zero-shot transfer learning performance on other datasets. CLOOB consistently outperforms …
[ Hall J ]
Transformers have made remarkable progress towards modeling long-range dependencies within the medical image analysis domain. However, current transformer-based models suffer from several disadvantages: (1) existing methods fail to capture the important features of the images due to the naive tokenization scheme; (2) the models suffer from information loss because they only consider single-scale feature representations; and (3) the segmentation label maps generated by the models are not accurate enough without considering rich semantic contexts and anatomical textures. In this work, we present CASTformer, a novel type of adversarial transformers, for 2D medical image segmentation. First, we take advantage of the pyramid structure to construct multi-scale representations and handle multi-scale variations. We then design a novel class-aware transformer module to better learn the discriminative regions of objects with semantic structures. Lastly, we utilize an adversarial training strategy that boosts segmentation accuracy and correspondingly allows a transformer-based discriminator to capture high-level semantically correlated contents and low-level anatomical features. Our experiments demonstrate that CASTformer dramatically outperforms previous state-of-the-art transformer-based approaches on three benchmarks, obtaining 2.54%-5.88% absolute improvements in Dice over previous models. Further qualitative experiments provide a more detailed picture of the model’s inner workings, shed light on the challenges in improved transparency, …
[ Hall J ]

Deep neural networks achieve remarkable performances on a wide range of tasks with the aid of large-scale labeled datasets. Yet these datasets are time-consuming and labor-exhaustive to obtain on realistic tasks. To mitigate the requirement for labeled data, self-training is widely used in semi-supervised learning by iteratively assigning pseudo labels to unlabeled samples. Despite its popularity, self-training is well-believed to be unreliable and often leads to training instability. Our experimental studies further reveal that the bias in semi-supervised learning arises from both the problem itself and the inappropriate training with potentially incorrect pseudo labels, which accumulates the error in the iterative self-training process. To reduce the above bias, we propose Debiased Self-Training (DST). First, the generation and utilization of pseudo labels are decoupled by two parameter-independent classifier heads to avoid direct error accumulation. Second, we estimate the worst case of self-training bias, where the pseudo labeling function is accurate on labeled samples, yet makes as many mistakes as possible on unlabeled samples. We then adversarially optimize the representations to improve the quality of pseudo labels by avoiding the worst case. Extensive experiments justify that DST achieves an average improvement of 6.3% against state-of-the-art methods on standard semi-supervised learning benchmark datasets …
[ Hall J ]

[ Hall J ]

Research in scene graph generation (SGG) usually considers two-stage models, that is, detecting a set of entities, followed by combining them and labeling all possible relationships. While showing promising results, the pipeline structure induces large parameter and computation overhead, and typically hinders end-to-end optimizations. To address this, recent research attempts to train single-stage models that are more computationally efficient. With the advent of DETR, a set-based detection model, one-stage models attempt to predict a set of subject-predicate-object triplets directly in a single shot. However, SGG is inherently a multi-task learning problem that requires modeling entity and predicate distributions simultaneously. In this paper, we propose Transformers with conditional queries for SGG, namely, TraCQ with a new formulation for SGG that avoids the multi-task learning problem and the combinatorial entity pair distribution. We employ a DETR-based encoder-decoder design and leverage conditional queries to significantly reduce the entity label space as well, which leads to 20% fewer parameters compared to state-of-the-art one-stage models. Experimental results show that TraCQ not only outperforms existing single-stage scene graph generation methods, it also beats state-of-the-art two-stage methods on the Visual Genome dataset, yet is capable of end-to-end training and faster inference.
[ Hall J ]

In coded aperture snapshot spectral compressive imaging (CASSI) systems, hyperspectral image (HSI) reconstruction methods are employed to recover the spatial-spectral signal from a compressed measurement. Among these algorithms, deep unfolding methods demonstrate promising performance but suffer from two issues. Firstly, they do not estimate the degradation patterns and ill-posedness degree from CASSI to guide the iterative learning. Secondly, they are mainly CNN-based, showing limitations in capturing long-range dependencies. In this paper, we propose a principled Degradation-Aware Unfolding Framework (DAUF) that estimates parameters from the compressed image and physical mask, and then uses these parameters to control each iteration. Moreover, we customize a novel Half-Shuffle Transformer (HST) that simultaneously captures local contents and non-local dependencies. By plugging HST into DAUF, we establish the first Transformer-based deep unfolding method, Degradation-Aware Unfolding Half-Shuffle Transformer (DAUHST), for HSI reconstruction. Experiments show that DAUHST surpasses state-of-the-art methods while requiring cheaper computational and memory costs. Code and models are publicly available at https://github.com/caiyuanhao1998/MST
[ Hall J ]

Open-world object detection, as a more general and challenging goal, aims to recognize and localize objects described by arbitrary category names. The recent work GLIP formulates this problem as a grounding problem by concatenating all category names of detection datasets into sentences, which leads to inefficient interaction between category names. This paper presents DetCLIP, a paralleled visual-concept pre-training method for open-world detection by resorting to knowledge enrichment from a designed concept dictionary. To achieve better learning efficiency, we propose a novel paralleled concept formulation that extracts concepts separately to better utilize heterogeneous datasets (i.e., detection, grounding, and image-text pairs) for training. We further design a concept dictionary (with descriptions) from various online sources and detection datasets to provide prior knowledge for each concept. By enriching the concepts with their descriptions,we explicitly build the relationships among various concepts to facilitate the open-domain learning. The proposed concept dictionary is further used to provide sufficient negative concepts for the construction of the word-region alignment loss, and to complete labels for objects with missing descriptions in captions of image-text pair data. The proposed framework demonstrates strong zero-shot detection performances, e.g., on the LVIS dataset, our DetCLIP-T outperforms GLIP-T by 9.9% mAP and obtains a …
[ Hall J ]

In this paper, we study the problem of 3D object segmentation from raw point clouds. Unlike all existing methods which usually require a large amount of human annotations for full supervision, we propose the first unsupervised method, called OGC, to simultaneously identify multiple 3D objects in a single forward pass, without needing any type of human annotations. The key to our approach is to fully leverage the dynamic motion patterns over sequential point clouds as supervision signals to automatically discover rigid objects. Our method consists of three major components, 1) the object segmentation network to directly estimate multi-object masks from a single point cloud frame, 2) the auxiliary self-supervised scene flow estimator, and 3) our core object geometry consistency component. By carefully designing a series of loss functions, we effectively take into account the multi-object rigid consistency and the object shape invariance in both temporal and spatial scales. This allows our method to truly discover the object geometry even in the absence of annotations. We extensively evaluate our method on five datasets, demonstrating the superior performance for object part instance segmentation and general object segmentation in both indoor and the challenging outdoor scenarios.
[ Hall J ]

Near infrared (NIR) to Visible (VIS) face matching is challenging due to the significant domain gaps as well as a lack of sufficient data for cross-modality model training. To overcome this problem, we propose a novel method for paired NIR-VIS facial image generation. Specifically, we reconstruct 3D face shape and reflectance from a large 2D facial dataset and introduce a novel method of transforming the VIS reflectance to NIR reflectance. We then use a physically-based renderer to generate a vast, high-resolution and photorealistic dataset consisting of various poses and identities in the NIR and VIS spectra. Moreover, to facilitate the identity feature learning, we propose an IDentity-based Maximum Mean Discrepancy (ID-MMD) loss, which not only reduces the modality gap between NIR and VIS images at the domain level but encourages the network to focus on the identity features instead of facial details, such as poses and accessories. Extensive experiments conducted on four challenging NIR-VIS face recognition benchmarks demonstrate that the proposed method can achieve comparable performance with the state-of-the-art (SOTA) methods without requiring any existing NIR-VIS face recognition datasets. With slightly fine-tuning on the target NIR-VIS face recognition datasets, our method can significantly surpass the SOTA performance. Code and pretrained …
[ Hall J ]

We propose a novel normal estimation method called HSurf-Net, which can accurately predict normals from point clouds with noise and density variations. Previous methods focus on learning point weights to fit neighborhoods into a geometric surface approximated by a polynomial function with a predefined order, based on which normals are estimated. However, fitting surfaces explicitly from raw point clouds suffers from overfitting or underfitting issues caused by inappropriate polynomial orders and outliers, which significantly limits the performance of existing methods. To address these issues, we introduce hyper surface fitting to implicitly learn hyper surfaces, which are represented by multi-layer perceptron (MLP) layers that take point features as input and output surface patterns in a high dimensional feature space. We introduce a novel space transformation module, which consists of a sequence of local aggregation layers and global shift layers, to learn an optimal feature space, and a relative position encoding module to effectively convert point clouds into the learned feature space. Our model learns hyper surfaces from the noise-less features and directly predicts normal vectors. We jointly optimize the MLP weights and module parameters in a data-driven manner to make the model adaptively find the most suitable surface pattern for various …
[ Hall J ]

Self-supervised pre-training recently demonstrates success on large-scale multimodal data, and state-of-the-art contrastive learning methods often enforce the feature consistency from cross-modality inputs, such as video/audio or video/text pairs. Despite its convenience to formulate and leverage in practice, such cross-modality alignment (CMA) is only a weak and noisy supervision, since two modalities can be semantically misaligned even they are temporally aligned. For example, even in the (often adopted) instructional videos, a speaker can sometimes refer to something that is not visually present in the current frame; and the semantic misalignment would only be more unpredictable for the raw videos collected from unconstrained internet sources. We conjecture that might cause conflicts and biases among modalities, and may hence prohibit CMA from scaling up to training with larger and more heterogeneous data. This paper first verifies our conjecture by observing that, even in the latest VATT pre-training using only narrated videos, there exist strong gradient conflicts between different CMA losses within the same sample triplet (video, audio, text), indicating them as the noisy source of supervision. We then propose to harmonize such gradients during pre-training, via two techniques: (i) cross-modality gradient realignment: modifying different CMA loss gradients for one sample triplet, so that …
[ Hall J ]

Pretraining a language model (LM) on text has been shown to help various downstream NLP tasks. Recent works show that a knowledge graph (KG) can complement text data, offering structured background knowledge that provides a useful scaffold for reasoning. However, these works are not pretrained to learn a deep fusion of the two modalities at scale, limiting the potential to acquire fully joint representations of text and KG. Here we propose DRAGON (Deep Bidirectional Language-Knowledge Graph Pretraining), a self-supervised approach to pretraining a deeply joint language-knowledge foundation model from text and KG at scale. Specifically, our model takes pairs of text segments and relevant KG subgraphs as input and bidirectionally fuses information from both modalities. We pretrain this model by unifying two self-supervised reasoning tasks, masked language modeling and KG link prediction. DRAGON outperforms existing LM and LM+KG models on diverse downstream tasks including question answering across general and biomedical domains, with +5% absolute gain on average. In particular, DRAGON achieves notable performance on complex reasoning about language and knowledge (+10% on questions involving long contexts or multi-step reasoning) and low-resource QA (+8% on OBQA and RiddleSense), and new state-of-the-art results on various BioNLP tasks. Our code and trained models …
[ Hall J ]
Vision Transformers (ViTs) have recently achieved comparable or superior performance to Convolutional neural networks (CNNs) in computer vision. This empirical breakthrough is even more remarkable since ViTs discards spatial information by mixing patch embeddings and positional encodings and do not embed any visual inductive bias (e.g.\ spatial locality). Yet, recent work showed that while minimizing their training loss, ViTs specifically learn spatially delocalized patterns. This raises a central question: how do ViTs learn this pattern by solely minimizing their training loss using gradient-based methods from \emph{random initialization}? We propose a structured classification dataset and a simplified ViT model to provide preliminary theoretical justification of this phenomenon. Our model relies on a simplified attention mechanism --the positional attention mechanism-- where the attention matrix solely depends on the positional encodings. While the problem admits multiple solutions that generalize, we show that our model implicitly learns the spatial structure of the dataset while generalizing. We finally prove that learning the structure helps to sample-efficiently transfer to downstream datasets that share the same structure as the pre-training one but with different features. We empirically verify that ViTs using only the positional attention mechanism perform similarly to the original one on CIFAR-10/100, SVHN and ImageNet.
[ Hall J ]
The existence of adversarial examples poses concerns for the robustness of convolutional neural networks (CNN), for which a popular hypothesis is about the frequency bias phenomenon: CNNs rely more on high-frequency components (HFC) for classification than humans, which causes the brittleness of CNNs. However, most previous works manually select and roughly divide the image frequency spectrum and conduct qualitative analysis. In this work, we introduce Shapley value, a metric of cooperative game theory, into the frequency domain and propose to quantify the positive (negative) impact of every frequency component of data on CNNs. Based on the Shapley value, we quantify the impact in a fine-grained way and show intriguing instance disparity. Statistically, we investigate adversarial training(AT) and the adversarial attack in the frequency domain. The observations motivate us to perform an in-depth analysis and lead to multiple novel hypotheses about i) the cause of adversarial robustness of the AT model; ii) the fairness problem of AT between different classes in the same dataset; iii) the attack bias on different frequency components. Finally, we propose a Shapley-value guided data augmentation technique for improving the robustness. Experimental results on image classification benchmarks show its effectiveness.
[ Hall J ]
Fairness has become an important topic in machine learning. Generally, most literature on fairness assumes that the sensitive information, such as gender or race, is present in the training set, and uses this information to mitigate bias. However, due to practical concerns like privacy and regulation, applications of these methods are restricted. Also, although much of the literature studies supervised learning, in many real-world scenarios, we want to utilize the large unlabelled dataset to improve the model's accuracy. Can we improve fair classification without sensitive information and without labels? To tackle the problem, in this paper, we propose a novel reweighing-based contrastive learning method. The goal of our method is to learn a generally fair representation without observing sensitive attributes.Our method assigns weights to training samples per iteration based on their gradient directions relative to the validation samples such that the average top-k validation loss is minimized. Compared with past fairness methods without demographics, our method is built on fully unsupervised training data and requires only a small labelled validation set. We provide rigorous theoretical proof of the convergence of our model. Experimental results show that our proposed method achieves better or comparable performance than state-of-the-art methods on three datasets …
[ Hall J ]

[ Hall J ]

[ Hall J ]

Extracting informative representations of molecules using Graph neural networks (GNNs) is crucial in AI-driven drug discovery. Recently, the graph research community has been trying to replicate the success of self-supervised pretraining in natural language processing, with several successes claimed. However, we find the benefit brought by self-supervised pretraining on small molecular data can be negligible in many cases. We conduct thorough ablation studies on the key components of GNN pretraining, including pretraining objectives, data splitting methods, input features, pretraining dataset scales, and GNN architectures, to see how they affect the accuracy of the downstream tasks. Our first important finding is, self-supervised graph pretraining do not always have statistically significant advantages over non-pretraining methods in many settings. Secondly, although noticeable improvement can be observed with additional supervised pretraining, the improvement may diminish with richer features or more balanced data splits. Thirdly, hyper-parameters could have larger impacts on accuracy of downstream tasks than the choice of pretraining tasks, especially when the scales of downstream tasks are small. Finally, we provide our conjectures where the complexity of some pretraining methods on small molecules might be insufficient, followed by empirical evidences on different pretraining datasets.
[ Hall J ]

Explaining artificial intelligence (AI) predictions is increasingly important and even imperative in many high-stake applications where humans are the ultimate decision-makers. In this work, we propose two novel architectures of explainable image classifiers that first explain, and then predict (as opposed to post-hoc explanation methods). Our models first rank the training-set images by their distance with the query in an image-level deep feature space. And then, we re-rank the top-50 shortlisted candidates using patch-wise similarity of 5 highest-similarity pairs of patches between the query and every candidate. On ImageNet, our models improve (by 1-4 points) the out-of-distribution accuracy on several datasets including Adversarial Patch and ImageNet-R while performing marginally worse (by 1-2 points) on ImageNet to the baselines (ResNet-50 pre-trained ImageNet). A consistent trend is observed on CUB. Via a large-scale, human study (~60 users per method per dataset) on ImageNet and CUB, we find our proposed correspondence-based explanations led to human-alone image classification accuracy and human-AI team accuracy that are consistently better than those of k-NN. Our correspondence-based explanations help users better correctly reject AI's wrong decisions than all other tested methods.Interestingly, for the first time, we show that it is possible to achieve complementary human-AI team accuracy (i.e. …
[ Hall J ]

Recent action recognition models have achieved impressive results by integrating objects, their locations and interactions. However, obtaining dense structured annotations for each frame is tedious and time-consuming, making these methods expensive to train and less scalable. At the same time, if a small set of annotated images is available, either within or outside the domain of interest, how could we leverage these for a video downstream task? We propose a learning framework StructureViT (SViT for short), which demonstrates how utilizing the structure of a small number of images only available during training can improve a video model. SViT relies on two key insights. First, as both images and videos contain structured information, we enrich a transformer model with a set of object tokens that can be used across images and videos. Second, the scene representations of individual frames in video should ``align'' with those of still images. This is achieved via a Frame-Clip Consistency loss, which ensures the flow of structured information between images and videos. We explore a particular instantiation of scene structure, namely a Hand-Object Graph, consisting of hands and objects with their locations as nodes, and physical relations of contact/no-contact as edges. SViT shows strong performance improvements …
[ Hall J ]

Our world is ambiguous and this is reflected in the data we use to train our algorithms. This is particularly true when we try to model natural processes where collected data is affected by noisy measurements and differences in measurement techniques. Sometimes, the process itself is ambiguous, such as in the case of RNA folding, where the same nucleotide sequence can fold into different structures. This suggests that a predictive model should have similar probabilistic characteristics to match the data it models. Therefore, we propose a hierarchical latent distribution to enhance one of the most successful deep learning models, the Transformer, to accommodate ambiguities and data distributions. We show the benefits of our approach (1) on a synthetic task that captures the ability to learn a hidden data distribution, (2) with state-of-the-art results in RNA folding that reveal advantages on highly ambiguous data, and (3) demonstrating its generative capabilities on property-based molecule design by implicitly learning the underlying distributions and outperforming existing work.
[ Hall J ]

Deep learning models such as the Transformer are often constructed by heuristics and experience. To provide a complementary foundation, in this work we study the following problem: Is it possible to find an energy function underlying the Transformer model, such that descent steps along this energy correspond with the Transformer forward pass? By finding such a function, we can reinterpret Transformers as the unfolding of an interpretable optimization process. This unfolding perspective has been frequently adopted in the past to elucidate more straightforward deep models such as MLPs and CNNs; however, it has thus far remained elusive obtaining a similar equivalence for more complex models with self-attention mechanisms like the Transformer. To this end, we first outline several major obstacles before providing companion techniques to at least partially address them, demonstrating for the first time a close association between energy function minimization and deep layers with self-attention. This interpretation contributes to our intuition and understanding of Transformers, while potentially laying the ground-work for new model designs.
[ Hall J ]

This is the first attempt at considering human influence in the reinforcement learning control of a robotic lower limb prosthesis toward symmetrical walking in real world situations. We propose a collaborative multi-agent reinforcement learning (cMARL) solution framework for this highly complex and challenging human-prosthesis collaboration (HPC) problem. The design of an automatic controller of the robot within the HPC context is based on accessible physical features or measurements that are known to affect walking performance. Comparisons are made with the current state-of-the-art robot control designs, which are single-agent based, as well as existing MARL solution approaches tailored to the problem, including multi-agent deep deterministic policy gradient (MADDPG) and counterfactual multi-agent policy gradient (COMA). Results show that, when compared to these approaches, treating the human and robot as coupled agents and using estimated human adaption in robot control design can achieve lower stage cost, peak error, and symmetry value to ensure better human walking performance. Additionally, our approach accelerates learning of walking tasks and increases learning success rate. The proposed framework can potentially be further developed to examine how human and robotic lower limb prosthesis interact, an area that little is known about. Advancing cMARL toward real world applications such as …
[ Hall J ]

We analyze the storage and recall of factual associations in autoregressive transformer language models, finding evidence that these associations correspond to localized, directly-editable computations. We first develop a causal intervention for identifying neuron activations that are decisive in a model's factual predictions. This reveals a distinct set of steps in middle-layer feed-forward modules that mediate factual predictions while processing subject tokens. To test our hypothesis that these computations correspond to factual association recall, we modify feed-forward weights to update specific factual associations using Rank-One Model Editing (ROME). We find that ROME is effective on a standard zero-shot relation extraction (zsRE) model-editing task, comparable to existing methods. To perform a more sensitive evaluation, we also evaluate ROME on a new dataset of counterfactual assertions, on which it simultaneously maintains both specificity and generalization, whereas other methods sacrifice one or another. Our results confirm an important role for mid-layer feed-forward modules in storing factual associations and suggest that direct manipulation of computational mechanisms may be a feasible approach for model editing. The code, dataset, visualizations, and an interactive demo notebook are available in the supplemental materials.
[ Hall J ]
This paper explores learning emulators for parameter estimation with uncertainty estimation of high-dimensional dynamical systems. We assume access to a computationally complex simulator that inputs a candidate parameter and outputs a corresponding multi-channel time series. Our task is to accurately estimate a range of likely values of the underlying parameters. Standard iterative approaches necessitate running the simulator many times, which is computationally prohibitive. This paper describes a novel framework for learning feature embeddings of observed dynamics jointly with an emulator that can replace high-cost simulators. Leveraging a contrastive learning approach, our method exploits intrinsic data properties within and across parameter and trajectory domains. On a coupled 396-dimensional multiscale Lorenz 96 system, our method significantly outperforms a typical parameter estimation method based on predefined metrics and a classical numerical simulator, and with only 1.19% of the baseline's computation time. Ablation studies highlight the potential of explicitly designing learned emulators for parameter estimation by leveraging contrastive learning.
[ Hall J ]

We present a novel method for guaranteeing linear momentum in learned physics simulations. Unlike existing methods, we enforce conservation of momentum with a hard constraint, which we realize via antisymmetrical continuous convolutional layers. We combine these strict constraints with a hierarchical network architecture, a carefully constructed resampling scheme, and a training approach for temporal coherence. In combination, the proposed method allows us to increase the physical accuracy of the learned simulator substantially. In addition, the induced physical bias leads to significantly better generalization performance and makes our method more reliable in unseen test cases. We evaluate our method on a range of different, challenging fluid scenarios. Among others, we demonstrate that our approach generalizes to new scenarios with up to one million particles. Our results show that the proposed algorithm can learn complex dynamics while outperforming existing approaches in generalization and training performance. An implementation of our approach is available at https://github.com/tum-pbs/DMCF.
[ Hall J ]
Adapting to the changes in transition dynamics is essential in robotic applications. By learning a conditional policy with a compact context, context-aware meta-reinforcement learning provides a flexible way to adjust behavior according to dynamics changes. However, in real-world applications, the agent may encounter complex dynamics changes. Multiple confounders can influence the transition dynamics, making it challenging to infer accurate context for decision-making. This paper addresses such a challenge by decomposed mutual information optimization (DOMINO) for context learning, which explicitly learns a disentangled context to maximize the mutual information between the context and historical trajectories while minimizing the state transition prediction error. Our theoretical analysis shows that DOMINO can overcome the underestimation of the mutual information caused by multi-confounded challenges via learning disentangled context and reduce the demand for the number of samples collected in various environments. Extensive experiments show that the context learned by DOMINO benefits both model-based and model-free reinforcement learning algorithms for dynamics generalization in terms of sample efficiency and performance in unseen environments.
[ Hall J ]

[ Hall J ]

Bilevel optimization has arisen as a powerful tool in modern machine learning. However, due to the nested structure of bilevel optimization, even gradient-based methods require second-order derivative approximations via Jacobian- or/and Hessian-vector computations, which can be costly and unscalable in practice. Recently, Hessian-free bilevel schemes have been proposed to resolve this issue, where the general idea is to use zeroth- or first-order methods to approximate the full hypergradient of the bilevel problem. However, we empirically observe that such approximation can lead to large variance and unstable training, but estimating only the response Jacobian matrix as a partial component of the hypergradient turns out to be extremely effective. To this end, we propose a new Hessian-free method, which adopts the zeroth-order-like method to approximate the response Jacobian matrix via taking difference between two optimization paths. Theoretically, we provide the convergence rate analysis for the proposed algorithms, where our key challenge is to characterize the approximation and smoothness properties of the trajectory-dependent estimator, which can be of independent interest. This is the first known convergence rate result for this type of Hessian-free bilevel algorithms. Experimentally, we demonstrate that the proposed algorithms outperform baseline bilevel optimizers on various bilevel problems. Particularly, in our …
[ Hall J ]

Many important problems in science and engineering require solving the so-called parametric partial differential equations (PDEs), i.e., PDEs with different physical parameters, boundary conditions, shapes of computation domains, etc. Recently, building learning-based numerical solvers for parametric PDEs has become an emerging new field. One category of methods such as the Deep Galerkin Method (DGM) and Physics-Informed Neural Networks (PINNs) aim to approximate the solution of the PDEs. They are typically unsupervised and mesh-free, but require going through the time-consuming network training process from scratch for each set of parameters of the PDE. Another category of methods such as Fourier Neural Operator (FNO) and Deep Operator Network (DeepONet) try to approximate the solution mapping directly. Being fast with only one forward inference for each PDE parameter without retraining, they often require a large corpus of paired input-output observations drawn from numerical simulations, and most of them need a predefined mesh as well. In this paper, we propose Meta-Auto-Decoder (MAD), a mesh-free and unsupervised deep learning method that enables the pre-trained model to be quickly adapted to equation instances by implicitly encoding (possibly heterogenous) PDE parameters as latent vectors. The proposed method MAD can be interpreted by manifold learning in infinite-dimensional spaces, …
[ Hall J ]

Active learning theories and methods have been extensively studied in classical statistical learning settings. However, deep active learning, i.e., active learning with deep learning models, is usually based on empirical criteria without solid theoretical justification, thus suffering from heavy doubts when some of those fail to provide benefits in applications. In this paper, by exploring the connection between the generalization performance and the training dynamics, we propose a theory-driven deep active learning method (dynamicAL) which selects samples to maximize training dynamics. In particular, we prove that the convergence speed of training and the generalization performance is positively correlated under the ultra-wide condition and show that maximizing the training dynamics leads to a better generalization performance. Furthermore, to scale up to large deep neural networks and data sets, we introduce two relaxations for the subset selection problem and reduce the time complexity from polynomial to constant. Empirical results show that dynamicAL not only outperforms the other baselines consistently but also scales well on large deep learning models. We hope our work inspires more attempts in bridging the theoretical findings of deep networks and practical impacts in deep active learning applications.
[ Hall J ]
Existing pipelines of semantic correspondence commonly include extracting high-level semantic features for the invariance against intra-class variations and background clutters. This architecture, however, inevitably results in a low-resolution matching field that additionally requires an ad-hoc interpolation process as a post-processing for converting it into a high-resolution one, certainly limiting the overall performance of matching results. To overcome this, inspired by recent success of implicit neural representation, we present a novel method for semantic correspondence, called Neural Matching Field (NeMF). However, complicacy and high-dimensionality of a 4D matching field are the major hindrances, which we propose a cost embedding network to process a coarse cost volume to use as a guidance for establishing high-precision matching field through the following fully-connected network. Nevertheless, learning a high-dimensional matching field remains challenging mainly due to computational complexity, since a na\"ive exhaustive inference would require querying from all pixels in the 4D space to infer pixel-wise correspondences. To overcome this, we propose adequate training and inference procedures, which in the training phase, we randomly sample matching candidates and in the inference phase, we iteratively performs PatchMatch-based inference and coordinate optimization at test time. With these combined, competitive results are attained on several standard benchmarks for …
[ Hall J ]

Normalizing flows model probability distributions by learning invertible transformations that transfer a simple distribution into complex distributions. Since the architecture of ResNet-based normalizing flows is more flexible than that of coupling-based models, ResNet-based normalizing flows have been widely studied in recent years. Despite their architectural flexibility, it is well-known that the current ResNet-based models suffer from constrained Lipschitz constants. In this paper, we propose the monotone formulation to overcome the issue of the Lipschitz constants using monotone operators and provide an in-depth theoretical analysis. Furthermore, we construct an activation function called Concatenated Pila (CPila) to improve gradient flow. The resulting model, Monotone Flows, exhibits an excellent performance on multiple density estimation benchmarks (MNIST, CIFAR-10, ImageNet32, ImageNet64). Code is available at https://github.com/mlvlab/MonotoneFlows.
[ Hall J ]

In this paper, we address the "dual problem" of multi-view scene reconstruction in which we utilize single-view images captured under different point lights to learn a neural scene representation. Different from existing single-view methods which can only recover a 2.5D scene representation (i.e., a normal / depth map for the visible surface), our method learns a neural reflectance field to represent the 3D geometry and BRDFs of a scene. Instead of relying on multi-view photo-consistency, our method exploits two information-rich monocular cues, namely shading and shadow, to infer scene geometry. Experiments on multiple challenging datasets show that our method is capable of recovering 3D geometry, including both visible and invisible parts, of a scene from single-view images. Thanks to the neural reflectance field representation, our method is robust to depth discontinuities. It supports applications like novel-view synthesis and relighting. Our code and model can be found at https://ywq.github.io/s3nerf.
[ Hall J ]

Multi-modal learning is essential for understanding information in the real world. Jointly learning from multi-modal data enables global integration of both shared and modality-specific information, but current strategies often fail when observa- tions from certain modalities are incomplete or missing for part of the subjects. To learn comprehensive representations based on such modality-incomplete data, we present a semi-supervised neural network model called CLUE (Cross-Linked Unified Embedding). Extending from multi-modal VAEs, CLUE introduces the use of cross-encoders to construct latent representations from modality-incomplete observations. Representation learning for modality-incomplete observations is common in genomics. For example, human cells are tightly regulated across multi- ple related but distinct modalities such as DNA, RNA, and protein, jointly defining a cell’s function. We benchmark CLUE on multi-modal data from single cell measurements, illustrating CLUE’s superior performance in all assessed categories of the NeurIPS 2021 Multimodal Single-cell Data Integration Competition. While we focus on analysis of single cell genomic datasets, we note that the proposed cross-linked embedding strategy could be readily applied to other cross-modality representation learning problems.
[ Hall J ]

While audio-visual speech models can yield superior performance and robustness compared to audio-only models, their development and adoption are hindered by the lack of labeled and unlabeled audio-visual data and the cost to deploy one model per modality. In this paper, we present u-HuBERT, a self-supervised pre-training framework that can leverage both multimodal and unimodal speech with a unified masked cluster prediction objective. By utilizing modality dropout during pre-training, we demonstrate that a single fine-tuned model can achieve performance on par or better than the state-of-the-art modality-specific models. Moreover, our model fine-tuned only on audio can perform well with audio-visual and visual speech input, achieving zero-shot modality generalization for multiple speech processing tasks. In particular, our single model yields 1.2%/1.4%/27.2% speech recognition word error rate on LRS3 with audio-visual/audio/visual input.
[ Hall J ]
Deep equilibrium models (DEQs) refrain from the traditional layer-stacking paradigm and turn to find the fixed point of a single layer. DEQs have achieved promising performance on different applications with featured memory efficiency. At the same time, the adversarial vulnerability of DEQs raises concerns. Several works propose to certify robustness for monotone DEQs. However, limited efforts are devoted to studying empirical robustness for general DEQs. To this end, we observe that an adversarially trained DEQ requires more forward steps to arrive at the equilibrium state, or even violates its fixed-point structure. Besides, the forward and backward tracks of DEQs are misaligned due to the black-box solvers. These facts cause gradient obfuscation when applying the ready-made attacks to evaluate or adversarially train DEQs. Given this, we develop approaches to estimate the intermediate gradients of DEQs and integrate them into the attacking pipelines. Our approaches facilitate fully white-box evaluations and lead to effective adversarial defense for DEQs. Extensive experiments on CIFAR-10 validate the adversarial robustness of DEQs competitive with deep networks of similar sizes.
[ Hall J ]

Transformer-based object detectors have shown competitive performance recently. Compared with convolutional neural networks limited by the relatively small receptive fields, the advantage of transformer for visual tasks is the capacity to perceive long-range dependencies among all image patches, while the deficiency is that the local fine-grained information is not fully excavated. In this paper, we introduce the Coarse-grained and Fine-grained crossing representations to build an efficient Detection Transformer (CFDT). Specifically, we propose a local-global cross fusion module to establish the connection between local fine-grained features and global coarse-grained features. Besides, we propose a coarse-fine aware neck which enables detection tokens to interact with both coarse-grained and fine-grained features. Furthermore, an efficient feature integration module is presented for fusing multi-scale representations from different stages. Experimental results on the COCO dataset demonstrate the effectiveness of the proposed method. For instance, our CFDT achieves 48.1 AP with 173G FLOPs, which possesses higher accuracy and less computation compared with the state-of-the-art transformer-based detector ViDT. Code will be available at https://gitee.com/mindspore/models/tree/master/research/cv/CFDT.
[ Hall J ]

Few-shot learning for neural networks (NNs) is an important problem that aims to train NNs with a few data. The main challenge is how to avoid overfitting since over-parameterized NNs can easily overfit to such small dataset. Previous work (e.g. MAML by Finn et al. 2017) tackles this challenge by meta-learning, which learns how to learn from a few data by using various tasks. On the other hand, one conventional approach to avoid overfitting is restricting hypothesis spaces by endowing sparse NN structures like convolution layers in computer vision. However, although such manually-designed sparse structures are sample-efficient for sufficiently large datasets, they are still insufficient for few-shot learning. Then the following questions naturally arise: (1) Can we find sparse structures effective for few-shot learning by meta-learning? (2) What benefits will it bring in terms of meta-generalization? In this work, we propose a novel meta-learning approach, called Meta-ticket, to find optimal sparse subnetworks for few-shot learning within randomly initialized NNs. We empirically validated that Meta-ticket successfully discover sparse subnetworks that can learn specialized features for each given task. Due to this task-wise adaptation ability, Meta-ticket achieves superior meta-generalization compared to MAML-based methods especially with large NNs.
[ Hall J ]

Semi-Supervised Semantic Segmentation aims at training the segmentation model with limited labeled data and a large amount of unlabeled data. To effectively leverage the unlabeled data, pseudo labeling, along with the teacher-student framework, is widely adopted in semi-supervised semantic segmentation. Though proved to be effective, this paradigm suffers from incorrect pseudo labels which inevitably exist and are taken as auxiliary training data. To alleviate the negative impact of incorrect pseudo labels, we delve into the current Semi-Supervised Semantic Segmentation frameworks. We argue that the unlabeled data with pseudo labels can facilitate the learning of representative features in the feature extractor, but it is unreliable to supervise the mask predictor. Motivated by this consideration, we propose a novel framework, Gentle Teaching Assistant (GTA-Seg) to disentangle the effects of pseudo labels on feature extractor and mask predictor of the student model. Specifically, in addition to the original teacher-student framework, our method introduces a teaching assistant network which directly learns from pseudo labels generated by the teacher network. The gentle teaching assistant (GTA) is coined gentle since it only transfers the beneficial feature representation knowledge in the feature extractor to the student model in an Exponential Moving Average (EMA) manner, protecting the student …
[ Hall J ]

[ Hall J ]

Belief Propagation (BP) is an important message-passing algorithm for various reasoning tasks over graphical models, including solving the Constraint Optimization Problems (COPs). It has been shown that BP can achieve state-of-the-art performance on various benchmarks by mixing old and new messages before sending the new one, i.e., damping. However, existing methods on tuning a static damping factor for BP not only is laborious but also harms their performance. Moreover, existing BP algorithms treat each variable node's neighbors equally when composing a new message, which also limits their exploration ability. To address these issues, we seamlessly integrate BP, Gated Recurrent Units (GRUs), and Graph Attention Networks (GATs) within the massage-passing framework to reason about dynamic weights and damping factors for composing new BP messages. Our model, Deep Attentive Belief Propagation (DABP), takes the factor graph and the BP messages in each iteration as the input and infers the optimal weights and damping factors through GRUs and GATs, followed by a multi-head attention layer. Furthermore, unlike existing neural-based BP variants, we propose a novel self-supervised learning algorithm for DABP with a smoothed solution cost, which does not require expensive training labels and also avoids the common out-of-distribution issue through efficient online learning. …
[ Hall J ]

Uncertainty quantification is essential for the reliable deployment of machine learning models to high-stakes application domains. Uncertainty quantification is all the more challenging when training distribution and test distribution are different, even if the distribution shifts are mild. Despite the ubiquity of distribution shifts in real-world applications, existing uncertainty quantification approaches mainly study the in-distribution setting where the train and test distributions are the same. In this paper, we develop a systematic calibration model to handle distribution shifts by leveraging data from multiple domains. Our proposed method---multi-domain temperature scaling---uses the heterogeneity in the domains to improve calibration robustness under distribution shift. Through experiments on three benchmark data sets, we find our proposed method outperforms existing methods as measured on both in-distribution and out-of-distribution test sets.
[ Hall J ]

Previous works have validated that text generation APIs can be stolen through imitation attacks, causing IP violations. In order to protect the IP of text generation APIs, recent work has introduced a watermarking algorithm and utilized the null-hypothesis test as a post-hoc ownership verification on the imitation models. However, we find that it is possible to detect those watermarks via sufficient statistics of the frequencies of candidate watermarking words. To address this drawback, in this paper, we propose a novel Conditional wATERmarking framework (CATER) for protecting the IP of text generation APIs. An optimization method is proposed to decide the watermarking rules that can minimize the distortion of overall word distributions while maximizing the change of conditional word selections. Theoretically, we prove that it is infeasible for even the savviest attacker (they know how CATER works) to reveal the used watermarks from a large pool of potential word pairs based on statistical inspection. Empirically, we observe that high-order conditions lead to an exponential growth of suspicious (unused) watermarks, making our crafted watermarks more stealthy. In addition, CATER can effectively identify IP infringement under architectural mismatch and cross-domain imitation attacks, with negligible impairments on the generation quality of victim APIs. We …
[ Hall J ]
Data augmentation is essential to achieve state-of-the-art performance in many deep learning applications. However, the most effective augmentation techniques become computationally prohibitive for even medium-sized datasets. To address this, we propose a rigorous technique to select subsets of data points that when augmented, closely capture the training dynamics of full data augmentation. We first show that data augmentation, modeled as additive perturbations, improves learning and generalization by relatively enlarging and perturbing the smaller singular values of the network Jacobian, while preserving its prominent directions. This prevents overfitting and enhances learning the harder to learn information. Then, we propose a framework to iteratively extract small subsets of training data that when augmented, closely capture the alignment of the fully augmented Jacobian with labels/residuals. We prove that stochastic gradient descent applied to the augmented subsets found by our approach has similar training dynamics to that of fully augmented data. Our experiments demonstrate that our method achieves 6.3x speedup on CIFAR10 and 2.2x speedup on SVHN, and outperforms the baselines by up to 10\% across various subset sizes. Similarly, on TinyImageNet and ImageNet, our method beats the baselines by up to 8%, while achieving up to 3.3x speedup across various subset sizes. Finally, …
[ Hall J ]

Over the years, state-of-the-art (SoTA) image captioning methods have achieved promising results on some evaluation metrics (e.g., CIDEr). However, recent findings show that the captions generated by these methods tend to be biased toward the "average" caption that only captures the most general mode (a.k.a, language pattern) in the training corpus, i.e., the so-called mode collapse problem. Affected by it, the generated captions are limited in diversity and usually less informative than natural image descriptions made by humans. In this paper, we seek to avoid this problem by proposing a Discrete Mode Learning (DML) paradigm for image captioning. Our innovative idea is to explore the rich modes in the training caption corpus to learn a set of "mode embeddings", and further use them to control the mode of the generated captions for existing image captioning models. Specifically, the proposed DML optimizes a dual architecture that consists of an image-conditioned discrete variational autoencoder (CdVAE) branch and a mode-conditioned image captioning (MIC) branch. The CdVAE branch maps each image caption to one of the mode embeddings stored in a learned codebook, and is trained with a pure non-autoregressive generation objective to make the modes distinct and representative. The MIC branch can be …
[ Hall J ]

Despite the remarkable success of graph neural networks (GNNs) for graph representation learning, they are generally built on the (unreliable) i.i.d. assumption across training and testing data. However, real-world graph data are universally comprised of outliers in training set and out-of-distribution (OOD) testing samples from unseen domains, which solicits effective models for i) debiased learning and ii) OOD detection, towards general trustworthy purpose. In this paper, we first mathematically formulate the two challenging problems for graph data and take an initiative on tackling them under a unified probabilistic model. Specifically, we model the graph generative process to characterize the distribution shifts of graph data together with an additionally introduced latent environment variable as an indicator. We then define a variational distribution, i.e., a recognition model, to infer the environment during training of GNN. By instantiating the generative models as two-component mixtures, we derive a tractable learning objective and theoretically justify that the model can i) automatically identify and down-weight outliers in the training procedure, and ii) induce an effective OOD detector simultaneously. Experiments on diverse datasets with different types of OOD data prove that our model consistently outperforms strong baselines for both debiasing and OOD detection tasks. The source code …
[ Hall J ]
Offline reinforcement learning (RL) aims at learning policies from previously collected static trajectory data without interacting with the real environment. Recent works provide a novel perspective by viewing offline RL as a generic sequence generation problem, adopting sequence models such as Transformer architecture to model distributions over trajectories and repurposing beam search as a planning algorithm. However, the training datasets utilized in general offline RL tasks are quite limited and often suffering from insufficient distribution coverage, which could me harmful to training sequence generation models yet has not drawn enough attention in the previous works. In this paper, we propose a novel algorithm named Bootstrapped Transformer, which incorporates the idea of bootstrapping and leverages the learned model to self-generate more offline data to further boost the training of sequence model. We conduct extensive experiments on two offline RL benchmarks and demonstrate that our model can largely remedy the limitations of the existing offline RL training and beat other strong baseline methods. We also analyze the generated pseudo data and the revealed characteristics may shed some light on offline RL training.
[ Hall J ]

The spatial acoustic information of a scene, i.e., how sounds emitted from a particular location in the scene are perceived in another location, is key for immersive scene modeling. Robust representation of scene's acoustics can be formulated through a continuous field formulation along with impulse responses varied by emitter-listener locations. The impulse responses are then used to render sounds perceived by the listener. While such representation is advantageous, parameterization of impulse responses for generic scenes presents itself as a challenge. Indeed, traditional pre-computation methods have only implemented parameterization at discrete probe points and require large storage, while other existing methods such as geometry-based sound simulations still suffer from inability to simulate all wave-based sound effects. In this work, we introduce a novel neural network for light-weight Implicit Neural Representation for Audio Scenes (INRAS), which can render a high fidelity time-domain impulse responses at any arbitrary emitter-listener positions by learning a continuous implicit function. INRAS disentangles scene’s geometry features with three modules to generate independent features for the emitter, the geometry of the scene, and the listener respectively. These lead to an efficient reuse of scene-dependent features and support effective multi-condition training for multiple scenes. Our experimental results show that INRAS …
[ Hall J ]
[ Hall J ]

Symmetry has been a fundamental tool in the exploration of a broad range of complex systems. In machine learning, symmetry has been explored in both models and data. In this paper we seek to connect the symmetries arising from the architecture of a family of models with the symmetries of that family’s internal representation of data. We do this by calculating a set of fundamental symmetry groups, which we call the intertwiner groups of the model. Each of these arises from a particular nonlinear layer of the model and different nonlinearities result in different symmetry groups. These groups change the weights of a model in such a way that the underlying function that the model represents remains constant but the internal representations of data inside the model may change. We connect intertwiner groups to a model’s internal representations of data through a range of experiments that probe similarities between hidden states across models with the same architecture. Our work suggests that the symmetries of a network are propagated into the symmetries in that network’s representation of data, providing us with a better understanding of how architecture affects the learning and prediction process. Finally, we speculate that for ReLU networks, the …
[ Hall J ]

Working with any gradient-based machine learning algorithm involves the tedious task of tuning the optimizer's hyperparameters, such as its step size. Recent work has shown how the step size can itself be optimized alongside the model parameters by manually deriving expressions for "hypergradients" ahead of time.We show how to automatically compute hypergradients with a simple and elegant modification to backpropagation. This allows us to easily apply the method to other optimizers and hyperparameters (e.g. momentum coefficients). We can even recursively apply the method to its own hyper-hyperparameters, and so on ad infinitum. As these towers of optimizers grow taller, they become less sensitive to the initial choice of hyperparameters. We present experiments validating this for MLPs, CNNs, and RNNs. Finally, we provide a simple PyTorch implementation of this algorithm (see http://people.csail.mit.edu/kach/gradient-descent-the-ultimate-optimizer).
[ Hall J ]
A shrinking market is a ubiquitous challenge faced by various industries. In this paper we formulate the first formal model of shrinking markets in multi-item settings, and study how mechanism design and machine learning can help preserve revenue in an uncertain, shrinking market. Via a sample-based learning mechanism, we prove the first guarantees on how much revenue can be preserved by truthful multi-item, multi-bidder auctions (for limited supply) when only a random unknown fraction of the population participates in the market. We first present a general reduction that converts any sufficiently rich auction class into a randomized auction robust to market shrinkage. Our main technique is a novel combinatorial construction called a winner diagram that concisely represents all possible executions of an auction on an uncertain set of bidders. Via a probabilistic analysis of winner diagrams, we derive a general possibility result: a sufficiently rich class of auctions always contains an auction that is robust to market shrinkage and market uncertainty. Our result has applications to important practically-constrained settings such as auctions with a limited number of winners. We then show how to efficiently learn an auction that is robust to market shrinkage by leveraging practically-efficient routines for solving the …
[ Hall J ]
Data in many applications follows systems of Ordinary Differential Equations (ODEs).This paper presents a novel algorithmic and symbolic construction for covariance functions of Gaussian Processes (GPs) with realizations strictly following a system of linear homogeneous ODEs with constant coefficients, which we call LODE-GPs. Introducing this strong inductive bias into a GP improves modelling of such data. Using smith normal form algorithms, a symbolic technique, we overcome two current restrictions in the state of the art: (1) the need for certain uniqueness conditions in the set of solutions, typically assumed in classical ODE solvers and their probabilistic counterparts, and (2) the restriction to controllable systems, typically assumed when encoding differential equations in covariance functions. We show the effectiveness of LODE-GPs in a number of experiments, for example learning physically interpretable parameters by maximizing the likelihood.
[ Hall J ]
Integrating functions on discrete domains into neural networks is key to developing their capability to reason about discrete objects. But, discrete domains are (1) not naturally amenable to gradient-based optimization, and (2) incompatible with deep learning architectures that rely on representations in high-dimensional vector spaces. In this work, we address both difficulties for set functions, which capture many important discrete problems. First, we develop a framework for extending set functions onto low-dimensional continuous domains, where many extensions are naturally defined. Our framework subsumes many well-known extensions as special cases. Second, to avoid undesirable low-dimensional neural network bottlenecks, we convert low-dimensional extensions into representations in high-dimensional spaces, taking inspiration from the success of semidefinite programs for combinatorial optimization. Empirically, we observe benefits of our extensions for unsupervised neural combinatorial optimization, in particular with high-dimensional representations.
[ Hall J ]

Recent multi-task learning research argues against unitary scalarization, where training simply minimizes the sum of the task losses. Several ad-hoc multi-task optimization algorithms have instead been proposed, inspired by various hypotheses about what makes multi-task settings difficult. The majority of these optimizers require per-task gradients, and introduce significant memory, runtime, and implementation overhead. We show that unitary scalarization, coupled with standard regularization and stabilization techniques from single-task learning, matches or improves upon the performance of complex multi-task optimizers in popular supervised and reinforcement learning settings. We then present an analysis suggesting that many specialized multi-task optimizers can be partly interpreted as forms of regularization, potentially explaining our surprising results. We believe our results call for a critical reevaluation of recent research in the area.
[ Hall J ]

Federated learning (FL) faces challenges of intermittent client availability and computation/communication efficiency. As a result, only a small subset of clients can participate in FL at a given time. It is important to understand how partial client participation affects convergence, but most existing works have either considered idealized participation patterns or obtained results with non-zero optimality error for generic patterns. In this paper, we provide a unified convergence analysis for FL with arbitrary client participation. We first introduce a generalized version of federated averaging (FedAvg) that amplifies parameter updates at an interval of multiple FL rounds. Then, we present a novel analysis that captures the effect of client participation in a single term. By analyzing this term, we obtain convergence upper bounds for a wide range of participation patterns, including both non-stochastic and stochastic cases, which match either the lower bound of stochastic gradient descent (SGD) or the state-of-the-art results in specific settings. We also discuss various insights, recommendations, and experimental results.
[ Hall J ]

This paper explores the problem of simultaneously learning a value function and policy in deep actor-critic reinforcement learning models. We find that the common practice of learning these functions jointly is sub-optimal due to an order-of-magnitude difference in noise levels between the two tasks. Instead, we show that learning these tasks independently, but with a constrained distillation phase, significantly improves performance. Furthermore, we find that policy gradient noise levels decrease when using a lower \textit{variance} return estimate. Whereas, value learning noise level decreases with a lower \textit{bias} estimate. Together these insights inform an extension to Proximal Policy Optimization we call \textit{Dual Network Architecture} (DNA), which significantly outperforms its predecessor. DNA also exceeds the performance of the popular Rainbow DQN algorithm on four of the five environments tested, even under more difficult stochastic control settings.
[ Hall J ]

[ Hall J ]
We analyze the convergence rates of stochastic gradient algorithms for smooth finite-sum minimax optimization and show that, for many such algorithms, sampling the data points \emph{without replacement} leads to faster convergence compared to sampling with replacement. For the smooth and strongly convex-strongly concave setting, we consider gradient descent ascent and the proximal point method, and present a unified analysis of two popular without-replacement sampling strategies, namely \emph{Random Reshuffling} (RR), which shuffles the data every epoch, and \emph{Single Shuffling} or \emph{Shuffle Once} (SO), which shuffles only at the beginning. We obtain tight convergence rates for RR and SO and demonstrate that these strategies lead to faster convergence than uniform sampling. Moving beyond convexity, we obtain similar results for smooth nonconvex-nonconcave objectives satisfying a two-sided Polyak-\L{}ojasiewicz inequality. Finally, we demonstrate that our techniques are general enough to analyze the effect of \emph{data-ordering attacks}, where an adversary manipulates the order in which data points are supplied to the optimizer. Our analysis also recovers tight rates for the \emph{incremental gradient} method, where the data points are not shuffled at all.
[ Hall J ]

[ Hall J ]

The study of first-order optimization is sensitive to the assumptions made on the objective functions.These assumptions induce complexity classes which play a key role in worst-case analysis, includingthe fundamental concept of algorithm optimality. Recent work argues that strong convexity andsmoothness—popular assumptions in literature—lead to a pathological definition of the conditionnumber. Motivated by this result, we focus on the class of functionssatisfying a lower restricted secant inequality and an upper error bound. On top of being robust tothe aforementioned pathological behavior and including some non-convex functions, this pair ofconditions displays interesting geometrical properties. In particular, the necessary and sufficientconditions to interpolate a set of points and their gradients within the class can be separated intosimple conditions on each sampled gradient. This allows the performance estimation problem (PEP) to be solved analytically, leading to a lower boundon the convergence rate that proves gradient descent to be exactly optimal on this class of functionsamong all first-order algorithms.
[ Hall J ]

Gaussian processes scale prohibitively with the size of the dataset. In response, many approximation methods have been developed, which inevitably introduce approximation error. This additional source of uncertainty, due to limited computation, is entirely ignored when using the approximate posterior. Therefore in practice, GP models are often as much about the approximation method as they are about the data. Here, we develop a new class of methods that provides consistent estimation of the combined uncertainty arising from both the finite number of data observed and the finite amount of computation expended. The most common GP approximations map to an instance in this class, such as methods based on the Cholesky factorization, conjugate gradients, and inducing points. For any method in this class, we prove (i) convergence of its posterior mean in the associated RKHS, (ii) decomposability of its combined posterior covariance into mathematical and computational covariances, and (iii) that the combined variance is a tight worst-case bound for the squared error between the method's posterior mean and the latent function. Finally, we empirically demonstrate the consequences of ignoring computational uncertainty and show how implicitly modeling it improves generalization performance on benchmark datasets.
[ Hall J ]

Algorithms for full-information online learning are classically tuned to minimize their worst-case regret. Modern algorithms additionally provide tighter guarantees outside the adversarial regime, most notably in the form of constant pseudoregret bounds under statistical margin assumptions. We investigate the multiscale extension of the problem where the loss ranges of the experts are vastly different. Here, the regret with respect to each expert needs to scale with its range, instead of the maximum overall range. We develop new multiscale algorithms, tuning schemes and analysis techniques to show that worst-case robustness and adaptation to easy data can be combined at a negligible cost. We further develop an extension with optimism and apply it to solve multiscale two-player zero-sum games. We demonstrate experimentally the superior performance of our scale-adaptive algorithm and discuss the subtle relationship of our results to Freund's 2016 open problem.
[ Hall J ]

Semidefinite programming (SDP) is a unifying framework that generalizes both linear programming and quadratically-constrained quadratic programming, while also yielding efficient solvers, both in theory and in practice. However, there exist known impossibility results for approximating the optimal solution when constraints for covering SDPs arrive in an online fashion. In this paper, we study online covering linear and semidefinite programs in which the algorithm is augmented with advice from a possibly erroneous predictor. We show that if the predictor is accurate, we can efficiently bypass these impossibility results and achieve a constant-factor approximation to the optimal solution, i.e., consistency. On the other hand, if the predictor is inaccurate, under some technical conditions, we achieve results that match both the classical optimal upper bounds and the tight lower bounds up to constant factors, i.e., robustness. More broadly, we introduce a framework that extends both (1) the online set cover problem augmented with machine-learning predictors, studied by Bamas, Maggiori, and Svensson (NeurIPS 2020), and (2) the online covering SDP problem, initiated by Elad, Kale, and Naor (ICALP 2016). Specifically, we obtain general online learning-augmented algorithms for covering linear programs with fractional advice and constraints, and initiate the study of learning-augmented algorithms for covering …
[ Hall J ]
[ Hall J ]
[ Hall J ]

We study sequential general online regression, known also as sequential probability assignments, under logarithmic loss when compared against a broad class of experts. We obtain tight, often matching, lower and upper bounds for sequential minimax regret, which is defined as the excess loss incurred by the predictor over the best expert in the class. After proving a general upper bound we consider some specific classes of experts from Lipschitz class to bounded Hessian class and derive matching lower and upper bounds with provably optimal constants. Our bounds work for a wide range of values of the data dimension and the number of rounds. To derive lower bounds, we use tools from information theory (e.g., Shtarkov sum) and for upper bounds, we resort to new "smooth truncated covering" of the class of experts. This allows us to find constructive proofs by applying a simple and novel truncated Bayesian algorithm. Our proofs are substantially simpler than the existing ones and yet provide tighter (and often optimal) bounds.
[ Hall J ]

The logit outputs of a feedforward neural network at initialization are conditionally Gaussian, given a random covariance matrix defined by the penultimate layer. In this work, we study the distribution of this random matrix. Recent work has shown that shaping the activation function as network depth grows large is necessary for this covariance matrix to be non-degenerate. However, the current infinite-width-style understanding of this shaping method is unsatisfactory for large depth: infinite-width analyses ignore the microscopic fluctuations from layer to layer, but these fluctuations accumulate over many layers. To overcome this shortcoming, we study the random covariance matrix in the shaped infinite-depth-and-width limit. We identify the precise scaling of the activation function necessary to arrive at a non-trivial limit, and show that the random covariance matrix is governed by a stochastic differential equation (SDE) that we call the Neural Covariance SDE. Using simulations, we show that the SDE closely matches the distribution of the random covariance matrix of finite networks. Additionally, we recover an if-and-only-if condition for exploding and vanishing norms of large shaped networks based on the activation function.
[ Hall J ]

We analyze feature learning in infinite-width neural networks trained with gradient flow through a self-consistent dynamical field theory. We construct a collection of deterministic dynamical order parameters which are inner-product kernels for hidden unit activations and gradients in each layer at pairs of time points, providing a reduced description of network activity through training. These kernel order parameters collectively define the hidden layer activation distribution, the evolution of the neural tangent kernel, and consequently output predictions. We show that the field theory derivation recovers the recursive stochastic process of infinite-width feature learning networks obtained from Yang & Hu with Tensor Programs. For deep linear networks, these kernels satisfy a set of algebraic matrix equations. For nonlinear networks, we provide an alternating sampling procedure to self-consistently solve for the kernel order parameters. We provide comparisons of the self-consistent solution to various approximation schemes including the static NTK approximation, gradient independence assumption, and leading order perturbation theory, showing that each of these approximations can break down in regimes where general self-consistent solutions still provide an accurate description. Lastly, we provide experiments in more realistic settings which demonstrate that the loss and kernel dynamics of CNNs at fixed feature learning strength is preserved …
[ Hall J ]

A fundamental property of deep learning normalization techniques, such as batch normalization, is making the pre-normalization parameters scale invariant. The intrinsic domain of such parameters is the unit sphere, and therefore their gradient optimization dynamics can be represented via spherical optimization with varying effective learning rate (ELR), which was studied previously. However, the varying ELR may obscure certain characteristics of the intrinsic loss landscape structure. In this work, we investigate the properties of training scale-invariant neural networks directly on the sphere using a fixed ELR. We discover three regimes of such training depending on the ELR value: convergence, chaotic equilibrium, and divergence. We study these regimes in detail both on a theoretical examination of a toy example and on a thorough empirical analysis of real scale-invariant deep learning models. Each regime has unique features and reflects specific properties of the intrinsic loss landscape, some of which have strong parallels with previous research on both regular and scale-invariant neural networks training. Finally, we demonstrate how the discovered regimes are reflected in conventional training of normalized networks and how they can be leveraged to achieve better optima.
[ Hall J ]

Data-Augmentation (DA) is known to improve performance across tasks and datasets. We propose a method to theoretically analyze the effect of DA and study questions such as: how many augmented samples are needed to correctly estimate the information encoded by that DA? How does the augmentation policy impact the final parameters of a model? We derive several quantities in close-form, such as the expectation and variance of an image, loss, and model's output under a given DA distribution. Up to our knowledge, we obtain the first explicit regularizer that corresponds to using DA during training for non-trivial transformations such as affine transformations, color jittering, or Gaussian blur. Those derivations open new avenues to quantify the benefits and limitations of DA. For example, given a loss at hand, we find that common DAs require tens of thousands of samples for the loss to be correctly estimated and for the model training to converge. We then show that for a training loss to have reduced variance under DA sampling, the model's saliency map (gradient of the loss with respect to the model's input) must align with the smallest eigenvector of the sample's covariance matrix under the considered DA augmentation; this is exactly …
[ Hall J ]

Machine learning approaches commonly rely on the assumption of independent and identically distributed (i.i.d.) data. In reality, however, this assumption is almost always violated due to distribution shifts between environments. Although valuable learning signals can be provided by heterogeneous data from changing distributions, it is also known that learning under arbitrary (adversarial) changes is impossible. Causality provides a useful framework for modeling distribution shifts, since causal models encode both observational and interventional distributions. In this work, we explore the sparse mechanism shift hypothesis which posits that distribution shifts occur due to a small number of changing causal conditionals. Motivated by this idea, we apply it to learning causal structure from heterogeneous environments, where i.i.d. data only allows for learning an equivalence class of graphs without restrictive assumptions. We propose the Mechanism Shift Score (MSS), a score-based approach amenable to various empirical estimators, which provably identifies the entire causal structure with high probability if the sparse mechanism shifts hypothesis holds. Empirically, we verify behavior predicted by the theory and compare multiple estimators and score functions to identify the best approaches in practice. Compared to other methods, we show how MSS bridges a gap by both being nonparametric as well as explicitly …
[ Hall J ]
Pure exploration in multi-armed bandits has emerged as an important framework for modeling decision making and search under uncertainty. In modern applications however, one is often faced with a tremendously large number of options and even obtaining one observation per option may be too costly rendering traditional pure exploration algorithms ineffective. Fortunately, one often has access to similarity relationships amongst the options that can be leveraged. In this paper, we consider the pure exploration problem in stochastic multi-armed bandits where the similarities between the arms is captured by a graph and the rewards may be represented as a smooth signal on this graph. In particular, we consider the problem of finding the arm with the maximum reward (i.e., the maximizing problem) or one that has sufficiently high reward (i.e., the satisficing problem) under this model. We propose novel algorithms GRUB (GRaph based UcB) and zeta-GRUB for these problems and provide theoretical characterization of their performance which specifically elicits the benefit of the graph side information. We also prove a lower bound on the data requirement that shows a large class of problems where these algorithms are near-optimal. We complement our theory with experimental results that show the benefit of capitalizing …
[ Hall J ]
Diffusion processes that evolve according to linear stochastic differential equations are an important family of continuous-time dynamic decision-making models. Optimal policies are well-studied for them, under full certainty about the drift matrices. However, little is known about data-driven control of diffusion processes with uncertain drift matrices as conventional discrete-time analysis techniques are not applicable. In addition, while the task can be viewed as a reinforcement learning problem involving exploration and exploitation trade-off, ensuring system stability is a fundamental component of designing optimal policies. We establish that the popular Thompson sampling algorithm learns optimal actions fast, incurring only a square-root of time regret, and also stabilizes the system in a short time period. To the best of our knowledge, this is the first such result for Thompson sampling in a diffusion process control problem. We validate our theoretical results through empirical simulations with real matrices. Moreover, we observe that Thompson sampling significantly improves (worst-case) regret, compared to the state-of-the-art algorithms, suggesting Thompson sampling explores in a more guarded fashion. Our theoretical analysis involves characterization of a certain \emph{optimality manifold} that ties the local geometry of the drift parameters to the optimal control of the diffusion process. We expect this technique to …
[ Hall J ]

Fair machine learning aims to avoid treating individuals or sub-populations unfavourably based on \textit{sensitive attributes}, such as gender and race. Those methods in fair machine learning that are built on causal inference ascertain discrimination and bias through causal effects. Though causality-based fair learning is attracting increasing attention, current methods assume the true causal graph is fully known. This paper proposes a general method to achieve the notion of counterfactual fairness when the true causal graph is unknown. To select features that lead to counterfactual fairness, we derive the conditions and algorithms to identify ancestral relations between variables on a \textit{Partially Directed Acyclic Graph (PDAG)}, specifically, a class of causal DAGs that can be learned from observational data combined with domain knowledge. Interestingly, we find that counterfactual fairness can be achieved as if the true causal graph were fully known, when specific background knowledge is provided: the sensitive attributes do not have ancestors in the causal graph. Results on both simulated and real-world datasets demonstrate the effectiveness of our method.
[ Hall J ]

Bilevel optimization problems involve two nested objectives, where an upper-level objective depends on a solution to a lower-level problem. When the latter is non-convex, multiple critical points may be present, leading to an ambiguous definition of the problem. In this paper, we introduce a key ingredient for resolving this ambiguity through the concept of a selection map which allows one to choose a particular solution to the lower-level problem. Using such maps, we define a class of hierarchical games between two agents that resolve the ambiguity in bilevel problems. This new class of games requires introducing new analytical tools in Morse theory to extend implicit differentiation, a technique used in bilevel optimization resulting from the implicit function theorem. In particular, we establish the validity of such a method even when the latter theorem is inapplicable due to degenerate critical points.Finally, we show that algorithms for solving bilevel problems based on unrolled optimization solve these games up to approximation errors due to finite computational power. A simple correction to these algorithms is then proposed for removing these errors.
[ Hall J ]

An important unresolved challenge in the theory of regularization is to set the regularization coefficients of popular techniques like the ElasticNet with general provable guarantees. We consider the problem of tuning the regularization parameters of Ridge regression, LASSO, and the ElasticNet across multiple problem instances, a setting that encompasses both cross-validation and multi-task hyperparameter optimization. We obtain a novel structural result for the ElasticNet which characterizes the loss as a function of the tuning parameters as a piecewise-rational function with algebraic boundaries. We use this to bound the structural complexity of the regularized loss functions and show generalization guarantees for tuning the ElasticNet regression coefficients in the statistical setting. We also consider the more challenging online learning setting, where we show vanishing average expected regret relative to the optimal parameter pair. We further extend our results to tuning classification algorithms obtained by thresholding regression fits regularized by Ridge, LASSO, or ElasticNet. Our results are the first general learning-theoretic guarantees for this important class of problems that avoid strong assumptions on the data distribution. Furthermore, our guarantees hold for both validation and popular information criterion objectives.
[ Hall J ]
[ Hall J ]

Much of reinforcement learning theory is built on top of oracles that are computationally hard to implement. Specifically for learning near-optimal policies in Partially Observable Markov Decision Processes (POMDPs), existing algorithms either need to make strong assumptions about the model dynamics (e.g. deterministic transitions) or assume access to an oracle for solving a hard optimistic planning or estimation problem as a subroutine. In this work we develop the first oracle-free learning algorithm for POMDPs under reasonable assumptions. Specifically, we give a quasipolynomial-time end-to-end algorithm for learning in ``observable'' POMDPs, where observability is the assumption that well-separated distributions over states induce well-separated distributions over observations. Our techniques circumvent the more traditional approach of using the principle of optimism under uncertainty to promote exploration, and instead give a novel application of barycentric spanners to constructing policy covers.
[ Hall J ]

Neural diffusion on graphs is a novel class of graph neural networks that has attracted increasing attention recently. The capability of graph neural partial differential equations (PDEs) in addressing common hurdles of graph neural networks (GNNs), such as the problems of over-smoothing and bottlenecks, has been investigated but not their robustness to adversarial attacks. In this work, we explore the robustness properties of graph neural PDEs. We empirically demonstrate that graph neural PDEs are intrinsically more robust against topology perturbation as compared to other GNNs. We provide insights into this phenomenon by exploiting the stability of the heat semigroup under graph topology perturbations. We discuss various graph diffusion operators and relate them to existing graph neural PDEs. Furthermore, we propose a general graph neural PDE framework based on which a new class of robust GNNs can be defined. We verify that the new model achieves comparable state-of-the-art performance on several benchmark datasets.
[ Hall J ]

[ Hall J ]

In learning-to-rank problems, a \textit{privileged feature} is one that is available during model training, but not available at test time. Such features naturally arise in merchandised recommendation systems; for instance, "user clicked this item" as a feature is predictive of "user purchased this item" in the offline data, but is clearly not available during online serving. Another source of privileged features is those that are too expensive to compute online but feasible to be added offline. \textit{Privileged features distillation} (PFD) refers to a natural idea: train a "teacher" model using all features (including privileged ones) and then use it to train a "student" model that does not use the privileged features. In this paper, we first study PFD empirically on three public ranking datasets and an industrial-scale ranking problem derived from Amazon's logs. We show that PFD outperforms several baselines (no-distillation, pretraining-finetuning, self-distillation, and generalized distillation) on all these datasets. Next, we analyze why and when PFD performs well via both empirical ablation studies and theoretical analysis for linear models. Both investigations uncover an interesting non-monotone behavior: as the predictive power of a privileged feature increases, the performance of the resulting student model initially increases but then decreases. We show …
[ Hall J ]
Weak supervision (WS) is a rich set of techniques that produce pseudolabels by aggregating easily obtained but potentially noisy label estimates from various sources. WS is theoretically well-understood for binary classification, where simple approaches enable consistent estimation of pseudolabel noise rates. Using this result, it has been shown that downstream models trained on the pseudolabels have generalization guarantees nearly identical to those trained on clean labels. While this is exciting, users often wish to use WS for \emph{structured prediction}, where the output space consists of more than a binary or multi-class label set: e.g. rankings, graphs, manifolds, and more. Do the favorable theoretical properties of WS for binary classification lift to this setting? We answer this question in the affirmative for a wide range of scenarios. For labels taking values in a finite metric space, we introduce techniques new to weak supervision based on pseudo-Euclidean embeddings and tensor decompositions, providing a nearly-consistent noise rate estimator. For labels in constant-curvature Riemannian manifolds, we introduce new invariants that also yield consistent noise rate estimation. In both cases, when using the resulting pseudolabels in concert with a flexible downstream model, we obtain generalization guarantees nearly identical to those for models trained on clean …
[ Hall J ]
In meta reinforcement learning (meta RL), an agent learns from a set of training tasks how to quickly solve a new task, drawn from the same task distribution. The optimal meta RL policy, a.k.a.~the Bayes-optimal behavior, is well defined, and guarantees optimal reward in expectation, taken with respect to the task distribution. The question we explore in this work is how many training tasks are required to guarantee approximately optimal behavior with high probability. Recent work provided the first such PAC analysis for a model-free setting, where a history-dependent policy was learned from the training tasks. In this work, we propose a different approach: directly learn the task distribution, using density estimation techniques, and then train a policy on the learned task distribution. We show that our approach leads to bounds that depend on the dimension of the task distribution. In particular, in settings where the task distribution lies in a low-dimensional manifold, we extend our analysis to use dimensionality reduction techniques and account for such structure, obtaining significantly better bounds than previous work, which strictly depend on the number of states and actions. The key of our approach is the regularization implied by the kernel density estimation method. We …
[ Hall J ]

Recent advances in TCP congestion control (CC) have achieved tremendous success with deep reinforcement learning (RL) approaches, which use feedforward neural networks (NN) to learn complex environment conditions and make better decisions. However, such ``black-box'' policies lack interpretability and reliability, and often, they need to operate outside the traditional TCP datapath due to the use of complex NNs. This paper proposes a novel two-stage solution to achieve the best of both worlds: first to train a deep RL agent, then distill its (over-)parameterized NN policy into white-box, light-weight rules in the form of symbolic expressions that are much easier to understand and to implement in constrained environments. At the core of our proposal is a novel symbolic branching algorithm that enables the rule to be aware of the context in terms of various network conditions, eventually converting the NN policy into a symbolic tree. The distilled symbolic rules preserve and often improve performance over state-of-the-art NN policies while being faster and simpler than a standard neural network. We validate the performance of our distilled symbolic rules on both simulation and emulation environments. Our code is available at https://github.com/VITA-Group/SymbolicPCC.
[ Hall J ]

[ Hall J ]
Most of existing work on fairness assumes available demographic information in the training set. In practice, due to legal or privacy concerns, when demographic information is not available in the training set, it is crucial to find alternative objectives to ensure fairness. Existing work on fairness without demographics follows Rawlsian Max-Min fairness objectives. However, such constraints could be too strict to improve group fairness, and could lead to a great decrease in accuracy. In light of these limitations, in this paper, we propose to solve the problem from a new perspective, i.e., through knowledge distillation. Our method uses soft label from an overfitted teacher model as an alternative, and we show from preliminary experiments that soft labelling is beneficial for improving fairness. We analyze theoretically the fairness of our method, and we show that our method can be treated as an error-based reweighing. Experimental results on three datasets show that our method outperforms state-of-the-art alternatives, with notable improvements in group fairness and with relatively small decrease in accuracy.
[ Hall J ]
We study {\it model reusability evaluation} (MRE) for source pre-trained models: evaluating their transfer learning performance to new target tasks. In special, we focus on the setting under which the target training datasets are small, making it difficult to produce reliable MRE scores using them. Under this situation, we propose {\it synergistic learning} for building the task-model metric, which can be realized by collecting a set of pre-trained models and asking a group of data providers to participate. We provide theoretical guarantees to show that the learned task-model metric distances can serve as trustworthy MRE scores, and propose synergistic learning algorithms and models for general learning tasks. Experiments show that the MRE models learned by synergistic learning can generate significantly more reliable MRE scores than existing approaches for small-data transfer learning.
[ Hall J ]

Neural implicit function based on signed distance field (SDF) has achieved impressive progress in reconstructing 3D models with high fidelity. However, such approaches can only represent closed shapes. Recent works based on unsigned distance function (UDF) are proposed to handle both watertight and open surfaces. Nonetheless, as UDF is signless, its direct output is limited to point cloud, which imposes an additional challenge on extracting high-quality meshes from discrete points.To address this issue, we present a new learnable implicit representation, coded HSDF, that connects the good ends of SDF and UDF. In particular, HSDF is able to represent arbitrary topologies containing both closed and open surfaces while being compatible with existing iso-surface extraction techniques for easy field-to-mesh conversion. In addition to predicting a UDF, we propose to learn an additional sign field via a simple classifier. Unlike traditional SDF, HSDF is able to locate the surface of interest before level surface extraction by generating surface points following NDF~\cite{chibane2020ndf}. We are then able to obtain open surfaces via an adaptive meshing approach that only instantiates regions containing surface into a polygon mesh. We also propose HSDF-Net, a dedicated learning framework that factorizes the learning of HSDF into two easier problems. Experiments …
[ Hall J ]

A new line of research for feature selection based on neural networks has recently emerged. Despite its superiority to classical methods, it requires many training iterations to converge and detect the informative features. For datasets with a large number of samples or a very high dimensional feature space, the computational time becomes prohibitively long. In this paper, we present a new efficient unsupervised method for feature selection based on sparse autoencoders. In particular, we propose a new sparse training algorithm that optimizes a model's sparse topology during training to quickly pay attention to informative features. The attention-based adaptation of the sparse topology enables fast detection of informative features after a few training iterations. We performed extensive experiments on 10 datasets of different types, including image, speech, text, artificial, and biological. They cover a wide range of characteristics, such as low and high-dimensional feature spaces, as well as few and large training samples. Our proposed approach outperforms the state-of-the-art methods in terms of the selection of informative features while reducing training iterations and computational costs substantially. Moreover, the experiments show the robustness of our method in extremely noisy environments.
[ Hall J ]

We propose a new causal inference framework to learn causal effects from multiple, decentralized data sources in a federated setting. We introduce an adaptive transfer algorithm that learns the similarities among the data sources by utilizing Random Fourier Features to disentangle the loss function into multiple components, each of which is associated with a data source. The data sources may have different distributions; the causal effects are independently and systematically incorporated. The proposed method estimates the similarities among the sources through transfer coefficients, and hence requiring no prior information about the similarity measures. The heterogeneous causal effects can be estimated with no sharing of the raw training data among the sources, thus minimizing the risk of privacy leak. We also provide minimax lower bounds to assess the quality of the parameters learned from the disparate sources. The proposed method is empirically shown to outperform the baselines on decentralized data sources with dissimilar distributions.
[ Hall J ]

Contrastive representation learning seeks to acquire useful representations by estimating the shared information between multiple views of data. Here, the choice of data augmentation is sensitive to the quality of learned representations: as harder the data augmentations are applied, the views share more task-relevant information, but also task-irrelevant one that can hinder the generalization capability of representation. Motivated by this, we present a new robust contrastive learning scheme, coined RényiCL, which can effectively manage harder augmentations by utilizing Rényi divergence. Our method is built upon the variational lower bound of a Rényi divergence, but a naive usage of a variational method exhibits unstable training due to the large variance. To tackle this challenge, we propose a novel contrastive objective that conducts variational estimation of a skew Renyi divergence and provides a theoretical guarantee on how variational estimation of skew divergence leads to stable training. We show that Rényi contrastive learning objectives perform innate hard negative sampling and easy positive sampling simultaneously so that it can selectively learn useful features and ignore nuisance features. Through experiments on ImageNet, we show that Rényi contrastive learning with stronger augmentations outperforms other self-supervised methods without extra regularization or computational overhead. Also, we validate our …
[ Hall J ]
Deep reinforcement learning policies, despite their outstanding efficiency in simulated visual control tasks, have shown disappointing ability to generalize across disturbances in the input training images. Changes in image statistics or distracting background elements are pitfalls that prevent generalization and real-world applicability of such control policies.We elaborate on the intuition that a good visual policy should be able to identify which pixels are important for its decision, and preserve this identification of important sources of information across images. This implies that training of a policy with small generalization gap should focus on such important pixels and ignore the others. This leads to the introduction of saliency-guided Q-networks (SGQN), a generic method for visual reinforcement learning, that is compatible with any value function learning method. SGQN vastly improves the generalization capability of Soft Actor-Critic agents and outperforms existing state-of-the-art methods on the Deepmind Control Generalization benchmark, setting a new reference in terms of training efficiency, generalization gap, and policy interpretability.
[ Hall J ]
Recently, Transformer-like deep architectures have shown strong performance on tabular data problems. Unlike traditional models, e.g., MLP, these architectures map scalar values of numerical features to high-dimensional embeddings before mixing them in the main backbone. In this work, we argue that embeddings for numerical features are an underexplored degree of freedom in tabular DL, which allows constructing more powerful DL models and competing with gradient boosted decision trees (GBDT) on some GBDT-friendly benchmarks (that is, where GBDT outperforms conventional DL models). We start by describing two conceptually different approaches to building embedding modules: the first one is based on a piecewise linear encoding of scalar values, and the second one utilizes periodic activations. Then, we empirically demonstrate that these two approaches can lead to significant performance boosts compared to the embeddings based on conventional blocks such as linear layers and ReLU activations. Importantly, we also show that embedding numerical features is beneficial for many backbones, not only for Transformers. Specifically, after proper embeddings, simple MLP-like models can perform on par with the attention-based architectures. Overall, we highlight embeddings for numerical features as an important design aspect with good potential for further improvements in tabular DL. The source code is available …
[ Hall J ]

[ Hall J ]

Tree-based models are used in many high-stakes application domains such as finance and medicine, where robustness and interpretability are of utmost importance. Yet, methods for improving and certifying their robustness are severely under-explored, in contrast to those focusing on neural networks. Targeting this important challenge, we propose deterministic smoothing for decision stump ensembles. Whereas most prior work on randomized smoothing focuses on evaluating arbitrary base models approximately under input randomization, the key insight of our work is that decision stump ensembles enable exact yet efficient evaluation via dynamic programming. Importantly, we obtain deterministic robustness certificates, even jointly over numerical and categorical features, a setting ubiquitous in the real world. Further, we derive an MLE-optimal training method for smoothed decision stumps under randomization and propose two boosting approaches to improve their provable robustness. An extensive experimental evaluation on computer vision and tabular data tasks shows that our approach yields significantly higher certified accuracies than the state-of-the-art for tree-based models. We release all code and trained models at https://github.com/eth-sri/drs.
[ Hall J ]

Recent studies reveal that a well-trained deep reinforcement learning (RL) policy can be particularly vulnerable to adversarial perturbations on input observations. Therefore, it is crucial to train RL agents that are robust against any attacks with a bounded budget. Existing robust training methods in deep RL either treat correlated steps separately, ignoring the robustness of long-term rewards, or train the agents and RL-based attacker together, doubling the computational burden and sample complexity of the training process. In this work, we propose a strong and efficient robust training framework for RL, named Worst-case-aware Robust RL (WocaR-RL) that directly estimates and optimizes the worst-case reward of a policy under bounded l_p attacks without requiring extra samples for learning an attacker. Experiments on multiple environments show that WocaR-RL achieves state-of-the-art performance under various strong attacks, and obtains significantly higher training efficiency than prior state-of-the-art robust training methods. The code of this work is available at https://github.com/umd-huang-lab/WocaR-RL.
[ Hall J ]

[ Hall J ]
[ Hall J ]
[ Hall J ]

Uncertainty quantification has received increasing attention in machine learning in the recent past. In particular, a distinction between aleatoric and epistemic uncertainty has been found useful in this regard. The latter refers to the learner's (lack of) knowledge and appears to be especially difficult to measure and quantify. In this paper, we analyse a recent proposal based on the idea of a second-order learner, which yields predictions in the form of distributions over probability distributions. While standard (first-order) learners can be trained to predict accurate probabilities, namely by minimising suitable loss functions on sample data, we show that loss minimisation does not work for second-order predictors: The loss functions proposed for inducing such predictors do not incentivise the learner to represent its epistemic uncertainty in a faithful way.
[ Hall J ]

In many contexts, simpler models are preferable to more complex models and the control of this model complexity is the goal for many methods in machine learning such as regularization, hyperparameter tuning and architecture design. In deep learning, it has been difficult to understand the underlying mechanisms of complexity control, since many traditional measures are not naturally suitable for deep neural networks. Here we develop the notion of geometric complexity, which is a measure of the variability of the model function, computed using a discrete Dirichlet energy. Using a combination of theoretical arguments and empirical results, we show that many common training heuristics such as parameter norm regularization, spectral norm regularization, flatness regularization, implicit gradient regularization, noise regularization and the choice of parameter initialization all act to control geometric complexity, providing a unifying framework in which to characterize the behavior of deep learning models.
[ Hall J ]

Lagrangian and Hamiltonian neural networks LNN and HNNs, respectively) encode strong inductive biases that allow them to outperform other models of physical systems significantly. However, these models have, thus far, mostly been limited to simple systems such as pendulums and springs or a single rigid body such as a gyroscope or a rigid rotor. Here, we present a Lagrangian graph neural network (LGNN) that can learn the dynamics of articulated rigid bodies by exploiting their topology. We demonstrate the performance of LGNN by learning the dynamics of ropes, chains, and trusses with the bars modeled as rigid bodies. LGNN also exhibits generalizability---LGNN trained on chains with a few segments exhibits generalizability to simulate a chain with large number of links and arbitrary link length. We also show that the LGNN can simulate unseen hybrid systems including bars and chains, on which they have not been trained on. Specifically, we show that the LGNN can be used to model the dynamics of complex real-world structures such as the stability of tensegrity structures. Finally, we discuss the non-diagonal nature of the mass matrix and its ability to generalize in complex systems.
[ Hall J ]

We study uncertainty-aware modeling of continuous-time dynamics of interacting objects. We introduce a new model that decomposes independent dynamics of single objects accurately from their interactions. By employing latent Gaussian process ordinary differential equations, our model infers both independent dynamics and their interactions with reliable uncertainty estimates. In our formulation, each object is represented as a graph node and interactions are modeled by accumulating the messages coming from neighboring objects. We show that efficient inference of such a complex network of variables is possible with modern variational sparse Gaussian process inference techniques. We empirically demonstrate that our model improves the reliability of long-term predictions over neural network based alternatives and it successfully handles missing dynamic or static information. Furthermore, we observe that only our model can successfully encapsulate independent dynamics and interaction information in distinct functions and show the benefit from this disentanglement in extrapolation scenarios.
[ Hall J ]

Convolutional layers within graph neural networks operate by aggregating information about local neighbourhood structures; one common way to encode such substructures is through random walks. The distribution of these random walks evolves according to a diffusion equation defined using the graph Laplacian. We extend this approach by leveraging classic mathematical results about hypo-elliptic diffusions. This results in a novel tensor-valued graph operator, which we call the hypo-elliptic graph Laplacian. We provide theoretical guarantees and efficient low-rank approximation algorithms. In particular, this gives a structured approach to capture long-range dependencies on graphs that is robust to pooling. Besides the attractive theoretical properties, our experiments show that this method competes with graph transformers on datasets requiring long-range reasoning but scales only linearly in the number of edges as opposed to quadratically in nodes.
[ Hall J ]

We introduce MOVE, a novel method to segment objects without any form of supervision. MOVE exploits the fact that foreground objects can be shifted locally relative to their initial position and result in realistic (undistorted) new images. This property allows us to train a segmentation model on a dataset of images without annotation and to achieve state of the art (SotA) performance on several evaluation datasets for unsupervised salient object detection and segmentation. In unsupervised single object discovery, MOVE gives an average CorLoc improvement of 7.2% over the SotA, and in unsupervised class-agnostic object detection it gives a relative AP improvement of 53% on average. Our approach is built on top of self-supervised features (e.g. from DINO or MAE), an inpainting network (based on the Masked AutoEncoder) and adversarial training.
[ Hall J ]

We propose a new representation for encoding 3D shapes as neural fields. The representation is designed to be compatible with the transformer architecture and to benefit both shape reconstruction and shape generation. Existing works on neural fields are grid-based representations with latents being defined on a regular grid. In contrast, we define latents on irregular grids which facilitates our representation to be sparse and adaptive. In the context of shape reconstruction from point clouds, our shape representation built on irregular grids improves upon grid-based methods in terms of reconstruction accuracy. For shape generation, our representation promotes high-quality shape generation using auto-regressive probabilistic models. We show different applications that improve over the current state of the art. First, we show results of probabilistic shape reconstruction from a single higher resolution image. Second, we train a probabilistic model conditioned on very low resolution images. Third, we apply our model to category-conditioned generation. All probabilistic experiments confirm that we are able to generate detailed and high quality shapes to yield the new state of the art in generative 3D shape modeling.
[ Hall J ]
We propose a new approach to learn to segment multiple image objects without manual supervision. The method can extract objects form still images, but uses videos for supervision. While prior works have considered motion for segmentation, a key insight is that, while motion can be used to identify objects, not all objects are necessarily in motion: the absence of motion does not imply the absence of objects. Hence, our model learns to predict image regions that are likely to contain motion patterns characteristic of objects moving rigidly. It does not predict specific motion, which cannot be done unambiguously from a still image, but a distribution of possible motions, which includes the possibility that an object does not move at all. We demonstrate the advantage of this approach over its deterministic counterpart and show state-of-the-art unsupervised object segmentation performance on simulated and real-world benchmarks, surpassing methods that use motion even at test time. As our approach is applicable to variety of network architectures that segment the scenes, we also apply it to existing image reconstruction-based models showing drastic improvement. Project page and code: https://www.robots.ox.ac.uk/~vgg/research/ppmp.
[ Hall J ]

During training, models can exploit spurious correlations as shortcuts, resulting in poor generalization performance when shortcuts do not persist. In this work, assuming access to a representation based on domain knowledge (i.e., known concepts) that is invariant to shortcuts, we aim to learn robust and accurate models from biased training data. In contrast to previous work, we do not rely solely on known concepts, but allow the model to also learn unknown concepts. We propose two approaches for mitigating shortcuts that incorporate domain knowledge, while accounting for potentially important yet unknown concepts. The first approach is two-staged. After fitting a model using known concepts, it accounts for the residual using unknown concepts. While flexible, we show that this approach is vulnerable when shortcuts are correlated with the unknown concepts. This limitation is addressed by our second approach that extends a recently proposed regularization penalty. Applied to two real-world datasets, we demonstrate that both approaches can successfully mitigate shortcut learning.
[ Hall J ]

In deep reinforcement learning (RL), data augmentation is widely considered as a tool to induce a set of useful priors about semantic consistency and improve sample efficiency and generalization performance. However, even when the prior is useful for generalization, distilling it to RL agent often interferes with RL training and degenerates sample efficiency. Meanwhile, the agent is forgetful of the prior due to the non-stationary nature of RL. These observations suggest two extreme schedules of distillation: (i) over the entire training; or (ii) only at the end. Hence, we devise a stand-alone network distillation method to inject the consistency prior at any time (even after RL), and a simple yet efficient framework to automatically schedule the distillation. Specifically, the proposed framework first focuses on mastering train environments regardless of generalization by adaptively deciding which {\it or no} augmentation to be used for the training. After this, we add the distillation to extract the remaining benefits for generalization from all the augmentations, which requires no additional new samples. In our experiments, we demonstrate the utility of the proposed framework, in particular, that considers postponing the augmentation to the end of RL training.
[ Hall J ]
[ Hall J ]

Modeling dynamic scenes is important for many applications such as virtual reality and telepresence. Despite achieving unprecedented fidelity for novel view synthesis in dynamic scenes, existing methods based on Neural Radiance Fields (NeRF) suffer from slow convergence (i.e., model training time measured in days). In this paper, we present DeVRF, a novel representation to accelerate learning dynamic radiance fields. The core of DeVRF is to model both the 3D canonical space and 4D deformation field of a dynamic, non-rigid scene with explicit and discrete voxel-based representations. However, it is quite challenging to train such a representation which has a large number of model parameters, often resulting in overfitting issues. To overcome this challenge, we devise a novel static-to-dynamic learning paradigm together with a new data capture setup that is convenient to deploy in practice. This paradigm unlocks efficient learning of deformable radiance fields via utilizing the 3D volumetric canonical space learnt from multi-view static images to ease the learning of 4D voxel deformation field with only few-view dynamic sequences. To further improve the efficiency of our DeVRF and its synthesized novel view's quality, we conduct thorough explorations and identify a set of strategies. We evaluate DeVRF on both synthetic and …
[ Hall J ]

Tensor decompositions are powerful tools for dimensionality reduction and feature interpretation of multidimensional data such as signals. Existing tensor decomposition objectives (e.g., Frobenius norm) are designed for fitting raw data under statistical assumptions, which may not align with downstream classification tasks. In practice, raw input tensor can contain irrelevant information while data augmentation techniques may be used to smooth out class-irrelevant noise in samples. This paper addresses the above challenges by proposing augmented tensor decomposition (ATD), which effectively incorporates data augmentations and self-supervised learning (SSL) to boost downstream classification. To address the non-convexity of the new augmented objective, we develop an iterative method that enables the optimization to follow an alternating least squares (ALS) fashion. We evaluate our proposed ATD on multiple datasets. It can achieve 0.8%~2.5% accuracy gain over tensor-based baselines. Also, our ATD model shows comparable or better performance (e.g., up to 15% in accuracy) over self-supervised and autoencoder baselines while using less than 5% of learnable parameters of these baseline models.
[ Hall J ]

Despite the success of convolutional neural networks (CNNs) in many academic benchmarks for computer vision tasks, their application in the real-world is still facing fundamental challenges. One of these open problems is the inherent lack of robustness, unveiled by the striking effectiveness of adversarial attacks. Current attack methods are able to manipulate the network's prediction by adding specific but small amounts of noise to the input. In turn, adversarial training (AT) aims to achieve robustness against such attacks and ideally a better model generalization ability by including adversarial samples in the trainingset. However, an in-depth analysis of the resulting robust models beyond adversarial robustness is still pending. In this paper, we empirically analyze a variety of adversarially trained models that achieve high robust accuracies when facing state-of-the-art attacks and we show that AT has an interesting side-effect: it leads to models that are significantly less overconfident with their decisions, even on clean data than non-robust models. Further, our analysis of robust models shows that not only AT but also the model's building blocks (like activation functions and pooling) have a strong influence on the models' prediction confidences. Data & Project website: https://github.com/GeJulia/robustnessconfidencesevaluation
[ Hall J ]

Neural rendering can be used to reconstruct implicit representations of shapes without 3D supervision. However, current neural surface reconstruction methods have difficulty learning high-frequency geometry details, so the reconstructed shapes are often over-smoothed. We develop HF-NeuS, a novel method to improve the quality of surface reconstruction in neural rendering. We follow recent work to model surfaces as signed distance functions (SDFs). First, we offer a derivation to analyze the relationship between the SDF, the volume density, the transparency function, and the weighting function used in the volume rendering equation and propose to model transparency as a transformed SDF. Second, we observe that attempting to jointly encode high-frequency and low-frequency components in a single SDF leads to unstable optimization. We propose to decompose the SDF into base and displacement functions with a coarse-to-fine strategy to increase the high-frequency details gradually. Finally, we design an adaptive optimization strategy that makes the training process focus on improving those regions near the surface where the SDFs have artifacts. Our qualitative and quantitative results show that our method can reconstruct fine-grained surface details and obtain better surface reconstruction quality than the current state of the art. Code available at https://github.com/yiqun-wang/HFS.
[ Hall J ]

[ Hall J ]

When training overparameterized deep networks for classification tasks, it has been widely observed that the learned features exhibit a so-called "neural collapse'" phenomenon. More specifically, for the output features of the penultimate layer, for each class the within-class features converge to their means, and the means of different classes exhibit a certain tight frame structure, which is also aligned with the last layer's classifier. As feature normalization in the last layer becomes a common practice in modern representation learning, in this work we theoretically justify the neural collapse phenomenon under normalized features. Based on an unconstrained feature model, we simplify the empirical loss function in a multi-class classification task into a nonconvex optimization problem over the Riemannian manifold by constraining all features and classifiers over the sphere. In this context, we analyze the nonconvex landscape of the Riemannian optimization problem over the product of spheres, showing a benign global landscape in the sense that the only global minimizers are the neural collapse solutions while all other critical points are strict saddle points with negative curvature. Experimental results on practical deep networks corroborate our theory and demonstrate that better representations can be learned faster via feature normalization. Code for our experiments …
[ Hall J ]

The problem of adversarial defenses for image classification, where the goal is to robustify a classifier against adversarial examples, is considered. Inspired by the hypothesis that these examples lie beyond the natural image manifold, a novel aDversarIal defenSe with local impliCit functiOns (DISCO) is proposed to remove adversarial perturbations by localized manifold projections. DISCO consumes an adversarial image and a query pixel location and outputs a clean RGB value at the location. It is implemented with an encoder and a local implicit module, where the former produces per-pixel deep features and the latter uses the features in the neighborhood of query pixel for predicting the clean RGB value. Extensive experiments demonstrate that both DISCO and its cascade version outperform prior defenses, regardless of whether the defense is known to the attacker. DISCO is also shown to be data and parameter efficient and to mount defenses that transfers across datasets, classifiers and attacks.
[ Hall J ]

Building models that comply with the invariances inherent to different domains, such as invariance under translation or rotation, is a key aspect of applying machine learning to real world problems like molecular property prediction, medical imaging, protein folding or LiDAR classification. For the first time, we study how the invariances of a model can be leveraged to provably guarantee the robustness of its predictions. We propose a gray-box approach, enhancing the powerful black-box randomized smoothing technique with white-box knowledge about invariances. First, we develop gray-box certificates based on group orbits, which can be applied to arbitrary models with invariance under permutation and Euclidean isometries. Then, we derive provably tight gray-box certificates. We experimentally demonstrate that the provably tight certificates can offer much stronger guarantees, but that in practical scenarios the orbit-based method is a good approximation.
[ Hall J ]

A Bayesian coreset is a small, weighted subset of data that replaces the full dataset during Bayesian inference, with the goal of reducing computational cost. Although past work has shown empirically that there often exists a coreset with low inferential error, efficiently constructing such a coreset remains a challenge. Current methods tend to be slow, require a secondary inference step after coreset construction, and do not provide bounds on the data marginal evidence. In this work, we introduce a new method---sparse Hamiltonian flows---that addresses all three of these challenges. The method involves first subsampling the data uniformly, and then optimizing a Hamiltonian flow parametrized by coreset weights and including periodic momentum quasi-refreshment steps. Theoretical results show that the method enables an exponential compression of the dataset in a representative model, and that the quasi-refreshment steps reduce the KL divergence to the target. Real and synthetic experiments demonstrate that sparse Hamiltonian flows provide accurate posterior approximations with significantly reduced runtime compared with competing dynamical-system-based inference methods.
[ Hall J ]
Score-based generative models are shown to achieve remarkable empirical performances in various applications such as image generation and audio synthesis. However, a theoretical understanding of score-based diffusion models is still incomplete. Recently, Song et al. showed that the training objective of score-based generative models is equivalent to minimizing the Kullback-Leibler divergence of the generated distribution from the data distribution. In this work, we show that score-based models also minimize the Wasserstein distance between them. Specifically, we prove that the Wasserstein distance is upper bounded by the square root of the objective function up to multiplicative constants and a fixed constant offset. Our proof is based on a novel application of the theory of optimal transport, which can be of independent interest to the society. Our numerical experiments support our findings. By analyzing our upper bounds, we provide a few techniques to obtain tighter upper bounds.
[ Hall J ]
The cooperative Multi-Agent Reinforcement Learning (MARL) with permutation invariant agents framework has achieved tremendous empirical successes in real-world applications. Unfortunately, the theoretical understanding of this MARL problem is lacking due to the curse of many agents and the limited exploration of the relational reasoning in existing works. In this paper, we verify that the transformer implements complex relational reasoning, and we propose and analyze model-free and model-based offline MARL algorithms with the transformer approximators. We prove that the suboptimality gaps of the model-free and model-based algorithms are independent of and logarithmic in the number of agents respectively, which mitigates the curse of many agents. These results are consequences of a novel generalization error bound of the transformer and a novel analysis of the Maximum Likelihood Estimate (MLE) of the system dynamics with the transformer. Our model-based algorithm is the first provably efficient MARL algorithm that explicitly exploits the permutation invariance of the agents. Our improved generalization bound may be of independent interest and is applicable to other regression problems related to the transformer beyond MARL.
[ Hall J ]
Traditional analyses in non-convex optimization typically rely on the smoothness assumption, namely requiring the gradients to be Lipschitz. However, recent evidence shows that this smoothness condition does not capture the properties of some deep learning objective functions, including the ones involving Recurrent Neural Networks and LSTMs. Instead, they satisfy a much more relaxed condition, with potentially unbounded smoothness. Under this relaxed assumption, it has been theoretically and empirically shown that the gradient-clipped SGD has an advantage over the vanilla one. In this paper, we show that clipping is not indispensable for Adam-type algorithms in tackling such scenarios: we theoretically prove that a generalized SignSGD algorithm can obtain similar convergence rates as SGD with clipping but does not need explicit clipping at all. This family of algorithms on one end recovers SignSGD and on the other end closely resembles the popular Adam algorithm. Our analysis underlines the critical role that momentum plays in analyzing SignSGD-type and Adam-type algorithms: it not only reduces the effects of noise, thus removing the need for large mini-batch in previous analyses of SignSGD-type algorithms, but it also substantially reduces the effects of unbounded smoothness and gradient norms. To the best of our knowledge, this work is …
[ Hall J ]

[ Hall J ]

We explore a feed-forward approach for decomposing a video into layers, where each layer contains an object of interest along with its associated shadows, reflections, and other visual effects. This problem is challenging since associated effects vary widely with the 3D geometry and lighting conditions in the scene, and ground-truth labels for visual effects are difficult (and in some cases impractical) to collect. We take a self-supervised approach and train a neural network to produce a foreground image and alpha matte from a rough object segmentation mask under a reconstruction and sparsity loss. Under reconstruction loss, the layer decomposition problem is underdetermined: many combinations of layers may reconstruct the input video.Inspired by the game theory concept of focal points---or \emph{Schelling points}---we pose the problem as a coordination game, where each player (network) predicts the effects for a single object without knowledge of the other players' choices. The players learn to converge on the ``natural'' layer decomposition in order to maximize the likelihood of their choices aligning with the other players'. We train the network to play this game with itself, and show how to design the rules of this game so that the focal point lies at the correct layer …
[ Hall J ]

We are interested in learning scalable agents for reinforcement learning that can learn from large-scale, diverse sequential data similar to current large vision and language models. To this end, this paper presents masked decision prediction (MaskDP), a simple and scalable self-supervised pretraining method for reinforcement learning (RL) and behavioral cloning (BC). In our MaskDP approach, we employ a masked autoencoder (MAE) to state-action trajectories, wherein we randomly mask state and action tokens and reconstruct the missing data. By doing so, the model is required to infer masked out states and actions and extract information about dynamics. We find that masking different proportions of the input sequence significantly helps with learning a better model that generalizes well to multiple downstream tasks. In our empirical study we find that a MaskDP model gains the capability of zero-shot transfer to new BC tasks, such as single and multiple goal reaching, and it can zero-shot infer skills from a few example transitions. In addition, MaskDP transfers well to offline RL and shows promising scaling behavior w.r.t. to model size. It is amenable to data efficient finetuning, achieving competitive results with prior methods based on autoregressive pretraining.
[ Hall J ]

Accurately predicting the relevance of items to users is crucial to the success of many social platforms. Conventional approaches train models on logged historical data; but recommendation systems, media services, and online marketplaces all exhibit a constant influx of new content---making relevancy a moving target, to which standard predictive models are not robust. In this paper, we propose a learning framework for relevance prediction that is robust to changes in the data distribution. Our key observation is that robustness can be obtained by accounting for \emph{how users causally perceive the environment}. We model users as boundedly-rational decision makers whose causal beliefs are encoded by a causal graph, and show how minimal information regarding the graph can be used to contend with distributional changes. Experiments in multiple settings demonstrate the effectiveness of our approach.
[ Hall J ]

The prevalence of data scraping from social media as a means to obtain datasets has led to growing concerns regarding unauthorized use of data. Data poisoning attacks have been proposed as a bulwark against scraping, as they make data ``unlearnable'' by adding small, imperceptible perturbations. Unfortunately, existing methods require knowledge of both the target architecture and the complete dataset so that a surrogate network can be trained, the parameters of which are used to generate the attack. In this work, we introduce autoregressive (AR) poisoning, a method that can generate poisoned data without access to the broader dataset. The proposed AR perturbations are generic, can be applied across different datasets, and can poison different architectures. Compared to existing unlearnable methods, our AR poisons are more resistant against common defenses such as adversarial training and strong data augmentations. Our analysis further provides insight into what makes an effective data poison.
[ Hall J ]
Message passing neural networks (MPNN) have seen a steep rise in popularity since their introduction as generalizations of convolutional neural networks to graph-structured data, and are now considered state-of-the-art tools for solving a large variety of graph-focused problems. We study the generalization error of MPNNs in graph classification and regression. We assume that graphs of different classes are sampled from different random graph models. We show that, when training a MPNN on a dataset sampled from such a distribution, the generalization gap increases in the complexity of the MPNN, and decreases, not only with respect to the number of training samples, but also with the average number of nodes in the graphs. This shows how a MPNN with high complexity can generalize from a small dataset of graphs, as long as the graphs are large. The generalization bound is derived from a uniform convergence result, that shows that any MPNN, applied on a graph, approximates the MPNN applied on the geometric model that the graph discretizes.
[ Hall J ]

We consider local kernel metric learning for off-policy evaluation (OPE) of deterministic policies in contextual bandits with continuous action spaces. Our work is motivated by practical scenarios where the target policy needs to be deterministic due to domain requirements, such as prescription of treatment dosage and duration in medicine. Although importance sampling (IS) provides a basic principle for OPE, it is ill-posed for the deterministic target policy with continuous actions. Our main idea is to relax the target policy and pose the problem as kernel-based estimation, where we learn the kernel metric in order to minimize the overall mean squared error (MSE). We present an analytic solution for the optimal metric, based on the analysis of bias and variance. Whereas prior work has been limited to scalar action spaces or kernel bandwidth selection, our work takes a step further being capable of vector action spaces and metric optimization. We show that our estimator is consistent, and significantly reduces the MSE compared to baseline OPE methods through experiments on various domains.
[ Hall J ]

[ Hall J ]

[ Hall J ]

Optimizing expensive-to-evaluate black-box functions of discrete (and potentially continuous) design parameters is a ubiquitous problem in scientific and engineering applications. Bayesian optimization (BO) is a popular, sample-efficient method that leverages a probabilistic surrogate model and an acquisition function (AF) to select promising designs to evaluate. However, maximizing the AF over mixed or high-cardinality discrete search spaces is challenging standard gradient-based methods cannot be used directly or evaluating the AF at every point in the search space would be computationally prohibitive. To address this issue, we propose using probabilistic reparameterization (PR). Instead of directly optimizing the AF over the search space containing discrete parameters, we instead maximize the expectation of the AF over a probability distribution defined by continuous parameters. We prove that under suitable reparameterizations, the BO policy that maximizes the probabilistic objective is the same as that which maximizes the AF, and therefore, PR enjoys the same regret bounds as the original BO policy using the underlying AF. Moreover, our approach provably converges to a stationary point of the probabilistic objective under gradient ascent using scalable, unbiased estimators of both the probabilistic objective and its gradient. Therefore, as the number of starting points and gradient steps increase, our approach …
[ Hall J ]

Adaptive curricula in reinforcement learning (RL) have proven effective for producing policies robust to discrepancies between the train and test environment. Recently, the Unsupervised Environment Design (UED) framework generalized RL curricula to generating sequences of entire environments, leading to new methods with robust minimax regret properties. Problematically, in partially-observable or stochastic settings, optimal policies may depend on the ground-truth distribution over aleatoric parameters of the environment in the intended deployment setting, while curriculum learning necessarily shifts the training distribution. We formalize this phenomenon as curriculum-induced covariate shift (CICS), and describe how its occurrence in aleatoric parameters can lead to suboptimal policies. Directly sampling these parameters from the ground-truth distribution avoids the issue, but thwarts curriculum learning. We propose SAMPLR, a minimax regret UED method that optimizes the ground-truth utility function, even when the underlying training data is biased due to CICS. We prove, and validate on challenging domains, that our approach preserves optimality under the ground-truth distribution, while promoting robustness across the full range of environment settings.
[ Hall J ]

Bilevel optimization (BO) is useful for solving a variety of important machine learning problems including but not limited to hyperparameter optimization, meta-learning, continual learning, and reinforcement learning.Conventional BO methods need to differentiate through the low-level optimization process with implicit differentiation, which requires expensive calculations related to the Hessian matrix. There has been a recent quest for first-order methods for BO, but the methods proposed to date tend to be complicated and impractical for large-scale deep learning applications. In this work, we propose a simple first-order BO algorithm that depends only on first-order gradient information, requires no implicit differentiation, and is practical and efficient for large-scale non-convex functions in deep learning. We provide non-asymptotic convergence analysis of the proposed method to stationary points for non-convex objectives and present empirical results that show its superior practical performance.
[ Hall J ]
Backpropagation (BP) is the most successful and widely used algorithm in deep learning. However, the computations required by BP are challenging to reconcile with known neurobiology. This difficulty has stimulated interest in more biologically plausible alternatives to BP. One such algorithm is the inference learning algorithm (IL). IL trains predictive coding models of neural circuits and has achieved equal performance to BP on supervised and auto-associative tasks. In contrast to BP, however, the mathematical foundations of IL are not well-understood. Here, we develop a novel theoretical framework for IL. Our main result is that IL closely approximates an optimization method known as implicit stochastic gradient descent (implicit SGD), which is distinct from the explicit SGD implemented by BP. Our results further show how the standard implementation of IL can be altered to better approximate implicit SGD. Our novel implementation considerably improves the stability of IL across learning rates, which is consistent with our theory, as a key property of implicit SGD is its stability. We provide extensive simulation results that further support our theoretical interpretations and find IL achieves quicker convergence when trained with mini-batch size one while performing competitively with BP for larger mini-batches when combined with Adam.
[ Hall J ]

We introduce an additive Gaussian process (GP) framework accounting for monotonicity constraints and scalable to high dimensions. Our contributions are threefold. First, we show that our framework enables to satisfy the constraints everywhere in the input space. We also show that more general componentwise linear inequality constraints can be handled similarly, such as componentwise convexity. Second, we propose the additive MaxMod algorithm for sequential dimension reduction. By sequentially maximizing a squared-norm criterion, MaxMod identifies the active input dimensions and refines the most important ones. This criterion can be computed explicitly at a linear cost. Finally, we provide open-source codes for our full framework. We demonstrate the performance and scalability of the methodology in several synthetic examples with hundreds of dimensions under monotonicity constraints as well as on a real-world flood application.
[ Hall J ]

Generalization analyses of deep learning typically assume that the training converges to a fixed point. But, recent results indicate that in practice, the weights of deep neural networks optimized with stochastic gradient descent often oscillate indefinitely. To reduce this discrepancy between theory and practice, this paper focuses on the generalization of neural networks whose training dynamics do not necessarily converge to fixed points. Our main contribution is to propose a notion of statistical algorithmic stability (SAS) that extends classical algorithmic stability to non-convergent algorithms and to study its connection to generalization. This ergodic-theoretic approach leads to new insights when compared to the traditional optimization and learning theory perspectives. We prove that the stability of the time-asymptotic behavior of a learning algorithm relates to its generalization and empirically demonstrate how loss dynamics can provide clues to generalization performance. Our findings provide evidence that networks that ``train stably generalize better'' even when the training continues indefinitely and the weights do not converge.
[ Hall J ]

While existing automatic differentiation (AD) frameworks allow flexibly composing model architectures, they do not provide the same flexibility for composing learning algorithms---everything has to be implemented in terms of back propagation. To address this gap, we invent Automatic Propagation (AP) software, which generalizes AD, and allows custom and composable construction of complex learning algorithms. The framework allows packaging custom learning algorithms into propagators that automatically implement the necessary computations, and can be reused across different computation graphs. We implement Proppo, a prototype AP software package built on top of the Pytorch AD framework. To demonstrate the utility of Proppo, we use it to implement Monte Carlo gradient estimation techniques, such as reparameterization and likelihood ratio gradients, as well as the total propagation algorithm and Gaussian shaping gradients, which were previously used in model-based reinforcement learning, but do not have any publicly available implementation. Finally, in minimalistic experiments, we show that these methods allow increasing the gradient accuracy by orders of magnitude, particularly when the machine learning system is at the edge of chaos.
[ Hall J ]
The ability to estimate epistemic uncertainty is often crucial when deploying machine learning in the real world, but modern methods often produce overconfident, uncalibrated uncertainty predictions. A common approach to quantify epistemic uncertainty, usable across a wide class of prediction models, is to train a model ensemble. In a naive implementation, the ensemble approach has high computational cost and high memory demand. This challenges in particular modern deep learning, where even a single deep network is already demanding in terms of compute and memory, and has given rise to a number of attempts to emulate the model ensemble without actually instantiating separate ensemble members. We introduce FiLM-Ensemble, a deep, implicit ensemble method based on the concept of Feature-wise Linear Modulation (FiLM). That technique was originally developed for multi-task learning, with the aim of decoupling different tasks. We show that the idea can be extended to uncertainty quantification: by modulating the network activations of a single deep network with FiLM, one obtains a model ensemble with high diversity, and consequently well-calibrated estimates of epistemic uncertainty, with low computational overhead in comparison. Empirically, FiLM-Ensemble outperforms other implicit ensemble methods, and it comes very close to the upper bound of an explicit ensemble …
[ Hall J ]

Commonly in reinforcement learning (RL), rewards are discounted over time using an exponential function to model time preference, thereby bounding the expected long-term reward. In contrast, in economics and psychology, it has been shown that humans often adopt a hyperbolic discounting scheme, which is optimal when a specific task termination time distribution is assumed. In this work, we propose a theory for continuous-time model-based reinforcement learning generalized to arbitrary discount functions. This formulation covers the case in which there is a non-exponential random termination time. We derive a Hamilton–Jacobi–Bellman (HJB) equation characterizing the optimal policy and describe how it can be solved using a collocation method, which uses deep learning for function approximation. Further, we show how the inverse RL problem can be approached, in which one tries to recover properties of the discount function given decision data. We validate the applicability of our proposed approach on two simulated problems. Our approach opens the way for the analysis of human discounting in sequential decision-making tasks.
[ Hall J ]

U-Net architectures are ubiquitous in state-of-the-art deep learning, however their regularisation properties and relationship to wavelets are understudied. In this paper, we formulate a multi-resolution framework which identifies U-Nets as finite-dimensional truncations of models on an infinite-dimensional function space. We provide theoretical results which prove that average pooling corresponds to projection within the space of square-integrable functions and show that U-Nets with average pooling implicitly learn a Haar wavelet basis representation of the data. We then leverage our framework to identify state-of-the-art hierarchical VAEs (HVAEs), which have a U-Net architecture, as a type of two-step forward Euler discretisation of multi-resolution diffusion processes which flow from a point mass, introducing sampling instabilities. We also demonstrate that HVAEs learn a representation of time which allows for improved parameter efficiency through weight-sharing. We use this observation to achieve state-of-the-art HVAE performance with half the number of parameters of existing models, exploiting the properties of our continuous-time formulation.
[ Hall J ]
We consider the pool-based active learning problem, where only a subset of the training data is labeled, and the goal is to query a batch of unlabeled samples to be labeled so as to maximally improve model performance. We formulate the problem using constrained learning, where a set of constraints bounds the performance of the model on labeled samples. Considering a primal-dual approach, we optimize the primal variables, corresponding to the model parameters, as well as the dual variables, corresponding to the constraints. As each dual variable indicates how significantly the perturbation of the respective constraint affects the optimal value of the objective function, we use it as a proxy of the informativeness of the corresponding training sample. Our approach, which we refer to as Active Learning via Lagrangian dualitY, or ALLY, leverages this fact to select a diverse set of unlabeled samples with the highest estimated dual variables as our query set. We demonstrate the benefits of our approach in a variety of classification and regression tasks and discuss its limitations depending on the capacity of the model used and the degree of redundancy in the dataset. We also examine the impact of the distribution shift induced by active …
[ Hall J ]

Understanding the consequences of mutation for molecular fitness and function is a fundamental problem in biology. Recently, generative probabilistic models have emerged as a powerful tool for estimating fitness from evolutionary sequence data, with accuracy sufficient to predict both laboratory measurements of function and disease risk in humans, and to design novel functional proteins. Existing techniques rest on an assumed relationship between density estimation and fitness estimation, a relationship that we interrogate in this article. We prove that fitness is not identifiable from observational sequence data alone, placing fundamental limits on our ability to disentangle fitness landscapes from phylogenetic history. We show on real datasets that perfect density estimation in the limit of infinite data would, with high confidence, result in poor fitness estimation; current models perform accurate fitness estimation because of, not despite, misspecification. Our results challenge the conventional wisdom that bigger models trained on bigger datasets will inevitably lead to better fitness estimation, and suggest novel estimation strategies going forward.
[ Hall J ]

In many practical applications of AI, an AI model is used as a decision aid for human users. The AI provides advice that a human (sometimes) incorporates into their decision-making process. The AI advice is often presented with some measure of "confidence" that the human can use to calibrate how much they depend on or trust the advice. In this paper, we present an initial exploration that suggests showing AI models as more confident than they actually are, even when the original AI is well-calibrated, can improve human-AI performance (measured as the accuracy and confidence of the human's final prediction after seeing the AI advice). We first train a model to predict human incorporation of AI advice using data from thousands of human-AI interactions. This enables us to explicitly estimate how to transform the AI's prediction confidence, making the AI uncalibrated, in order to improve the final human prediction. We empirically validate our results across four different tasks---dealing with images, text and tabular data---involving hundreds of human participants. We further support our findings with simulation analysis. Our findings suggest the importance of jointly optimizing the human-AI system as opposed to the standard paradigm of optimizing the AI model alone.
[ Hall J ]

Hundreds of defenses have been proposed to make deep neural networks robust against minimal (adversarial) input perturbations. However, only a handful of these defenses held up their claims because correctly evaluating robustness is extremely challenging: Weak attacks often fail to find adversarial examples even if they unknowingly exist, thereby making a vulnerable network look robust. In this paper, we propose a test to identify weak attacks and, thus, weak defense evaluations. Our test slightly modifies a neural network to guarantee the existence of an adversarial example for every sample. Consequentially, any correct attack must succeed in breaking this modified network. For eleven out of thirteen previously-published defenses, the original evaluation of the defense fails our test, while stronger attacks that break these defenses pass it. We hope that attack unit tests - such as ours - will be a major component in future robustness evaluations and increase confidence in an empirical field that is currently riddled with skepticism.
[ Hall J ]
Learning image representations using synthetic data allows training neural networks without some of the concerns associated with real images, such as privacy and bias. Existing work focuses on a handful of curated generative processes which require expert knowledge to design, making it hard to scale up. To overcome this, we propose training with a large dataset of twenty-one thousand programs, each one generating a diverse set of synthetic images. These programs are short code snippets, which are easy to modify and fast to execute using OpenGL. The proposed dataset can be used for both supervised and unsupervised representation learning, and reduces the gap between pre-training with real and procedurally generated images by 38%.
[ Hall J ]
A finite set of invariants can identify many interesting transformation groups. For example, distances, inner products and angles are preserved by Euclidean, Orthogonal and Conformal transformations, respectively. In an equivariant representation, the group invariants should remain constant on the embedding as we transform the input. This gives a procedure for learning equivariant representations without knowing the possibly nonlinear action of the group in the input space. Rather than enforcing such hard invariance constraints on the latent space, we show how to use invariants for "symmetry regularization" of the latent, while guaranteeing equivariance through other means. We also show the feasibility of learning disentangled representations using this approach and provide favorable qualitative and quantitative results on downstream tasks, including world modeling and reinforcement learning.
[ Hall J ]

The strong lottery ticket hypothesis has highlighted the potential for training deep neural networks by pruning, which has inspired interesting practical and theoretical insights into how neural networks can represent functions. For networks with ReLU activation functions, it has been proven that a target network with depth L can be approximated by the subnetwork of a randomly initialized neural network that has double the target's depth 2L and is wider by a logarithmic factor. We show that a depth L+1 is sufficient. This result indicates that we can expect to find lottery tickets at realistic, commonly used depths while only requiring logarithmic overparametrization. Our novel construction approach applies to a large class of activation functions and is not limited to ReLUs. Code is available on Github (RelationalML/LT-existence).
[ Hall J ]

Despite recent advances in automated machine learning, model selection is still a complex and computationally intensive process. For Gaussian processes (GPs), selecting the kernel is a crucial task, often done manually by the expert. Additionally, evaluating the model selection criteria for Gaussian processes typically scales cubically in the sample size, rendering kernel search particularly computationally expensive. We propose a novel, efficient search method through a general, structured kernel space. Previous methods solved this task via Bayesian optimization and relied on measuring the distance between GP's directly in function space to construct a kernel-kernel. We present an alternative approach by defining a kernel-kernel over the symbolic representation of the statistical hypothesis that is associated with a kernel. We empirically show that this leads to a computationally more efficient way of searching through a discrete kernel space.
[ Hall J ]
Deep reinforcement learning algorithms often use two networks for value function optimization: an online network, and a target network that tracks the online network with some delay. Using two separate networks enables the agent to hedge against issues that arise when performing bootstrapping. In this paper we endow two popular deep reinforcement learning algorithms, namely DQN and Rainbow, with updates that incentivize the online network to remain in the proximity of the target network. This improves the robustness of deep reinforcement learning in presence of noisy updates. The resultant agents, called DQN Pro and Rainbow Pro, exhibit significant performance improvements over their original counterparts on the Atari benchmark demonstrating the effectiveness of this simple idea in deep reinforcement learning. The code for our paper is available here: Github.com/amazon-research/fast-rl-with-slow-updates.
[ Hall J ]

Combination therapy refers to the use of multiple treatments -- such as surgery, medication, and behavioral therapy - to cure a single disease, and has become a cornerstone for treating various conditions including cancer, HIV, and depression. All possible combinations of treatments lead to a collection of treatment regimens (i.e., policies) with mixed scopes, or what physicians could observe and which actions they should take depending on the context. In this paper, we investigate the online reinforcement learning setting for optimizing the policy space with mixed scopes. In particular, we develop novel online algorithms that achieve sublinear regret compared to an optimal agent deployed in the environment. The regret bound has a dependency on the maximal cardinality of the induced state-action space associated with mixed scopes. We further introduce a canonical representation for an arbitrary subset of interventional distributions given a causal diagram, which leads to a non-trivial, minimal representation of the model parameters.
[ Hall J ]
In Machine Learning, a benchmark refers to an ensemble of datasets associated with one or multiple metrics together with a way to aggregate different systems performances. They are instrumental in {\it (i)} assessing the progress of new methods along different axes and {\it (ii)} selecting the best systems for practical use. This is particularly the case for NLP with the development of large pre-trained models (\textit{e.g.} GPT, BERT) that are expected to generalize well on a variety of tasks. While the community mainly focused on developing new datasets and metrics, there has been little interest in the aggregation procedure, which is often reduced to a simple average over various performance measures. However, this procedure can be problematic when the metrics are on a different scale, which may lead to spurious conclusions. This paper proposes a new procedure to rank systems based on their performance across different tasks. Motivated by the social choice theory, the final system ordering is obtained through aggregating the rankings induced by each task and is theoretically grounded. We conduct extensive numerical experiments (on over 270k scores) to assess the soundness of our approach both on synthetic and real scores (\textit{e.g.} GLUE, EXTREM, SEVAL, TAC, FLICKR). In …
[ Hall J ]
Despite significant progress on multi-agent reinforcement learning (MARL) in recent years, coordination in complex domains remains a challenge. Work in MARL often focuses on solving tasks where agents interact with all other agents and entities in the environment; however, we observe that real-world tasks are often composed of several isolated instances of local agent interactions (subtasks), and each agent can meaningfully focus on one subtask to the exclusion of all else in the environment. In these composite tasks, successful policies can often be decomposed into two levels of decision-making: agents are allocated to specific subtasks and each agent acts productively towards their assigned subtask alone. This decomposed decision making provides a strong structural inductive bias, significantly reduces agent observation spaces, and encourages subtask-specific policies to be reused and composed during training, as opposed to treating each new composition of subtasks as unique. We introduce ALMA, a general learning method for taking advantage of these structured tasks. ALMA simultaneously learns a high-level subtask allocation policy and low-level agent policies. We demonstrate that ALMA learns sophisticated coordination behavior in a number of challenging environments, outperforming strong baselines. ALMA's modularity also enables it to better generalize to new environment configurations. Finally, we find …
[ Hall J ]
Human language learners are exposed to a trickle of informative, context-sensitive language, but a flood of raw sensory data. Through both social language use and internal processes of rehearsal and practice, language learners are able to build high-level, semantic representations that explain their perceptions. Here, we take inspiration from such processes of "inner speech" in humans (Vygotsky, 1934) to better understand the role of intra-agent speech in embodied behavior. First, we formally pose intra-agent speech as a semi-supervised problem and develop two algorithms that enable visually grounded captioning with little labeled language data. We then experimentally compute scaling curves over different amounts of labeled data and compare the data efficiency against a supervised learning baseline. Finally, we incorporate intra-agent speech into an embodied, mobile manipulator agent operating in a 3D virtual world, and show that with as few as 150 additional image captions, intra-agent speech endows the agent with the ability to manipulate and answer questions about a new object without any related task-directed experience (zero-shot). Taken together, our experiments suggest that modelling intra-agent speech is effective in enabling embodied agents to learn new tasks efficiently and without direct interaction experience.
[ Hall J ]
Estimating the effect of intervention from observational data while accounting for confounding variables is a key task in causal inference. Oftentimes, the confounders are unobserved, but we have access to large amounts of additional unstructured data (images, text) that contain valuable proxy signal about the missing confounders. This paper argues that leveraging this unstructured data can greatly improve the accuracy of causal effect estimation. Specifically, we introduce deep multi-modal structural equations, a generative model for causal effect estimation in which confounders are latent variables and unstructured data are proxy variables. This model supports multiple multimodal proxies (images, text) as well as missing data. We empirically demonstrate that our approach outperforms existing methods based on propensity scores and corrects for confounding using unstructured inputs on tasks in genomics and healthcare. Our methods can potentially support the use of large amounts of data that were previously not used in causal inference
[ Hall J ]

Sensory neuroprostheses are emerging as a promising technology to restore lost sensory function or augment human capabilities. However, sensations elicited by current devices often appear artificial and distorted. Although current models can predict the neural or perceptual response to an electrical stimulus, an optimal stimulation strategy solves the inverse problem: what is the required stimulus to produce a desired response? Here, we frame this as an end-to-end optimization problem, where a deep neural network stimulus encoder is trained to invert a known and fixed forward model that approximates the underlying biological system. As a proof of concept, we demonstrate the effectiveness of this Hybrid Neural Autoencoder (HNA) in visual neuroprostheses. We find that HNA produces high-fidelity patient-specific stimuli representing handwritten digits and segmented images of everyday objects, and significantly outperforms conventional encoding strategies across all simulated patients. Overall this is an important step towards the long-standing challenge of restoring high-quality vision to people living with incurable blindness and may prove a promising solution for a variety of neuroprosthetic technologies.
[ Hall J ]

Large transformer-based models are able to perform in-context few-shot learning, without being explicitly trained for it. This observation raises the question: what aspects of the training regime lead to this emergent behavior? Here, we show that this behavior is driven by the distributions of the training data itself. In-context learning emerges when the training data exhibits particular distributional properties such as burstiness (items appear in clusters rather than being uniformly distributed over time) and having a large number of rarely occurring classes. In-context learning also emerges more strongly when item meanings or interpretations are dynamic rather than fixed. These properties are exemplified by natural language, but are also inherent to naturalistic data in a wide range of other domains. They also depart significantly from the uniform, i.i.d. training distributions typically used for standard supervised learning. In our initial experiments, we found that in-context learning traded off against more conventional weight-based learning, and models were unable to achieve both simultaneously. However, our later experiments uncovered that the two modes of learning could co-exist in a single model when it was trained on data following a skewed Zipfian distribution -- another common property of naturalistic data, including language. In further experiments, we …
[ Hall J ]
Learning general-purpose representations from perceptual inputs is a hallmark of human intelligence. For example, people can write out numbers or characters, or even draw doodles, by characterizing these tasks as different instantiations of the same generic underlying process---compositional arrangements of different forms of pen strokes. Crucially, learning to do one task, say writing, implies reasonable competence at another, say drawing, on account of this shared process. We present Drawing out of Distribution (DooD), a neuro-symbolic generative model of stroke-based drawing that can learn such general-purpose representations. In contrast to prior work, DooD operates directly on images, requires no supervision or expensive test-time inference, and performs unsupervised amortized inference with a symbolic stroke model that better enables both interpretability and generalization. We evaluate DooD on its ability to generalize across both data and tasks. We first perform zero-shot transfer from one dataset (e.g. MNIST) to another (e.g. Quickdraw), across five different datasets, and show that DooD clearly outperforms different baselines. An analysis of the learnt representations further highlights the benefits of adopting a symbolic stroke model. We then adopt a subset of the Omniglot challenge tasks, and evaluate its ability to generate new exemplars (both unconditionally and conditionally), and perform one-shot …
[ Hall J ]

[ Hall J ]

Recent research has proposed a series of specialized optimization algorithms for deep multi-task models. It is often claimed that these multi-task optimization (MTO) methods yield solutions that are superior to the ones found by simply optimizing a weighted average of the task losses. In this paper, we perform large-scale experiments on a variety of language and vision tasks to examine the empirical validity of these claims. We show that, despite the added design and computational complexity of these algorithms, MTO methods do not yield any performance improvements beyond what is achievable via traditional optimization approaches. We highlight alternative strategies that consistently yield improvements to the performance profile and point out common training pitfalls that might cause suboptimal results. Finally, we outline challenges in reliably evaluating the performance of MTO algorithms and discuss potential solutions.
[ Hall J ]

[ Hall J ]

Finding an optimal individualized treatment regimen is considered one of the most challenging precision medicine problems. Various patient characteristics influence the response to the treatment, and hence, there is no one-size-fits-all regimen. Moreover, the administration of an unsafe dose during the treatment can have adverse effects on health. Therefore, a treatment model must ensure patient \emph{safety} while \emph{efficiently} optimizing the course of therapy. We study a prevalent medical problem where the treatment aims to keep a physiological variable in a safe range and preferably close to a target level, which we refer to as \emph{leveling}. Such a task may be relevant in numerous other domains as well. We propose ESCADA, a novel and generic multi-armed bandit (MAB) algorithm tailored for the leveling task, to make safe, personalized, and context-aware dose recommendations. We derive high probability upper bounds on its cumulative regret and safety guarantees. Following ESCADA's design, we also describe its Thompson sampling-based counterpart. We discuss why the straightforward adaptations of the classical MAB algorithms such as GP-UCB may not be a good fit for the leveling task. Finally, we make \emph{in silico} experiments on the bolus-insulin dose allocation problem in type-1 diabetes mellitus disease and compare our algorithms against …
[ Hall J ]
By combining robust regression and prior information, we develop an effective robust regression method that can resist adaptive adversarial attacks. Due to the widespread existence of noise and data corruption, it is necessary to recover the true regression parameters when a certain proportion of the response variables have been corrupted. Methods to overcome this problem often involve robust least-squares regression. However, few methods achieve good performance when dealing with severe adaptive adversarial attacks. Based on the combination of prior information and robust regression via hard thresholding, this paper proposes an algorithm that improves the breakdown point when facing adaptive adversarial attacks. Furthermore, to improve the robustness and reduce the estimation error caused by the inclusion of a prior, the idea of Bayesian reweighting is used to construct a more robust algorithm. We prove the theoretical convergence of proposed algorithms under mild conditions. Extensive experiments show that, under different dataset attacks, our algorithms achieve state-of-the-art results compared with other benchmark algorithms, demonstrating the robustness of the proposed approach.
[ Hall J ]
RegretNet is a recent breakthrough in the automated design of revenue-maximizing auctions. It combines the flexibility of deep learning with the regret-based approach to relax the Incentive Compatibility (IC) constraint (that participants prefer to bid truthfully) in order to approximate optimal auctions. We propose two independent improvements of RegretNet. The first is a neural architecture denoted as RegretFormer that is based on attention layers. The second is a loss function that requires explicit specification of an acceptable IC violation denoted as regret budget. We investigate both modifications in an extensive experimental study that includes settings with constant and inconstant numbers of items and participants, as well as novel validation procedures tailored to regret-based approaches. We find that RegretFormer consistently outperforms RegretNet in revenue (i.e. is optimal-er) and that our loss function both simplifies hyperparameter tuning and allows to unambiguously control the revenue-regret trade-off by selecting the regret budget.
[ Hall J ]

In several real-world applications, a learner has access to multiple environment simulators, each with a different precision (e.g., simulation accuracy) and cost (e.g., computational time). In such a scenario, the learner faces the trade-off between selecting expensive accurate simulators or preferring cheap imprecise ones. We formalize this setting as a multi-fidelity variant of the stochastic best-arm identification problem, where querying the original arm is expensive, but multiple and biased approximations (i.e., fidelities) are available at lower costs. The learner's goal, in this setting, is to sequentially choose which simulator to query in order to minimize the total cost, while guaranteeing to identify the optimal arm with high probability. We first derive a lower bound on the identification cost, assuming that the maximum bias of each fidelity is known to the learner. Then, we propose a novel algorithm, Iterative Imprecise Successive Elimination (IISE), which provably reduces the total cost w.r.t. algorithms that ignore the multi-fidelity structure and whose cost complexity upper bound mimics the structure of the lower bound. Furthermore, we show that the cost complexity of IISE can be further reduced when the agent has access to a more fine-grained knowledge of the error introduced by the approximators.Finally, we numerically …
[ Hall J ]
[ Hall J ]

[ Hall J ]

Despite the non-convex optimization landscape, over-parametrized shallow networks are able to achieve global convergence under gradient descent. The picture can be radically different for narrow networks, which tend to get stuck in badly-generalizing local minima. Here we investigate the cross-over between these two regimes in the high-dimensional setting, and in particular investigate the connection between the so-called mean-field/hydrodynamic regime and the seminal approach of Saad \& Solla. Focusing on the case of Gaussian data, we study the interplay between the learning rate, the time scale, and the number of hidden units in the high-dimensional dynamics of stochastic gradient descent (SGD). Our work builds on a deterministic description of SGD in high-dimensions from statistical physics, which we extend and for which we provide rigorous convergence rates.
[ Hall J ]
We consider the problem of producing fair probabilistic classifiers for multi-class classification tasks. We formulate this problem in terms of ``projecting'' a pre-trained (and potentially unfair) classifier onto the set of models that satisfy target group-fairness requirements. The new, projected model is given by post-processing the outputs of the pre-trained classifier by a multiplicative factor. We provide a parallelizable, iterative algorithm for computing the projected classifier and derive both sample complexity and convergence guarantees. Comprehensive numerical comparisons with state-of-the-art benchmarks demonstrate that our approach maintains competitive performance in terms of accuracy-fairness trade-off curves, while achieving favorable runtime on large datasets. We also evaluate our method at scale on an open dataset with multiple classes, multiple intersectional groups, and over 1M samples.
[ Hall J ]

[ Hall J ]

[ Hall J ]
[ Hall J ]

[ Hall J ]

[ Hall J ]

[ Hall J ]
[ Hall J ]

[ Hall J ]

Generalized Additive Models (GAMs) have quickly become the leading choice for interpretable machine learning. However, unlike uninterpretable methods such as DNNs, they lack expressive power and easy scalability, and are hence not a feasible alternative for real-world tasks. We present a new class of GAMs that use tensor rank decompositions of polynomials to learn powerful, {\em inherently-interpretable} models. Our approach, titled Scalable Polynomial Additive Models (SPAM) is effortlessly scalable and models {\em all} higher-order feature interactions without a combinatorial parameter explosion. SPAM outperforms all current interpretable approaches, and matches DNN/XGBoost performance on a series of real-world benchmarks with up to hundreds of thousands of features. We demonstrate by human subject evaluations that SPAMs are demonstrably more interpretable in practice, and are hence an effortless replacement for DNNs for creating interpretable and high-performance systems suitable for large-scale machine learning.Source code is available at \href{https://github.com/facebookresearch/nbm-spam}{\ttfamily github.com/facebookresearch/nbm-spam}.
[ Hall J ]
[ Hall J ]

A compositional understanding of the world in terms of objects and their geometry in 3D space is considered a cornerstone of human cognition. Facilitating the learning of such a representation in neural networks holds promise for substantially improving labeled data efficiency. As a key step in this direction, we make progress on the problem of learning 3D-consistent decompositions of complex scenes into individual objects in an unsupervised fashion. We introduce Object Scene Representation Transformer (OSRT), a 3D-centric model in which individual object representations naturally emerge through novel view synthesis. OSRT scales to significantly more complex scenes with larger diversity of objects and backgrounds than existing methods. At the same time, it is multiple orders of magnitude faster at compositional rendering thanks to its light field parametrization and the novel Slot Mixer decoder. We believe this work will not only accelerate future architecture exploration and scaling efforts, but it will also serve as a useful tool for both object-centric as well as neural scene representation learning communities.
[ Hall J ]

Unsupervised learning of 3D-aware generative adversarial networks (GANs) using only collections of single-view 2D photographs has very recently made much progress. These 3D GANs, however, have not been demonstrated for human bodies and the generated radiance fields of existing frameworks are not directly editable, limiting their applicability in downstream tasks. We propose a solution to these challenges by developing a 3D GAN framework that learns to generate radiance fields of human bodies or faces in a canonical pose and warp them using an explicit deformation field into a desired body pose or facial expression. Using our framework, we demonstrate the first high-quality radiance field generation results for human bodies. Moreover, we show that our deformation-aware training procedure significantly improves the quality of generated bodies or faces when editing their poses or facial expressions compared to a 3D GAN that is not trained with explicit deformations.
[ Hall J ]

In this work, we are dedicated to a new task, i.e., hand-object interaction image generation, which aims to conditionally generate the hand-object image under the given hand, object and their interaction status. This task is challenging and research-worthy in many potential application scenarios, such as AR/VR games and online shopping, etc. To address this problem, we propose a novel HOGAN framework, which utilizes the expressive model-aware hand-object representation and leverages its inherent topology to build the unified surface space. In this space, we explicitly consider the complex self- and mutual occlusion during interaction. During final image synthesis, we consider different characteristics of hand and object and generate the target image in a split-and-combine manner. For evaluation, we build a comprehensive protocol to access both the fidelity and structure preservation of the generated image. Extensive experiments on two large-scale datasets, i.e., HO3Dv3 and DexYCB, demonstrate the effectiveness and superiority of our framework both quantitatively and qualitatively. The code will be available at https://github.com/play-with-HOI-generation/HOIG.
[ Hall J ]

Novel object captioning (NOC) aims to describe images containing objects without observing their ground truth captions during training. Due to the absence of caption annotation, captioning models cannot be directly optimized via sequence-to-sequence training or CIDEr optimization. As a result, we present Paraphrasing-to-Captioning (P2C), a two-stage learning framework for NOC, which would heuristically optimize the output captions via paraphrasing. With P2C, the captioning model first learns paraphrasing from a language model pre-trained on text-only corpus, allowing expansion of the word bank for improving linguistic fluency. To further enforce the output caption sufficiently describing the visual content of the input image, we perform self-paraphrasing for the captioning model with fidelity and adequacy objectives introduced. Since no ground truth captions are available for novel object images during training, our P2C leverages cross-modality (image-text) association modules to ensure the above caption characteristics can be properly preserved. In the experiments, we not only show that our P2C achieves state-of-the-art performances on nocaps and COCO Caption datasets, we also verify the effectiveness and flexibility of our learning framework by replacing language and cross-modality association models for NOC. Implementation details and code are available in the supplementary materials.
[ Hall J ]

Continual learning (CL) learns a sequence of tasks incrementally. There are two popular CL settings, class incremental learning (CIL) and task incremental learning (TIL). A major challenge of CL is catastrophic forgetting (CF). While a number of techniques are already available to effectively overcome CF for TIL, CIL remains to be highly challenging. So far, little theoretical study has been done to provide a principled guidance on how to solve the CIL problem. This paper performs such a study. It first shows that probabilistically, the CIL problem can be decomposed into two sub-problems: Within-task Prediction (WP) and Task-id Prediction (TP). It further proves that TP is correlated with out-of-distribution (OOD) detection, which connects CIL and OOD detection. The key conclusion of this study is that regardless of whether WP and TP or OOD detection are defined explicitly or implicitly by a CIL algorithm, good WP and good TP or OOD detection are necessary and sufficient for good CIL performances. Additionally, TIL is simply WP. Based on the theoretical result, new CIL methods are also designed, which outperform strong baselines in both CIL and TIL settings by a large margin.
[ Hall J ]

[ Hall J ]

To build an artificial neural network like the biological intelligence system, recent works have unified numerous tasks into a generalist model, which can process various tasks with shared parameters and do not have any task-specific modules. While generalist models achieve promising results on various benchmarks, they have performance degradation on some tasks compared with task-specialized models. In this work, we find that interference among different tasks and modalities is the main factor to this phenomenon. To mitigate such interference, we introduce the Conditional Mixture-of-Experts (Conditional MoEs) to generalist models. Routing strategies under different levels of conditions are proposed to take both the training/inference cost and generalization ability into account. By incorporating the proposed Conditional MoEs, the recently proposed generalist model Uni-Perceiver can effectively mitigate the interference across tasks and modalities, and achieves state-of-the-art results on a series of downstream tasks via prompt tuning on 1% of downstream data. Moreover, the introduction of Conditional MoEs still holds the generalization ability of generalist models to conduct zero-shot inference on new tasks, e.g., videotext retrieval and video caption. Code and pre-trained generalist models are publicly released at https://github.com/fundamentalvision/Uni-Perceiver.
[ Hall J ]

Prevalent semantic segmentation solutions are, in essence, a dense discriminative classifier of p(class|pixel feature). Though straightforward, this de facto paradigm neglects the underlying data distribution p(pixel feature|class), and struggles to identify out-of-distribution data. Going beyond this, we propose GMMSeg, a new family of segmentation models that rely on a dense generative classifier for the joint distribution p(pixel feature,class). For each class, GMMSeg builds Gaussian Mixture Models (GMMs) via Expectation-Maximization (EM), so as to capture class-conditional densities. Meanwhile, the deep dense representation is end-to-end trained in a discriminative manner, i.e., maximizing p(class|pixel feature). This endows GMMSeg with the strengths of both generative and discriminative models. With a variety of segmentation architectures and backbones, GMMSeg outperforms the discriminative counterparts on three closed-set datasets. More impressively, without any modification, GMMSeg even performs well on open-world datasets. We believe this work brings fundamental insights into the related fields.
[ Hall J ]

We present a new method to reconstruct 3D human body pose and shape by fusing visual features from multiview images captured by uncalibrated cameras. Existing multiview approaches often use spatial camera calibration (intrinsic and extrinsic parameters) to geometrically align and fuse visual features. Despite remarkable performances, the requirement of camera calibration restricted their applicability to real-world scenarios, e.g., reconstruction from social videos with wide-baseline cameras. We address this challenge by leveraging the commonly observed human body as a semantic calibration target, which eliminates the requirement of camera calibration. Specifically, we map per-pixel image features to a canonical body surface coordinate system agnostic to views and poses using dense keypoints (correspondences). This feature mapping allows us to semantically, instead of geometrically, align and fuse visual features from multiview images. We learn a self-attention mechanism to reason about the confidence of visual features across and within views. With fused visual features, a regressor is learned to predict the parameters of a body model. We demonstrate that our calibration-free multiview fusion method reliably reconstructs 3D body pose and shape, outperforming state-of-the-art single view methods with post-hoc multiview fusion, particularly in the presence of non-trivial occlusion, and showing comparable accuracy to multiview methods that …
[ Hall J ]

Modeling multivariate time series (MTS) is critical in modern intelligent systems. The accurate forecast of MTS data is still challenging due to the complicated latent variable correlation. Recent works apply the Graph Neural Networks (GNNs) to the task, with the basic idea of representing the correlation as a static graph. However, predicting with a static graph causes significant bias because the correlation is time-varying in the real-world MTS data. Besides, there is no gap analysis between the actual correlation and the learned one in their works to validate the effectiveness. This paper proposes a temporal polynomial graph neural network (TPGNN) for accurate MTS forecasting, which represents the dynamic variable correlation as a temporal matrix polynomial in two steps. First, we capture the overall correlation with a static matrix basis. Then, we use a set of time-varying coefficients and the matrix basis to construct a matrix polynomial for each time step. The constructed result empirically captures the precise dynamic correlation of six synthetic MTS datasets generated by a non-repeating random walk model. Moreover, the theoretical analysis shows that TPGNN can achieve perfect approximation under a commutative condition. We conduct extensive experiments on two traffic datasets with prior structure and four benchmark …
[ Hall J ]
AI-for-science approaches have been applied to solve scientific problems (e.g., nuclear fusion, ecology, genomics, meteorology) and have achieved highly promising results. Spatial precipitation downscaling is one of the most important meteorological problem and urgently requires the participation of AI. However, the lack of a well-organized and annotated large-scale dataset hinders the training and verification of more effective and advancing deep-learning models for precipitation downscaling. To alleviate these obstacles, we present the first large-scale spatial precipitation downscaling dataset named RainNet, which contains more than 62,400 pairs of high-quality low/high-resolution precipitation maps for over 17 years, ready to help the evolution of deep learning models in precipitation downscaling. Specifically, the precipitation maps carefully collected in RainNet cover various meteorological phenomena (e.g., hurricane, squall), which is of great help to improve the model generalization ability. In addition, the map pairs in RainNet are organized in the form of image sequences (720 maps per month or 1 map/hour), showing complex physical properties, e.g., temporal misalignment, temporal sparse, and fluid properties. Furthermore, two deep-learning-oriented metrics are specifically introduced to evaluate or verify the comprehensive performance of the trained model (e.g., prediction maps reconstruction accuracy). To illustrate the applications of RainNet, 14 state-of-the-art models, including deep …
[ Hall J ]

Deep topic models have been proven as a promising way to extract hierarchical latent representations from documents represented as high-dimensional bag-of-words vectors.However, the representation capability of existing deep topic models is still limited by the phenomenon of "posterior collapse", which has been widely criticized in deep generative models, resulting in the higher-level latent representations exhibiting similar or meaningless patterns.To this end, in this paper, we first develop a novel deep-coupling generative process for existing deep topic models, which incorporates skip connections into the generation of documents, enforcing strong links between the document and its multi-layer latent representations.After that, utilizing data augmentation techniques, we reformulate the deep-coupling generative process as a Markov decision process and develop a corresponding Policy Gradient (PG) based training algorithm, which can further alleviate the information reduction at higher layers.Extensive experiments demonstrate that our developed methods can effectively alleviate "posterior collapse" in deep topic models, contributing to providing higher-quality latent document representations.
[ Hall J ]

Numerous recent work on unsupervised machine translation (UMT) implies that competent unsupervised translations of low-resource and unrelated languages, such as Nepali or Sinhala, are only possible if the model is trained in a massive multilingual environment, where these low-resource languages are mixed with high-resource counterparts. Nonetheless, while the high-resource languages greatly help kick-start the target low-resource translation tasks, the language discrepancy between them may hinder their further improvement. In this work, we propose a simple refinement procedure to separate languages from a pre-trained multilingual UMT model for it to focus on only the target low-resource task. Our method achieves the state of the art in the fully unsupervised translation tasks of English to Nepali, Sinhala, Gujarati, Latvian, Estonian and Kazakh, with BLEU score gains of 3.5, 3.5, 3.3, 4.1, 4.2, and 3.3, respectively. Our codebase is available at https://github.com/nxphi47/refineunsupmultilingual_mt
[ Hall J ]

Humans have the remarkable ability to recognize and acquire novel visual concepts in a zero-shot manner. Given a high-level, symbolic description of a novel concept in terms of previously learned visual concepts and their relations, humans can recognize novel concepts without seeing any examples. Moreover, they can acquire new concepts by parsing and communicating symbolic structures using learned visual concepts and relations. Endowing these capabilities in machines is pivotal in improving their generalization capability at inference time. In this work, we introduce Zero-shot Concept Recognition and Acquisition (ZeroC), a neuro-symbolic architecture that can recognize and acquire novel concepts in a zero-shot way. ZeroC represents concepts as graphs of constituent concept models (as nodes) and their relations (as edges). To allow inference time composition, we employ energy-based models (EBMs) to model concepts and relations. We design ZeroC architecture so that it allows a one-to-one mapping between a symbolic graph structure of a concept and its corresponding EBM, which for the first time, allows acquiring new concepts, communicating its graph structure, and applying it to classification and detection tasks (even across domains) at inference time. We introduce algorithms for learning and inference with ZeroC. We evaluate ZeroC on a challenging grid-world dataset …
[ Hall J ]

To unveil how the brain learns, ongoing work seeks biologically-plausible approximations of gradient descent algorithms for training recurrent neural networks (RNNs). Yet, beyond task accuracy, it is unclear if such learning rules converge to solutions that exhibit different levels of generalization than their non-biologically-plausible counterparts. Leveraging results from deep learning theory based on loss landscape curvature, we ask: how do biologically-plausible gradient approximations affect generalization? We first demonstrate that state-of-the-art biologically-plausible learning rules for training RNNs exhibit worse and more variable generalization performance compared to their machine learning counterparts that follow the true gradient more closely. Next, we verify that such generalization performance is correlated significantly with loss landscape curvature, and we show that biologically-plausible learning rules tend to approach high-curvature regions in synaptic weight space. Using tools from dynamical systems, we derive theoretical arguments and present a theorem explaining this phenomenon. This predicts our numerical results, and explains why biologically-plausible rules lead to worse and more variable generalization properties. Finally, we suggest potential remedies that could be used by the brain to mitigate this effect. To our knowledge, our analysis is the first to identify the reason for this generalization gap between artificial and biologically-plausible learning rules, which can …
[ Hall J ]

The adversarial vulnerability of neural nets, and subsequent techniques to create robust models have attracted significant attention; yet we still lack a full understanding of this phenomenon. Here, we study adversarial examples of trained neural networks through analytical tools afforded by recent theory advances connecting neural networks and kernel methods, namely the Neural Tangent Kernel (NTK), following a growing body of work that leverages the NTK approximation to successfully analyze important deep learning phenomena and design algorithms for new applications. We show how NTKs allow to generate adversarial examples in a training-free'' fashion, and demonstrate that they transfer to fool their finite-width neural net counterparts in the
lazy'' regime. We leverage this connection to provide an alternative view on robust and non-robust features, which have been suggested to underlie the adversarial brittleness of neural nets. Specifically, we define and study features induced by the eigendecomposition of the kernel to better understand the role of robust and non-robust features, the reliance on both for standard classification and the robustness-accuracy trade-off. We find that such features are surprisingly consistent across architectures, and that robust features tend to correspond to the largest eigenvalues of the model, and thus are learned early during training. …
[ Hall J ]

Hyperdimensional computing (HDC) is an emerging learning paradigm that computes with high dimensional binary vectors. There is an active line of research on HDC in the community of emerging hardware because of its energy efficiency and ultra-low latency---but HDC suffers from low model accuracy, with little theoretical understanding of what limits its performance. We propose a new theoretical analysis of the limits of HDC via a consideration of what similarity matrices can be expressed'' by binary vectors, and we show how the limits of HDC can be approached using random Fourier features (RFF). We extend our analysis to the more general class of vector symbolic architectures (VSA), which compute with high-dimensional vectors (hypervectors) that are not necessarily binary. We propose a new class of VSAs, finite group VSAs, which surpass the limits of HDC. Using representation theory, we characterize which similarity matrices can be
expressed'' by finite group VSA hypervectors, and we show how these VSAs can be constructed. Experimental results show that our RFF method and group VSA can both outperform the state-of-the-art HDC model by up to 7.6\% while maintaining hardware efficiency. This work aims to inspire a future interest on HDC in the ML community and connect …
[ Hall J ]

For decades, atomistic modeling has played a crucial role in predicting the behavior of materials in numerous fields ranging from nanotechnology to drug discovery. The most accurate methods in this domain are rooted in first-principles quantum mechanical calculations such as density functional theory (DFT). Because these methods have remained computationally prohibitive, practitioners have traditionally focused on defining physically motivated closed-form expressions known as empirical interatomic potentials (EIPs) that approximately model the interactions between atoms in materials. In recent years, neural network (NN)-based potentials trained on quantum mechanical (DFT-labeled) data have emerged as a more accurate alternative to conventional EIPs. However, the generalizability of these models relies heavily on the amount of labeled training data, which is often still insufficient to generate models suitable for general-purpose applications. In this paper, we propose two generic strategies that take advantage of unlabeled training instances to inject domain knowledge from conventional EIPs to NNs in order to increase their generalizability. The first strategy, based on weakly supervised learning, trains an auxiliary classifier on EIPs and selects the best-performing EIP to generate energies to supplement the ground-truth DFT energies in training the NN. The second strategy, based on transfer learning, first pretrains the NN on …
[ Hall J ]

[ Hall J ]

[ Hall J ]

We study the deterministic global optimization of the K-Medoids clustering problem. This work proposes a branch and bound (BB) scheme, in which a tailored Lagrangian relaxation method proposed in the 1970s is used to provide a lower bound at each BB node. The lower bounding method already guarantees the maximum gap at the root node. A closed-form solution to the lower bound can be derived analytically without explicitly solving any optimization problems, and its computation can be easily parallelized. Moreover, with this lower bounding method, finite convergence to the global optimal solution can be guaranteed by branching only on the regions of medoids. We also present several tailored bound tightening techniques to reduce the search space and computational cost. Extensive computational studies on 28 machine learning datasets demonstrate that our algorithm can provide a provable global optimal solution with an optimality gap of 0.1\% within 4 hours on datasets with up to one million samples. Besides, our algorithm can obtain better or equal objective values than the heuristic method. A theoretical proof of global convergence for our algorithm is also presented.
[ Hall J ]

Stochastic first-order methods such as Stochastic Extragradient (SEG) or Stochastic Gradient Descent-Ascent (SGDA) for solving smooth minimax problems and, more generally, variational inequality problems (VIP) have been gaining a lot of attention in recent years due to the growing popularity of adversarial formulations in machine learning. While high-probability convergence bounds are known to more accurately reflect the actual behavior of stochastic methods, most convergence results are provided in expectation. Moreover, the only known high-probability complexity results have been derived under restrictive sub-Gaussian (light-tailed) noise and bounded domain assumptions [Juditsky et al., 2011]. In this work, we prove the first high-probability complexity results with logarithmic dependence on the confidence level for stochastic methods for solving monotone and structured non-monotone VIPs with non-sub-Gaussian (heavy-tailed) noise and unbounded domains. In the monotone case, our results match the best known ones in the light-tails case [Juditsky et al., 2011], and are novel for structured non-monotone problems such as negative comonotone, quasi-strongly monotone, and/or star-cocoercive ones. We achieve these results by studying SEG and SGDA with clipping. In addition, we numerically validate that the gradient noise of many practical GAN formulations is heavy-tailed and show that clipping improves the performance of SEG/SGDA.
[ Hall J ]

This paper considers the challenging tasks of Multi-Agent Reinforcement Learning (MARL) under partial observability, where each agent only sees her own individual observations and actions that reveal incomplete information about the underlying state of system. This paper studies these tasks under the general model of multiplayer general-sum Partially Observable Markov Games (POMGs), which is significantly larger than the standard model of Imperfect Information Extensive-Form Games (IIEFGs). We identify a rich subclass of POMGs---weakly revealing POMGs---in which sample-efficient learning is tractable. In the self-play setting, we prove that a simple algorithm combining optimism and Maximum Likelihood Estimation (MLE) is sufficient to find approximate Nash equilibria, correlated equilibria, as well as coarse correlated equilibria of weakly revealing POMGs, in a polynomial number of samples when the number of agents is small. In the setting of playing against adversarial opponents, we show that a variant of our optimistic MLE algorithm is capable of achieving sublinear regret when being compared against the optimal maximin policies. To our best knowledge, this work provides the first line of sample-efficient results for learning POMGs.
[ Hall J ]

Over the last century, risk scores have been the most popular form of predictive model used in healthcare and criminal justice. Risk scores are sparse linear models with integer coefficients; often these models can be memorized or placed on an index card. Typically, risk scores have been created either without data or by rounding logistic regression coefficients, but these methods do not reliably produce high-quality risk scores. Recent work used mathematical programming, which is computationally slow. We introduce an approach for efficiently producing a collection of high-quality risk scores learned from data. Specifically, our approach produces a pool of almost-optimal sparse continuous solutions, each with a different support set, using a beam-search algorithm. Each of these continuous solutions is transformed into a separate risk score through a "star ray" search, where a range of multipliers are considered before rounding the coefficients sequentially to maintain low logistic loss. Our algorithm returns all of these high-quality risk scores for the user to consider. This method completes within minutes and can be valuable in a broad variety of applications.
[ Hall J ]

Symmetries built into a neural network have appeared to be very beneficial for a wide range of tasks as it saves the data to learn them. We depart from the position that when symmetries are not built into a model a priori, it is advantageous for robust networks to learn symmetries directly from the data to fit a task function. In this paper, we present a method to extract symmetries learned by a neural network and to evaluate the degree to which a network is invariant to them. With our method, we are able to explicitly retrieve learned invariances in a form of the generators of corresponding Lie-groups without prior knowledge of symmetries in the data. We use the proposed method to study how symmetrical properties depend on a neural network's parameterization and configuration. We found that the ability of a network to learn symmetries generalizes over a range of architectures. However, the quality of learned symmetries depends on the depth and the number of parameters.
[ Hall J ]

Learning safe solutions is an important but challenging problem in multi-agent reinforcement learning (MARL). Shielded reinforcement learning is one approach for preventing agents from choosing unsafe actions. Current shielded reinforcement learning methods for MARL make strong assumptions about communication and full observability. In this work, we extend the formalization of the shielded reinforcement learning problem to a decentralized multi-agent setting. We then present an algorithm for decomposition of a centralized shield, allowing shields to be used in such decentralized, communication-free environments. Our results show that agents equipped with decentralized shields perform comparably to agents with centralized shields in several tasks, allowing shielding to be used in environments with decentralized training and execution for the first time.
[ Hall J ]

While deep reinforcement learning has proven to be successful in solving control tasks, the ``black-box'' nature of an agent has received increasing concerns. We propose a prototype-based post-hoc \emph{policy explainer}, ProtoX, that explains a black-box agent by prototyping the agent's behaviors into scenarios, each represented by a prototypical state. When learning prototypes, ProtoX considers both visual similarity and scenario similarity. The latter is unique to the reinforcement learning context since it explains why the same action is taken in visually different states. To teach ProtoX about visual similarity, we pre-train an encoder using contrastive learning via self-supervised learning to recognize states as similar if they occur close together in time and receive the same action from the black-box agent. We then add an isometry layer to allow ProtoX to adapt scenario similarity to the downstream task. ProtoX is trained via imitation learning using behavior cloning, and thus requires no access to the environment or agent. In addition to explanation fidelity, we design different prototype shaping terms in the objective function to encourage better interpretability. We conduct various experiments to test ProtoX. Results show that ProtoX achieved high fidelity to the original black-box agent while providing meaningful and understandable explanations.
[ Hall J ]

While other areas of machine learning have seen more and more automation, designing a high-performing recommender system still requires a high level of human effort. Furthermore, recent work has shown that modern recommender system algorithms do not always improve over well-tuned baselines. A natural follow-up question is, "how do we choose the right algorithm for a new dataset and performance metric?" In this work, we start by giving the first large-scale study of recommender system approaches by comparing 24 algorithms and 100 sets of hyperparameters across 85 datasets and 315 metrics. We find that the best algorithms and hyperparameters are highly dependent on the dataset and performance metric. However, there is also a strong correlation between the performance of each algorithm and various meta-features of the datasets. Motivated by these findings, we create RecZilla, a meta-learning approach to recommender systems that uses a model to predict the best algorithm and hyperparameters for new, unseen datasets. By using far more meta-training data than prior work, RecZilla is able to substantially reduce the level of human involvement when faced with a new recommender system application. We not only release our code and pretrained RecZilla models, but also all of our raw experimental …
[ Hall J ]

Supervised learning methods trained with maximum likelihood objectives often overfit on training data. Most regularizers that prevent overfitting look to increase confidence on additional examples (e.g., data augmentation, adversarial training), or reduce it on training data (e.g., label smoothing). In this work we propose a complementary regularization strategy that reduces confidence on self-generated examples. The method, which we call RCAD (Reducing Confidence along Adversarial Directions), aims to reduce confidence on out-of-distribution examples lying along directions adversarially chosen to increase training loss. In contrast to adversarial training, RCAD does not try to robustify the model to output the original label, but rather regularizes it to have reduced confidence on points generated using much larger perturbations than in conventional adversarial training. RCAD can be easily integrated into training pipelines with a few lines of code. Despite its simplicity, we find on many classification benchmarks that RCAD can be added to existing techniques (e.g., label smoothing, MixUp training) to increase test accuracy by 1-3% in absolute value, with more significant gains in the low data regime. We also provide a theoretical analysis that helps to explain these benefits in simplified settings, showing that RCAD can provably help the model unlearn spurious features in …
[ Hall J ]

There has been significant recent progress designing deep generative models that generate realistic sequence data such as text or music. Nevertheless, it remains difficult to incorporate high-level structure to guide the generative process, and many such models perform well on local coherence, but less so on global coherence. We propose a novel approach for incorporating global structure in the form of relational constraints between different subcomponents of an example (e.g., lines of a poem or measures of music). Our generative model has two parts: (i) one model to generate a realistic set of relational constraints, and (ii) a second model to generate realistic data satisfying these constraints. For model (i), we propose a constrained optimization algorithm that infers the relational constraints present in the training data, and then learn a generative model based on the resulting constraint data. In our experiments, we show that our approach significantly improves over state-of-the-art in terms of capturing high-level structure in the data, while performing comparably or better in terms of low-level structure. We also show that using constrained optimization for part (ii) as well leads to increased controllability with little decrease in quality compared to pure learning-based models.
[ Hall J ]
In many real-world scenarios, data to train machine learning models becomes available over time. Unfortunately, these models struggle to continually learn new concepts without forgetting what has been learnt in the past. This phenomenon is known as catastrophic forgetting and it is difficult to prevent due to practical constraints. For instance, the amount of data that can be stored or the computational resources that can be used might be limited. Moreover, applications increasingly rely on large pre-trained neural networks, such as pre-trained Transformers, since compute or data might not be available in sufficiently large quantities to practitioners to train from scratch. In this paper, we devise a method to incrementally train a model on a sequence of tasks using pre-trained Transformers and extending them with Adapters. Different than the existing approaches, our method is able to scale to a large number of tasks without significant overhead and allows sharing information across tasks. On both image and text classification tasks, we empirically demonstrate that our method maintains a good predictive performance without retraining the model or increasing the number of model parameters over time. The resulting model is also significantly faster at inference time compared to Adapter-based state-of-the-art methods.
[ Hall J ]
Designing physical artifacts that serve a purpose---such as tools and other functional structures---is central to engineering as well as everyday human behavior. Though automating design using machine learning has tremendous promise, existing methods are often limited by the task-dependent distributions they were exposed to during training. Here we showcase a task-agnostic approach to inverse design, by combining general-purpose graph network simulators with gradient-based design optimization. This constitutes a simple, fast, and reusable approach that solves high-dimensional problems with complex physical dynamics, including designing surfaces and tools to manipulate fluid flows and optimizing the shape of an airfoil to minimize drag. This framework produces high-quality designs by propagating gradients through trajectories of hundreds of steps, even when using models that were pre-trained for single-step predictions on data substantially different from the design tasks. In our fluid manipulation tasks, the resulting designs outperformed those found by sampling-based optimization techniques. In airfoil design, they matched the quality of those obtained with a specialized solver. Our results suggest that despite some remaining challenges, machine learning-based simulators are maturing to the point where they can support general-purpose design optimization across a variety of fluid-structure interaction domains.
[ Hall J ]

In this paper we explore the recent topic of point cloud completion, guided by an auxiliary image. We show how it is possible to effectively combine the information from the two modalities in a localized latent space, thus avoiding the need for complex point cloud reconstruction methods from single views used by the state-of-the-art. We also investigate a novel self-supervised setting where the auxiliary image provides a supervisory signal to the training process by using a differentiable renderer on the completed point cloud to measure fidelity in the image space. Experiments show significant improvements over state-of-the-art supervised methods for both unimodal and multimodal completion. We also show the effectiveness of the self-supervised approach which outperforms a number of supervised methods and is competitive with the latest supervised models only exploiting point cloud information.
[ Hall J ]
As the number of AI systems keeps growing, it is fundamental to implement and develop efficient control mechanisms to ensure the safe and proper functioning of machine learning (ML) systems. Reliable out-of-distribution (OOD) detection aims to detect test samples that are statistically far from the training distribution, as they might cause failures of in-production systems. In this paper, we propose a new detector called TRUSTED. Different from previous works, TRUSTED key components (i) include a novel OOD score relying on the concept of statistical data depth, (ii) rely on the idea’s full potential that all hidden layers of the network carry information regarding OOD. Our extensive experiments, comparing over 51k model configurations including different checkpoints, seed and various datasets, demonstrate that TRUSTED achieve state-of-the-art performances by producing an improvement of over 3 AUROC points.
[ Hall J ]

Panchromatic (PAN) and multi-spectral (MS) image fusion, named Pan-sharpening, refers to super-resolve the low-resolution (LR) multi-spectral (MS) images in the spatial domain to generate the expected high-resolution (HR) MS images, conditioning on the corresponding high-resolution PAN images. In this paper, we present a simple yet effective alternating reverse filtering network for pan-sharpening. Inspired by the classical reverse filtering that reverses images to the status before filtering, we formulate pan-sharpening as an alternately iterative reverse filtering process, which fuses LR MS and HR MS in an interpretable manner. Different from existing model-driven methods that require well-designed priors and degradation assumptions, the reverse filtering process avoids the dependency on pre-defined exact priors. To guarantee the stability and convergence of the iterative process via contraction mapping on a metric space, we develop the learnable multi-scale Gaussian kernel module, instead of using specific filters. We demonstrate the theoretical feasibility of such formulations. Extensive experiments on diverse scenes to thoroughly verify the performance of our method, significantly outperforming the state of the arts.
[ Hall J ]
Neural tangent kernel (NTK) is a powerful tool to analyze training dynamics of neural networks and their generalization bounds. The study on NTK has been devoted to typical neural network architectures, but it is incomplete for neural networks with Hadamard products (NNs-Hp), e.g., StyleGAN and polynomial neural networks (PNNs). In this work, we derive the finite-width NTK formulation for a special class of NNs-Hp, i.e., polynomial neural networks. We prove their equivalence to the kernel regression predictor with the associated NTK, which expands the application scope of NTK. Based on our results, we elucidate the separation of PNNs over standard neural networks with respect to extrapolation and spectral bias. Our two key insights are that when compared to standard neural networks, PNNs can fit more complicated functions in the extrapolation regime and admit a slower eigenvalue decay of the respective NTK, leading to a faster learning towards high-frequency functions. Besides, our theoretical results can be extended to other types of NNs-Hp, which expand the scope of our work. Our empirical results validate the separations in broader classes of NNs-Hp, which provide a good justification for a deeper understanding of neural architectures.
[ Hall J ]

Despite the established convergence theory of Optimistic Gradient Descent Ascent (OGDA) and Extragradient (EG) methods for the convex-concave minimax problems, little is known about the theoretical guarantees of these methods in nonconvex settings. To bridge this gap, for the first time, this paper establishes the convergence of OGDA and EG methods under the nonconvex-strongly-concave (NC-SC) and nonconvex-concave (NC-C) settings by providing a unified analysis through the lens of single-call extra-gradient methods. We further establish lower bounds on the convergence of GDA/OGDA/EG, shedding light on the tightness of our analysis. We also conduct experiments supporting our theoretical results. We believe our results will advance the theoretical understanding of OGDA and EG methods for solving complicated nonconvex minimax real-world problems, e.g., Generative Adversarial Networks (GANs) or robust neural networks training.
[ Hall J ]

Existing action recognition methods typically sample a few frames to represent each video to avoid the enormous computation, which often limits the recognition performance. To tackle this problem, we propose Ample and Focal Network (AFNet), which is composed of two branches to utilize more frames but with less computation. Specifically, the Ample Branch takes all input frames to obtain abundant information with condensed computation and provides the guidance for Focal Branch by the proposed Navigation Module; the Focal Branch squeezes the temporal size to only focus on the salient frames at each convolution block; in the end, the results of two branches are adaptively fused to prevent the loss of information. With this design, we can introduce more frames to the network but cost less computation. Besides, we demonstrate AFNet can utilize less frames while achieving higher accuracy as the dynamic selection in intermediate features enforces implicit temporal modeling. Further, we show that our method can be extended to reduce spatial redundancy with even less cost. Extensive experiments on five datasets demonstrate the effectiveness and efficiency of our method.
[ Hall J ]

We address a practical yet challenging problem of training robot agents to navigate in an environment following a path described by some language instructions. The instructions often contain descriptions of objects in the environment. To achieve accurate and efficient navigation, it is critical to build a map that accurately represents both spatial location and the semantic information of the environment objects. However, enabling a robot to build a map that well represents the environment is extremely challenging as the environment often involves diverse objects with various attributes. In this paper, we propose a multi-granularity map, which contains both object fine-grained details (\eg, color, texture) and semantic classes, to represent objects more comprehensively. Moreover, we propose a weakly-supervised auxiliary task, which requires the agent to localize instruction-relevant objects on the map. Through this task, the agent not only learns to localize the instruction-relevant objects for navigation but also is encouraged to learn a better map representation that reveals object information. We then feed the learned map and instruction to a waypoint predictor to determine the next navigation goal. Experimental results show our method outperforms the state-of-the-art by 4.0% and 4.6% w.r.t. success rate both in seen and unseen environments, respectively on …
[ Hall J ]

In many web applications, deep learning-based CTR prediction models (deep CTR models for short) are widely adopted. Traditional deep CTR models learn patterns in a static manner, i.e., the network parameters are the same across all the instances. However, such a manner can hardly characterize each of the instances which may have different underlying distributions. It actually limits the representation power of deep CTR models, leading to sub-optimal results. In this paper, we propose an efficient, effective, and universal module, named as Adaptive Parameter Generation network (APG), which can dynamically generate parameters for deep CTR models on-the-fly based on different instances. Extensive experimental evaluation results show that APG can be applied to a variety of deep CTR models and significantly improve their performance. Meanwhile, APG can reduce the time cost by 38.7\% and memory usage by 96.6\% compared to a regular deep CTR model.We have deployed APG in the industrial sponsored search system and achieved 3\% CTR gain and 1\% RPM gain respectively.
[ Hall J ]
Deep Neural Networks are vulnerable to Trojan (or backdoor) attacks. Reverse-engineering methods can reconstruct the trigger and thus identify affected models. Existing reverse-engineering methods only consider input space constraints, e.g., trigger size in the input space.Expressly, they assume the triggers are static patterns in the input space and fail to detect models with feature space triggers such as image style transformations. We observe that both input-space and feature-space Trojans are associated with feature space hyperplanes.Based on this observation, we design a novel reverse-engineering method that exploits the feature space constraint to reverse-engineer Trojan triggers. Results on four datasets and seven different attacks demonstrate that our solution effectively defends both input-space and feature-space Trojans. It outperforms state-of-the-art reverse-engineering methods and other types of defenses in both Trojaned model detection and mitigation tasks. On average, the detection accuracy of our method is 93%. For Trojan mitigation, our method can reduce the ASR (attack success rate) to only 0.26% with the BA (benign accuracy) remaining nearly unchanged. Our code can be found at https://github.com/RU-System-Software-and-Security/FeatureRE.
[ Hall J ]
The surprising discovery of the BYOL method shows the negative samples can be replaced by adding the prediction head to the network. It is mysterious why even when there exist trivial collapsed global optimal solutions, neural networks trained by (stochastic) gradient descent can still learn competitive representations. In this work, we present our empirical and theoretical discoveries on non-contrastive self-supervised learning. Empirically, we find that when the prediction head is initialized as an identity matrix with only its off-diagonal entries being trainable, the network can learn competitive representations even though the trivial optima still exist in the training objective. Theoretically, we characterized the substitution effect and acceleration effect of the trainable, but identity-initialized prediction head. The substitution effect happens when learning the stronger features in some neurons can substitute for learning these features in other neurons through updating the prediction head. And the acceleration effect happens when the substituted features can accelerate the learning of other weaker features to prevent them from being ignored. These two effects enable the neural networks to learn diversified features rather than focus only on learning the strongest features, which is likely the cause of the dimensional collapse phenomenon. To the best of our knowledge, …
[ Hall J ]
Large-scale Protein Language Models (PLMs) have improved performance in protein prediction tasks, ranging from 3D structure prediction to various function predictions. In particular, AlphaFold, a ground-breaking AI system, could potentially reshape structural biology. However, the utility of the PLM module in AlphaFold, Evoformer, has not been explored beyond structure prediction. In this paper, we investigate the representation ability of three popular PLMs: ESM-1b (single sequence), MSA-Transformer (multiple sequence alignment), and Evoformer (structural), with a special focus on Evoformer. Specifically, we aim to answer the following key questions: (1) Does the Evoformer trained as part of AlphaFold produce representations amenable to predicting protein function? (2) If yes, can Evoformer replace ESM-1b and MSA-Transformer? (3) How much do these PLMs rely on evolution-related protein data? In this regard, are they complementary to each other? We compare these models by empirical study along with new insights and conclusions. All code and datasets for reproducibility are available at https://github.com/elttaes/Revisiting-PLMs .
[ Hall J ]
[ Hall J ]

In this paper, we explore a novel knowledge-transfer task, termed as Deep Model Reassembly (DeRy), for general-purpose model reuse.Given a collection of heterogeneous models pre-trained from distinct sources and with diverse architectures, the goal of DeRy, as its name implies, is to first dissect each model into distinctive building blocks, and then selectively reassemble the derived blocks to produce customized networks under both the hardware resource and performance constraints. Such ambitious nature of DeRy inevitably imposes significant challenges, including, in the first place, the feasibility of its solution. We strive to showcase that, through a dedicated paradigm proposed in this paper, DeRy can be made not only possibly but practically efficiently. Specifically, we conduct the partitions of all pre-trained networks jointly via a cover set optimization, and derive a number of equivalence set, within each of which the network blocks are treated as functionally equivalent and hence interchangeable. The equivalence sets learned in this way, in turn, enable picking and assembling blocks to customize networks subject to certain constraints, which is achieved via solving an integer program backed up with a training-free proxy to estimate the task performance. The reassembled models give rise to gratifying performances with the user-specified constraints …
[ Hall J ]
Collaborative filtering (CF) models easily suffer from popularity bias, which makes recommendation deviate from users’ actual preferences. However, most current debiasing strategies are prone to playing a trade-off game between head and tail performance, thus inevitably degrading the overall recommendation accuracy. To reduce the negative impact of popularity bias on CF models, we incorporate Bias-aware margins into Contrastive loss and propose a simple yet effective BC Loss, where the margin tailors quantitatively to the bias degree of each user-item interaction. We investigate the geometric interpretation of BC loss, then further visualize and theoretically prove that it simultaneously learns better head and tail representations by encouraging the compactness of similar users/items and enlarging the dispersion of dissimilar users/items. Over six benchmark datasets, we use BC loss to optimize two high-performing CF models. In various evaluation settings (i.e., imbalanced/balanced, temporal split, fully-observed unbiased, tail/head test evaluations), BC loss outperforms the state-of-the-art debiasing and non-debiasing methods with remarkable improvements. Considering the theoretical guarantee and empirical success of BC loss, we advocate using it not just as a debiasing strategy, but also as a standard loss in recommender models. Codes are available at https://github.com/anzhang314/BC-Loss.
[ Hall J ]

Sampling from an unnormalized target distribution is an essential problem with many applications in probabilistic inference. Stein Variational Gradient Descent (SVGD) has been shown to be a powerful method that iteratively updates a set of particles to approximate the distribution of interest. Furthermore, when analysing its asymptotic properties, SVGD reduces exactly to a single-objective optimization problem and can be viewed as a probabilistic version of this single-objective optimization problem. A natural question then arises: ``Can we derive a probabilistic version of the multi-objective optimization?''. To answer this question, we propose Stochastic Multiple Target Sampling Gradient Descent (MT-SGD), enabling us to sample from multiple unnormalized target distributions. Specifically, our MT-SGD conducts a flow of intermediate distributions gradually orienting to multiple target distributions, which allows the sampled particles to move to the joint high-likelihood region of the target distributions. Interestingly, the asymptotic analysis shows that our approach reduces exactly to the multiple-gradient descent algorithm for multi-objective optimization, as expected. Finally, we conduct comprehensive experiments to demonstrate the merit of our approach to multi-task learning.
[ Hall J ]

[ Hall J ]

Interpretable and fair machine learning models are required for many applications, such as credit assessment and in criminal justice. Decision trees offer this interpretability, especially when they are small. Optimal decision trees are of particular interest because they offer the best performance possible for a given size. However, state-of-the-art algorithms for fair and optimal decision trees have scalability issues, often requiring several hours to find such trees even for small datasets. Previous research has shown that dynamic programming (DP) performs well for optimizing decision trees because it can exploit the tree structure. However, adding a global fairness constraint to a DP approach is not straightforward, because the global constraint violates the condition that subproblems should be independent. We show how such a constraint can be incorporated by introducing upper and lower bounds on final fairness values for partial solutions of subproblems, which enables early comparison and pruning. Our results show that our model can find fair and optimal trees several orders of magnitude faster than previous methods, and now also for larger datasets that were previously beyond reach. Moreover, we show that with this substantial improvement our method can find the full Pareto front in the trade-off between accuracy and …
[ Hall J ]

Each year, deep learning demonstrate new and improved empirical results with deeper and wider neural networks. Meanwhile, with existing theoretical frameworks, it is difficult to analyze networks deeper than two layers without resorting to counting parameters or encountering sample complexity bounds that are exponential in depth. Perhaps it may be fruitful to try to analyze modern machine learning under a different lens. In this paper, we propose a novel information-theoretic framework with its own notions of regret and sample complexity for analyzing the data requirements of machine learning. We use this framework to study the sample complexity of learning from data generated by deep ReLU neural networks and deep networks that are infinitely wide but have a bounded sum of weights. We establish that the sample complexity of learning under these data generating processes is at most linear and quadratic, respectively, in network depth.
[ Hall J ]

Tractable probabilistic models such as cutset networks which admit exact linear time posterior marginal inference are often preferred in practice over intractable models such as Bayesian and Markov networks. This is because although tractable models, when learned from data, are slightly inferior to the intractable ones in terms of goodness-of-fit measures such as log-likelihood, they do not use approximate inference at prediction time and as a result exhibit superior predictive performance. In this paper, we consider the problem of improving a tractable model using a large number of local probability estimates, each defined over a small subset of variables that are either available from experts or via an external process. Given a model learned from fully-observed, but small amount of possibly noisy data, the key idea in our approach is to update the parameters of the model via a gradient descent procedure that seeks to minimize a convex combination of two quantities: one that enforces closeness via KL divergence to the local estimates and another that enforces closeness to the given model. We show that although the gradients are NP-hard to compute on arbitrary graphical models, they can be efficiently computed over tractable models. We show via experiments that our …
[ Hall J ]

Many instances of algorithmic bias are caused by distributional shifts. For example, machine learning (ML) models often perform worse on demographic groups that are underrepresented in the training data. In this paper, we leverage this connection between algorithmic fairness and distribution shifts to show that algorithmic fairness interventions can help ML models overcome distribution shifts, and that domain adaptation methods (for overcoming distribution shifts) can mitigate algorithmic biases. In particular, we show that (i) enforcing suitable notions of individual fairness (IF) can improve the out-of-distribution accuracy of ML models under the covariate shift assumption and that (ii) it is possible to adapt representation alignment methods for domain adaptation to enforce individual fairness. The former is unexpected because IF interventions were not developed with distribution shifts in mind. The latter is also unexpected because representation alignment is not a common approach in the individual fairness literature.
[ Hall J ]
Neural networks (NNs) struggle to efficiently solve certain problems, such as learning parities, even when there are simple learning algorithms for those problems. Can NNs discover learning algorithms on their own? We exhibit a NN architecture that, in polynomial time, learns as well as any efficient learning algorithm describable by a constant-sized program. For example, on parity problems, the NN learns as well as Gaussian elimination, an efficient algorithm that can be succinctly described. Our architecture combines both recurrent weight sharing between layers and convolutional weight sharing to reduce the number of parameters down to a constant, even though the network itself may have trillions of nodes. While in practice the constants in our analysis are too large to be directly meaningful, our work suggests that the synergy of Recurrent and Convolutional NNs (RCNNs) may be more natural and powerful than either alone, particularly for concisely parameterizing discrete algorithms.
[ Hall J ]

Causal discovery from observational and interventional data is challenging due to limited data and non-identifiability which introduces uncertainties in estimating the underlying structural causal model (SCM). Incorporating these uncertainties and selecting optimal experiments (interventions) to perform can help to identify the true SCM faster. Existing methods in experimental design for causal discovery from limited data either rely on linear assumptions for the SCM or select only the intervention target. In this paper, we incorporate recent advances in Bayesian causal discovery into the Bayesian optimal experimental design framework, which allows for active causal discovery of nonlinear, large SCMs, while selecting both the target and the value to intervene with. We demonstrate the performance of the proposed method on synthetic graphs (Erdos-Rènyi, Scale Free) for both linear and nonlinear SCMs as well as on the \emph{in-silico} single-cell gene regulatory network dataset, DREAM.
[ Hall J ]
[ Hall J ]
Hidden semi-Markov Models (HSMM's) - while broadly in use - are restricted to a discrete and uniform time grid. They are thus not well suited to explain often irregularly spaced discrete event data from continuous-time phenomena. We show that non-sampling-based latent state inference used in HSMM's can be generalized to latent Continuous-Time semi-Markov Chains (CTSMC's). We formulate integro-differential forward and backward equations adjusted to the observation likelihood and introduce an exact integral equation for the Bayesian posterior marginals and a scalable Viterbi-type algorithm for posterior path estimates. The presented equations can be efficiently solved using well-known numerical methods. As a practical tool, variable-step HSMM's are introduced. We evaluate our approaches in latent state inference scenarios in comparison to classical HSMM's.
[ Hall J ]

In safety-critical applications of reinforcement learning such as healthcare and robotics, it is often desirable to optimize risk-sensitive objectives that account for tail outcomes rather than expected reward. We prove the first regret bounds for reinforcement learning under a general class of risk-sensitive objectives including the popular CVaR objective. Our theory is based on a novel characterization of the CVaR objective as well as a novel optimistic MDP construction.
[ Hall J ]

[ Hall J ]
Neural network verification aims to provide provable bounds for the output of a neural network for a given input range. Notable prior works in this domain have either generated bounds using abstract domains, which preserve some dependency between intermediate neurons in the network; or framed verification as an optimization problem and solved a relaxation using Lagrangian methods. A key drawback of the latter technique is that each neuron is treated independently, thereby ignoring important neuron interactions. We provide an approach that merges these two threads and uses zonotopes within a Lagrangian decomposition. Crucially, we can decompose the problem of verifying a deep neural network into the verification of many 2-layer neural networks. While each of these problems is provably hard, we provide efficient relaxation methods that are amenable to efficient dual ascent procedures. Our technique yields bounds that improve upon both linear programming and Lagrangian-based verification techniques in both time and bound tightness.
[ Hall J ]
[ Hall J ]
We study the problem of finding the Nash equilibrium in a two-player zero-sum Markov game. Due to its formulation as a minimax optimization program, a natural approach to solve the problem is to perform gradient descent/ascent with respect to each player in an alternating fashion. However, due to the non-convexity/non-concavity of the underlying objective function, theoretical understandings of this method are limited. In our paper, we consider solving an entropy-regularized variant of the Markov game. The regularization introduces structures into the optimization landscape that make the solutions more identifiable and allow the problem to be solved more efficiently. Our main contribution is to show that under proper choices of the regularization parameter, the gradient descent ascent algorithm converges to the Nash equilibrium of the original unregularized problem. We explicitly characterize the finite-time performance of the last iterate of our algorithm, which vastly improves over the existing convergence bound of the gradient descent ascent algorithm without regularization. Finally, we complement the analysis with numerical simulations that illustrate the accelerated convergence of the algorithm.
[ Hall J ]

Recent work has leveraged the popular distributionally robust optimization paradigm to combat overfitting in classical logistic regression. While the resulting classification scheme displays a promising performance in numerical experiments, it is inherently limited to numerical features. In this paper, we show that distributionally robust logistic regression with mixed (\emph{i.e.}, numerical and categorical) features, despite amounting to an optimization problem of exponential size, admits a polynomial-time solution scheme. We subsequently develop a practically efficient cutting plane approach that solves the problem as a sequence of polynomial-time solvable exponential conic programs. Our method retains many of the desirable theoretical features of previous works, but---in contrast to the literature---it does not admit an equivalent representation as a regularized logistic regression, that is, it represents a genuinely novel variant of the logistic regression problem. We show that our method outperforms both the unregularized and the regularized logistic regression on categorical as well as mixed-feature benchmark instances.
[ Hall J ]
[ Hall J ]
[ Hall J ]

Constrained reinforcement learning (RL) is an area of RL whose objective is to find an optimal policy that maximizes expected cumulative return while satisfying a given constraint. Most of the previous constrained RL works consider expected cumulative sum cost as the constraint. However, optimization with this constraint cannot guarantee a target probability of outage event that the cumulative sum cost exceeds a given threshold. This paper proposes a framework, named Quantile Constrained RL (QCRL), to constrain the quantile of the distribution of the cumulative sum cost that is a necessary and sufficient condition to satisfy the outage constraint. This is the first work that tackles the issue of applying the policy gradient theorem to the quantile and provides theoretical results for approximating the gradient of the quantile. Based on the derived theoretical results and the technique of the Lagrange multiplier, we construct a constrained RL algorithm named Quantile Constrained Policy Optimization (QCPO). We use distributional RL with the Large Deviation Principle (LDP) to estimate quantiles and tail probability of the cumulative sum cost for the implementation of QCPO. The implemented algorithm satisfies the outage probability constraint after the training period.
[ Hall J ]

We consider the problem of learning implicit neural representations (INRs) for signals on non-Euclidean domains. In the Euclidean case, INRs are trained on a discrete sampling of a signal over a regular lattice. Here, we assume that the continuous signal exists on some unknown topological space from which we sample a discrete graph.In the absence of a coordinate system to identify the sampled nodes, we propose approximating their location with a spectral embedding of the graph. This allows us to train INRs without knowing the underlying continuous domain, which is the case for most graph signals in nature, while also making the INRs independent of any choice of coordinate system. We show experiments with our method on various real-world signals on non-Euclidean domains.
[ Hall J ]

[ Hall J ]

Sparsely-activated Mixture-of-experts (MoE) models allow the number of parameters to greatly increase while keeping the amount of computation for a given token or a given sample unchanged. However, a poor expert routing strategy (e.g. one resulting in load imbalance) can cause certain experts to be under-trained, leading to an expert being under or over-specialized. Prior work allocates a fixed number of experts to each token using a top-k function regardless of the relative importance of different tokens. To address this, we propose a heterogeneous mixture-of-experts employing an expert choice method. Instead of letting tokens select the top-k experts, we have experts selecting the top-k tokens. As a result, each token can be routed to a variable number of experts and each expert can have a fixed bucket size. We systematically study pre-training speedups using the same computational resources of the Switch Transformer top-1 and GShard top-2 gating of prior work and find that our method improves training convergence time by more than 2×. For the same computational cost, our method demonstrates higher performance in fine-tuning 11 selected tasks in the GLUE and SuperGLUE benchmarks. For a smaller activation cost, our method outperforms the T5 dense model in 7 out of …
[ Hall J ]
A coreset is a small set that can approximately preserve the structure of the original input data set. Therefore we can run our algorithm on a coreset so as to reduce the total computational complexity. Conventional coreset techniques assume that the input data set is available to process explicitly. However, this assumption may not hold in real-world scenarios. In this paper, we consider the problem of coresets construction over relational data. Namely, the data is decoupled into several relational tables, and it could be very expensive to directly materialize the data matrix by joining the tables. We propose a novel approach called ``aggregation tree with pseudo-cube'' that can build a coreset from bottom to up. Moreover, our approach can neatly circumvent several troublesome issues of relational learning problems [Khamis et al., PODS 2019]. Under some mild assumptions, we show that our coreset approach can be applied for the machine learning tasks, such as clustering, logistic regression and SVM.
[ Hall J ]

Dealing with non-stationarity in environments (e.g., in the transition dynamics) and objectives (e.g., in the reward functions) is a challenging problem that is crucial in real-world applications of reinforcement learning (RL). While most current approaches model the changes as a single shared embedding vector, we leverage insights from the recent causality literature to model non-stationarity in terms of individual latent change factors, and causal graphs across different environments. In particular, we propose Factored Adaptation for Non-Stationary RL (FANS-RL), a factored adaption approach that learns jointly both the causal structure in terms of a factored MDP, and a factored representation of the individual time-varying change factors. We prove that under standard assumptions, we can completely recover the causal graph representing the factored transition and reward function, as well as a partial structure between the individual change factors and the state components. Through our general framework, we can consider general non-stationary scenarios with different function types and changing frequency, including changes across episodes and within episodes. Experimental results demonstrate that FANS-RL outperforms existing approaches in terms of return, compactness of the latent state representation, and robustness to varying degrees of non-stationarity.
[ Hall J ]
To act safely and ethically in the real world, agents must be able to reason about harm and avoid harmful actions. However, to date there is no statistical method for measuring harm and factoring it into algorithmic decisions. In this paper we propose the first formal definition of harm and benefit using causal models. We show that any factual definition of harm is incapable of identifying harmful actions in certain scenarios, and show that standard machine learning algorithms that cannot perform counterfactual reasoning are guaranteed to pursue harmful policies following distributional shifts. We use our definition of harm to devise a framework for harm-averse decision making using counterfactual objective functions. We demonstrate this framework on the problem of identifying optimal drug doses using a dose-response model learned from randomised control trial data. We find that the standard method of selecting doses using treatment effects results in unnecessarily harmful doses, while our counterfactual approach identifies doses that are significantly less harmful without sacrificing efficacy.
[ Hall J ]
Concept bottleneck models (CBMs) enhance the interpretability of their predictions by first predicting high-level concepts given features, and subsequently predicting outcomes on the basis of these concepts. Recently, it was demonstrated that training the label predictor directly on the probabilities produced by the concept predictor as opposed to the ground-truth concepts, improves label predictions. However, this results in corruptions in the concept predictions that impact the concept accuracy as well as our ability to intervene on the concepts -- a key proposed benefit of CBMs. In this work, we investigate and address two issues with CBMs that cause this disparity in performance: having an insufficient concept set and using inexpressive concept predictor. With our modifications, CBMs become competitive in terms of predictive performance, with models that otherwise leak additional information in the concept probabilities, while having dramatically increased concept accuracy and intervention accuracy.
[ Hall J ]
Humans have a remarkable ability to rapidly generalize to new tasks that is difficult to reproduce in artificial learning systems.Compositionality has been proposed as a key mechanism supporting generalization in humans, but evidence of its neural implementation and impact on behavior is still scarce. Here we study the computational properties associated with compositional generalization in both humans and artificial neural networks (ANNs) on a highly compositional task. First, we identified behavioral signatures of compositional generalization in humans, along with their neural correlates using whole-cortex functional magnetic resonance imaging (fMRI) data. Next, we designed pretraining paradigms aided by a procedure we term primitives pretraining to endow compositional task elements into ANNs. We found that ANNs with this prior knowledge had greater correspondence with human behavior and neural compositional signatures. Importantly, primitives pretraining induced abstract internal representations, excellent zero-shot generalization, and sample-efficient learning. Moreover, it gave rise to a hierarchy of abstract representations that matched human fMRI data, where sensory rule abstractions emerged in early sensory areas, and motor rule abstractions emerged in later motor areas. Our findings give empirical support to the role of compositional generalization in humans behavior, implicate abstract representations as its neural implementation, and illustrate that these representations …
[ Hall J ]

Among the most striking features of retinal organization is the grouping of its output neurons, the retinal ganglion cells (RGCs), into a diversity of functional types. Each of these types exhibits a mosaic-like organization of receptive fields (RFs) that tiles the retina and visual space. Previous work has shown that many features of RGC organization, including the existence of ON and OFF cell types, the structure of spatial RFs, and their relative arrangement, can be predicted on the basis of efficient coding theory. This theory posits that the nervous system is organized to maximize information in its encoding of stimuli while minimizing metabolic costs. Here, we use efficient coding theory to present a comprehensive account of mosaic organization in the case of natural videos as the retinal channel capacity---the number of simulated RGCs available for encoding---is varied. We show that mosaic density increases with channel capacity up to a series of critical points at which, surprisingly, new cell types emerge. Each successive cell type focuses on increasingly high temporal frequencies and integrates signals over larger spatial areas. In addition, we show theoretically and in simulation that a transition from mosaic alignment to anti-alignment across pairs of cell types is observed …
[ Hall J ]

In this paper, we investigate Nash-regret minimization in congestion games, a class of games with benign theoretical structure and broad real-world applications. We first propose a centralized algorithm based on the optimism in the face of uncertainty principle for congestion games with (semi-)bandit feedback, and obtain finite-sample guarantees. Then we propose a decentralized algorithm via a novel combination of the Frank-Wolfe method and G-optimal design. By exploiting the structure of the congestion game, we show the sample complexity of both algorithms depends only polynomially on the number of players and the number of facilities, but not the size of the action set, which can be exponentially large in terms of the number of facilities. We further define a new problem class, Markov congestion games, which allows us to model the non-stationarity in congestion games. We propose a centralized algorithm for Markov congestion games, whose sample complexity again has only polynomial dependence on all relevant problem parameters, but not the size of the action set.
[ Hall J ]

The classic algorithm AdaBoost allows to convert a weak learner, that is an algorithm that produces a hypothesis which is slightly better than chance, into a strong learner, achieving arbitrarily high accuracy when given enough training data. We present a new algorithm that constructs a strong learner from a weak learner, but uses less training data than AdaBoost and all other weak to strong learners to achieve the same generalization bounds. A sample complexity lower bound shows that our new algorithm uses the minimum possible amount of training data and is thus optimal. Hence, this work settles the sample complexity of the classic problem of constructing a strong learner from a weak learner.
[ Hall J ]

[ Hall J ]

[ Hall J ]

[ Hall J ]

[ Hall J ]
[ Hall J ]
[ Hall J ]

[ Hall J ]
[ Hall J ]

Random walk kernels have been introduced in seminal work on graph learning and were later largely superseded by kernels based on the Weisfeiler-Leman test for graph isomorphism. We give a unified view on both classes of graph kernels. We study walk-based node refinement methods and formally relate them to several widely-used techniques, including Morgan's algorithm for molecule canonization and the Weisfeiler-Leman test. We define corresponding walk-based kernels on nodes that allow fine-grained parameterized neighborhood comparison, reach Weisfeiler-Leman expressiveness, and are computed using the kernel trick. From this we show that classical random walk kernels with only minor modifications regarding definition and computation are as expressive as the widely-used Weisfeiler-Leman subtree kernel but support non-strict neighborhood comparison. We verify experimentally that walk-based kernels reach or even surpass the accuracy of Weisfeiler-Leman kernels in real-world classification tasks.
[ Hall J ]
For common notions of correlated equilibrium in extensive-form games, computing an optimal (e.g., welfare-maximizing) equilibrium is NP-hard. Other equilibrium notions---communication and certification equilibria---augment the game with a mediator that has the power to both send and receive messages to and from the players---and, in particular, to remember the messages. In this paper, we investigate both notions in extensive-form games from a computational lens. We show that optimal equilibria in both notions can be computed in polynomial time, the latter under a natural additional assumption known in the literature. Our proof works by constructing a {\em mediator-augmented game} of polynomial size that explicitly represents the mediator's decisions and actions. Our framework allows us to define an entire family of equilibria by varying the mediator's information partition, the players' ability to lie, and the players' ability to deviate. From this perspective, we show that other notions of equilibrium, such as extensive-form correlated equilibrium, correspond to the mediator having imperfect recall. This shows that, at least among all these equilibrium notions, the hardness of computation is driven by the mediator's imperfect recall. As special cases of our general construction, we recover the polynomial-time algorithm of Conitzer & Sandholm [2004] for automated mechanism design …
[ Hall J ]

[ Hall J ]
[ Hall J ]
[ Hall J ]

[ Hall J ]
[ Hall J ]

[ Hall J ]

[ Hall J ]

[ Hall J ]

[ Hall J ]

[ Hall J ]
[ Hall J ]
[ Hall J ]
[ Hall J ]

[ Hall J ]
[ Hall J ]

[ Hall J ]
[ Hall J ]
As part of the effort to understand implicit bias of gradient descent in overparametrized models, several results have shown how the training trajectory on the overparametrized model can be understood as mirror descent on a different objective. The main result here is a complete characterization of this phenomenon under a notion termed commuting parametrization, which encompasses all the previous results in this setting. It is shown that gradient flow with any commuting parametrization is equivalent to continuous mirror descent with a related mirror map. Conversely, continuous mirror descent with any mirror map can be viewed as gradient flow with a related commuting parametrization. The latter result relies upon Nash's embedding theorem.
[ Hall J ]
We focus on causal discovery in the presence of measurement error in linear systems where the mixing matrix, i.e., the matrix indicating the independent exogenous noise terms pertaining to the observed variables, is identified up to permutation and scaling of the columns. We demonstrate a somewhat surprising connection between this problem and causal discovery in the presence of unobserved parentless causes, in the sense that there is a mapping, given by the mixing matrix, between the underlying models to be inferred in these problems. Consequently, any identifiability result based on the mixing matrix for one model translates to an identifiability result for the other model. We characterize to what extent the causal models can be identified under a two-part faithfulness assumption. Under only the first part of the assumption (corresponding to the conventional definition of faithfulness), the structure can be learned up to the causal ordering among an ordered grouping of the variables but not all the edges across the groups can be identified. We further show that if both parts of the faithfulness assumption are imposed, the structure can be learned up to a more refined ordered grouping. As a result of this refinement, for the latent variable model …
[ Hall J ]

[ Hall J ]

Driven by several successful applications such as in stochastic gradient descent or in Bayesian computation, control variates have become a major tool for Monte Carlo integration. However, standard methods do not allow the distribution of the particles to evolve during the algorithm, as is the case in sequential simulation methods. Within the standard adaptive importance sampling framework, a simple weighted least squares approach is proposed to improve the procedure with control variates. The procedure takes the form of a quadrature rule with adapted quadrature weights to reflect the information brought in by the control variates. The quadrature points and weights do not depend on the integrand, a computational advantage in case of multiple integrands. Moreover, the target density needs to be known only up to a multiplicative constant. Our main result is a non-asymptotic bound on the probabilistic error of the procedure. The bound proves that for improving the estimate's accuracy, the benefits from adaptive importance sampling and control variates can be combined. The good behavior of the method is illustrated empirically on synthetic examples and real-world data for Bayesian linear regression.
[ Hall J ]

[ Hall J ]

We study the problem of meta-learning with task-level differential privacy. Meta-learning has received increasing attention recently because of its ability to enable fast generalization to new task with small number of data points. However, the training process of meta learning likely involves exchange of task specific information, which may pose privacy risk especially in some privacy-sensitive applications. Therefore, it is important to provide strong privacy guarantees such that the learning process will not reveal any task sensitive information. To this end, existing works have proposed meta learning algorithms with record-level differential privacy, which is not sufficient in many scenarios since it does not protect the aggregated statistics based on the task dataset as a whole. Moreover, the utility guarantees in the prior work are based on assuming that the loss function satisfies both smoothness and quadratic growth conditions, which do not necessarily hold in practice. To address these issues, we propose meta learning algorithms with task-level differential privacy; that is, our algorithms protect the privacy of the entire dataset for each task. In the case when a single meta model is trained, we give both privacy and utility guarantees assuming only that the loss is convex and Lipschitz. Moreover, we …
[ Hall J ]

[ Hall J ]

[ Hall J ]
[ Hall J ]
Pseudo-games are a natural and well-known generalization of normal-form games, in which the actions taken by each player affect not only the other players' payoffs, as in games, but also the other players' strategy sets. The solution concept par excellence for pseudo-games is the generalized Nash equilibrium (GNE), i.e., a strategy profile at which each player's strategy is feasible and no player can improve their payoffs by unilaterally deviating to another strategy in the strategy set determined by the other players' strategies. The computation of GNE in pseudo-games has long been a problem of interest, due to applications in a wide variety of fields, from environmental protection to logistics to telecommunications. Although computing GNE is PPAD-hard in general, it is still of interest to try to compute them in restricted classes of pseudo-games. One approach is to search for a strategy profile that minimizes exploitability, i.e., the sum of the regrets across all players. As exploitability is nondifferentiable in general, developing efficient first-order methods that minimize it might not seem possible at first glance. We observe, however, that the exploitability-minimization problem can be recast as a min-max optimization problem, and thereby obtain polynomial-time first-order methods to compute a refinement of …
[ Hall J ]

[ Hall J ]
[ Hall J ]
We consider the combinatorial bandits problem with semi-bandit feedback under finite sampling budget constraints, in which the learner can carry out its action only for a limited number of times specified by an overall budget. The action is to choose a set of arms, whereupon feedback for each arm in the chosen set is received. Unlike existing works, we study this problem in a non-stochastic setting with subset-dependent feedback, i.e., the semi-bandit feedback received could be generated by an oblivious adversary and also might depend on the chosen set of arms. In addition, we consider a general feedback scenario covering both the numerical-based as well as preference-based case and introduce a sound theoretical framework for this setting guaranteeing sensible notions of optimal arms, which a learner seeks to find. We suggest a generic algorithm suitable to cover the full spectrum of conceivable arm elimination strategies from aggressive to conservative. Theoretical questions about the sufficient and necessary budget of the algorithm to find the best arm are answered and complemented by deriving lower bounds for any learning algorithm for this problem scenario.
[ Hall J ]

[ Hall J ]

As a challenging multi-player card game, DouDizhu has recently drawn much attention for analyzing competition and collaboration in imperfect-information games. In this paper, we propose PerfectDou, a state-of-the-art Doudizhu AI system that summits the game, in an actor-critic framework with a proposed technique named perfect information distillation.In detail, we adopt a perfect-training-imperfection-execution framework that allows the agents to utilize the global information to guide the training of the policies as if it is a perfect information game and the trained policies can be used to play the imperfect information game during the actual gameplay. Correspondingly, we characterize card and game features for DouDizhu to represent the perfect and imperfect information. To train our system, we adopt proximal policy optimization with generalized advantage estimation in a parallel training paradigm. In experiments we show how and why PerfectDou beats all existing programs, and achieves state-of-the-art performance.
[ Hall J ]
Neural radiance fields (NeRF) have brought tremendous progress to novel view synthesis. Though NeRF enables the rendering of subtle details in a scene by learning from a dense set of images, it also reconstructs the undesired reflections when we capture images through glass. As a commonly observed interference, the reflection would undermine the visibility of the desired transmitted scene behind glass by occluding the transmitted light rays. In this paper, we aim at addressing the problem of rendering novel transmitted views given a set of reflection-corrupted images. By introducing the transmission encoder and recurring edge constraints as guidance, our neural transmitted radiance fields can resist such reflection interference during rendering and reconstruct high-fidelity results even under sparse views. The proposed method achieves superior performance from the experiments on a newly collected dataset compared with state-of-the-art methods.
[ Hall J ]
Pretraining on large unlabeled datasets has been proven to improve the down-stream task performance on many computer vision tasks, such as 2D object detection and video classification. However, for large-scale 3D scenes, such as outdoor LiDAR point clouds, pretraining is not widely used. Due to the special data characteristics of large 3D point clouds, 2D pretraining frameworks tend to not generalize well. In this paper, we propose a new self-supervised pretraining method that targets large-scale 3D scenes. We pretrain commonly used point-based and voxel-based model architectures and show the transfer learning performance on 3D object detection and also semantic segmentation. We demonstrate the effectiveness of our approach on both dense 3D indoor point clouds and also sparse outdoor lidar point clouds.
[ Hall J ]

Despite achieving superior performance in human-level control problems, unlike humans, deep reinforcement learning (DRL) lacks high-order intelligence (e.g., logic deduction and reuse), thus it behaves ineffectively than humans regarding learning and generalization in complex problems. Previous works attempt to directly synthesize a white-box logic program as the DRL policy, manifesting logic-driven behaviors. However, most synthesis methods are built on imperative or declarative programming, and each has a distinct limitation, respectively. The former ignores the cause-effect logic during synthesis, resulting in low generalizability across tasks. The latter is strictly proof-based, thus failing to synthesize programs with complex hierarchical logic. In this paper, we combine the above two paradigms together and propose a novel Generalizable Logic Synthesis (GALOIS) framework to synthesize hierarchical and strict cause-effect logic programs. GALOIS leverages the program sketch and defines a new sketch-based hybrid program language for guiding the synthesis. Based on that, GALOIS proposes a sketch-based program synthesis method to automatically generate white-box programs with generalizable and interpretable cause-effect logic. Extensive evaluations on various decision-making tasks with complex logic demonstrate the superiority of GALOIS over mainstream baselines regarding the asymptotic performance, generalizability, and great knowledge reusability across different environments.
[ Hall J ]

[ Hall J ]
Creating fast and accurate force fields is a long-standing challenge in computational chemistry and materials science. Recently, Equivariant Message Passing Neural Networks (MPNNs) have emerged as a powerful tool for building machine learning interatomic potentials, outperforming other approaches in terms of accuracy. However, they suffer from high computational cost and poor scalability. Moreover, most MPNNs only pass two-body messages leading to an intricate relationship between the number of layers and the expressivity of the features. This work introduces MACE, a new equivariant MPNN model that uses higher order messages, and demonstrates that this leads to an improved learning law. We show that by using four-body messages, the required number of message passing iterations reduces to just one, resulting in a fast and highly parallelizable model, reaching or exceeding state of the art accuracy on the rMD17 and 3BPA benchmark tasks. Our implementation is available at https://github.com/ACEsuit/mace.
[ Hall J ]

Recent analyses of self-supervised learning (SSL) find the following data-centric properties to be critical for learning good representations: invariance to task-irrelevant semantics, separability of classes in some latent space, and recoverability of labels from augmented samples. However, given their discrete, non-Euclidean nature, graph datasets and graph SSL methods are unlikely to satisfy these properties. This raises the question: how do graph SSL methods, such as contrastive learning (CL), work well? To systematically probe this question, we perform a generalization analysis for CL when using generic graph augmentations (GGAs), with a focus on data-centric properties. Our analysis yields formal insights into the limitations of GGAs and the necessity of task-relevant augmentations. As we empirically show, GGAs do not induce task-relevant invariances on common benchmark datasets, leading to only marginal gains over naive, untrained baselines. Our theory motivates a synthetic data generation process that enables control over task-relevant information and boasts pre-defined optimal augmentations. This flexible benchmark helps us identify yet unrecognized limitations in advanced augmentation techniques (e.g., automated methods). Overall, our work rigorously contextualizes, both empirically and theoretically, the effects of data-centric properties on augmentation strategies and learning paradigms for graph SSL.
[ Hall J ]

Defending against adversarial examples remains an open problem. A common belief is that randomness at inference increases the cost of finding adversarial inputs. An example of such a defense is to apply a random transformation to inputs prior to feeding them to the model. In this paper, we empirically and theoretically investigate such stochastic pre-processing defenses and demonstrate that they are flawed. First, we show that most stochastic defenses are weaker than previously thought; they lack sufficient randomness to withstand even standard attacks like projected gradient descent. This casts doubt on a long-held assumption that stochastic defenses invalidate attacks designed to evade deterministic defenses and force attackers to integrate the Expectation over Transformation (EOT) concept. Second, we show that stochastic defenses confront a trade-off between adversarial robustness and model invariance; they become less effective as the defended model acquires more invariance to their randomization. Future work will need to decouple these two effects. We also discuss implications and guidance for future research.
[ Hall J ]
Most people associate the term `hedging' exclusively with financial applications, particularly the use of financial derivatives. We argue that hedging is an activity that human and machine agents should engage in more broadly, even when the agent's value is not necessarily in monetary units. In this paper, we propose a decision-theoretic view of hedging based on augmenting a probabilistic graphical model -- specifically a Bayesian network or an influence diagram -- with a reward. Hedging is therefore posed as a particular kind of graph manipulation, and can be viewed as analogous to control/intervention and information gathering related analysis. Effective hedging occurs when a risk-averse agent finds opportunity to balance uncertain rewards in their current situation. We illustrate the concepts with examples and counter-examples, and conduct experiments to demonstrate the properties and applicability of the proposed computational tools that enable agents to proactively identify potential hedging opportunities in real-world situations.
[ Hall J ]

Score-based generative models (SGMs) are a powerful class of generative models that exhibit remarkable empirical performance.Score-based generative modelling (SGM) consists of a noising'' stage, whereby a diffusion is used to gradually add Gaussian noise to data, and a generative model, which entails a
denoising'' process defined by approximating the time-reversal of the diffusion. Existing SGMs assume that data is supported on a Euclidean space, i.e. a manifold with flat geometry. In many domains such as robotics, geoscience or protein modelling, data is often naturally described by distributions living on Riemannian manifolds and current SGM techniques are not appropriate. We introduce here \emph{Riemannian Score-based Generative Models} (RSGMs), a class of generative models extending SGMs to Riemannian manifolds. We demonstrate our approach on a variety of compact manifolds, and in particular with earth and climate science spherical data.
[ Hall J ]

We study the properties of various over-parameterized convolutional neural architectures through their respective Gaussian Process and Neural Tangent kernels. We prove that, with normalized multi-channel input and ReLU activation, the eigenfunctions of these kernels with the uniform measure are formed by products of spherical harmonics, defined over the channels of the different pixels. We next use hierarchical factorizable kernels to bound their respective eigenvalues. We show that the eigenvalues decay polynomially, quantify the rate of decay, and derive measures that reflect the composition of hierarchical features in these networks. Our theory provides a concrete quantitative characterization of the role of locality and hierarchy in the inductive bias of over-parameterized convolutional network architectures.
[ Hall J ]

[ Hall J ]

Efficient exploration in reinforcement learning is a challenging problem commonly addressed through intrinsic rewards. Recent prominent approaches are based on state novelty or variants of artificial curiosity. However, directly applying them to partially observable environments can be ineffective and lead to premature dissipation of intrinsic rewards. Here we propose random curiosity with general value functions (RC-GVF), a novel intrinsic reward function that draws upon connections between these distinct approaches. Instead of using only the current observation’s novelty or a curiosity bonus for failing to predict precise environment dynamics, RC-GVF derives intrinsic rewards through predicting temporally extended general value functions. We demonstrate that this improves exploration in a hard-exploration diabolical lock problem. Furthermore, RC-GVF significantly outperforms previous methods in the absence of ground-truth episodic counts in the partially observable MiniGrid environments. Panoramic observations on MiniGrid further boost RC-GVF's performance such that it is competitive to baselines exploiting privileged information in form of episodic counts.
[ Hall J ]

This paper studies a simple extension of image-based Masked Autoencoders (MAE) to self-supervised representation learning from audio spectrograms. Following the Transformer encoder-decoder design in MAE, our Audio-MAE first encodes audio spectrogram patches with a high masking ratio, feeding only the non-masked tokens through encoder layers. The decoder then re-orders and decodes the encoded context padded with mask tokens, in order to reconstruct the input spectrogram. We find it beneficial to incorporate local window attention in the decoder, as audio spectrograms are highly correlated in local time and frequency bands. We then fine-tune the encoder with a lower masking ratio on target datasets. Empirically, Audio-MAE sets new state-of-the-art performance on six audio and speech classification tasks, outperforming other recent models that use external supervised pre-training. Our code and models is available at https://github.com/facebookresearch/AudioMAE.
[ Hall J ]

Language is an important tool for humans to share knowledge. We propose a meta-learning method that shares knowledge across supervised learning tasks using feature descriptions written in natural language, which have not been used in the existing meta-learning methods. The proposed method improves the predictive performance on unseen tasks with a limited number of labeled data by meta-learning from various tasks. With the feature descriptions, we can find relationships across tasks even when their feature spaces are different. The feature descriptions are encoded using a language model pretrained with a large corpus, which enables us to incorporate human knowledge stored in the corpus into meta-learning. In our experiments, we demonstrate that the proposed method achieves better predictive performance than the existing meta-learning methods using a wide variety of real-world datasets provided by the statistical office of the EU and Japan.
[ Hall J ]

[ Hall J ]
[ Hall J ]

We generalise the problem of reward modelling (RM) for reinforcement learning (RL) to handle non-Markovian rewards. Existing work assumes that human evaluators observe each step in a trajectory independently when providing feedback on agent behaviour. In this work, we remove this assumption, extending RM to capture temporal dependencies in human assessment of trajectories. We show how RM can be approached as a multiple instance learning (MIL) problem, where trajectories are treated as bags with return labels, and steps within the trajectories are instances with unseen reward labels. We go on to develop new MIL models that are able to capture the time dependencies in labelled trajectories. We demonstrate on a range of RL tasks that our novel MIL models can reconstruct reward functions to a high level of accuracy, and can be used to train high-performing agent policies.
[ Hall J ]

Transformers are slow and memory-hungry on long sequences, since the time and memory complexity of self-attention are quadratic in sequence length. Approximate attention methods have attempted to address this problem by trading off model quality to reduce the compute complexity, but often do not achieve wall-clock speedup. We argue that a missing principle is making attention algorithms IO-aware---accounting for reads and writes between levels of GPU memory. We propose FlashAttention, an IO-aware exact attention algorithm that uses tiling to reduce the number of memory reads/writes between GPU high bandwidth memory (HBM) and GPU on-chip SRAM. We analyze the IO complexity of FlashAttention, showing that it requires fewer HBM accesses than standard attention, and is optimal for a range of SRAM sizes. We also extend FlashAttention, yielding an approximate attention algorithm that is faster than any existing approximate attention method. FlashAttention, 3x speedup on GPT-2 (seq. length 1K), and 2.4x speedup on long-range arena (seq. length 1K-4K). FlashAttention, yielding higher quality models (0.7 better perplexity on GPT-2 and 6.4 points of lift on long-document classification) and entirely new capabilities: the first Transformers to achieve better-than-chance performance on the Path-X challenge (seq. length 16K, 61.4% accuracy) and Path-256 (seq. length 64K, 63.1% …
[ Hall J ]

Inverse halftoning is a technique used to recover realistic images from ancient prints (\textit{e.g.}, photographs, newspapers, books). The rise of deep learning has led to the gradual incorporation of neural network designs into inverse halftoning methods. Most of existing inverse halftoning approaches adopt the U-net architecture, which uses an encoder to encode halftone prints, followed by a decoder for image reconstruction. However, the mainstream supervised learning paradigm with element-wise regression commonly adopted in U-net based methods has poor generalization ability in practical applications. Specifically, when there is a large gap between the dithering patterns of the training and test halftones, the reconstructed continuous-tone images have obvious artifacts. This is an important issue in practical applications, since the algorithms for generating halftones are ever-evolving. Even for the same algorithm, different parameter choices will result in different halftone dithering patterns. In this paper, we propose the first generative halftoning method in the literature, which regards the black pixels in halftones as physically moving particles, and makes the randomly distributed particles move under some certain guidance through reverse diffusion process, so as to obtain desired halftone patterns. In particular, we propose a Conditional Diffusion model for image Halftoning (CDH), which consists of a …
[ Hall J ]
The right to be forgotten calls for efficient machine unlearning techniques that make trained machine learning models forget a cohort of data. The combination of training and unlearning operations in traditional machine unlearning methods often leads to the expensive computational cost on large-scale data. This paper presents a prompt certified machine unlearning algorithm, PCMU, which executes one-time operation of simultaneous training and unlearning in advance for a series of machine unlearning requests, without the knowledge of the removed/forgotten data. First, we establish a connection between randomized smoothing for certified robustness on classification and randomized smoothing for certified machine unlearning on gradient quantization. Second, we propose a prompt certified machine unlearning model based on randomized data smoothing and gradient quantization. We theoretically derive the certified radius R regarding the data change before and after data removals and the certified budget of data removals about R. Last but not least, we present another practical framework of randomized gradient smoothing and quantization, due to the dilemma of producing high confidence certificates in the first framework. We theoretically demonstrate the certified radius R' regarding the gradient change, the correlation between two types of certified radii, and the certified budget of data removals about R'.
[ Hall J ]
Making language models bigger does not inherently make them better at following a user's intent. For example, large language models can generate outputs that are untruthful, toxic, or simply not helpful to the user. In other words, these models are not aligned with their users. In this paper, we show an avenue for aligning language models with user intent on a wide range of tasks by fine-tuning with human feedback. Starting with a set of labeler-written prompts and prompts submitted through a language model API, we collect a dataset of labeler demonstrations of the desired model behavior, which we use to fine-tune GPT-3 using supervised learning. We then collect a dataset of rankings of model outputs, which we use to further fine-tune this supervised model using reinforcement learning from human feedback. We call the resulting models InstructGPT. In human evaluations on our prompt distribution, outputs from the 1.3B parameter InstructGPT model are preferred to outputs from the 175B GPT-3, despite having 100x fewer parameters. Moreover, InstructGPT models show improvements in truthfulness and reductions in toxic output generation while having minimal performance regressions on public NLP datasets. Even though InstructGPT still makes simple mistakes, our results show that fine-tuning with human …
[ Hall J ]

Simulating the time evolution of Partial Differential Equations (PDEs) of large-scale systems is crucial in many scientific and engineering domains such as fluid dynamics, weather forecasting and their inverse optimization problems. However, both classical solvers and recent deep learning-based surrogate models are typically extremely computationally intensive, because of their local evolution: they need to update the state of each discretized cell at each time step during inference. Here we develop Latent Evolution of PDEs (LE-PDE), a simple, fast and scalable method to accelerate the simulation and inverse optimization of PDEs. LE-PDE learns a compact, global representation of the system and efficiently evolves it fully in the latent space with learned latent evolution models. LE-PDE achieves speedup by having a much smaller latent dimension to update during long rollout as compared to updating in the input space. We introduce new learning objectives to effectively learn such latent dynamics to ensure long-term stability. We further introduce techniques for speeding-up inverse optimization of boundary conditions for PDEs via backpropagation through time in latent space, and an annealing technique to address the non-differentiability and sparse interaction of boundary conditions. We test our method in a 1D benchmark of nonlinear PDEs, 2D Navier-Stokes flows into …
[ Hall J ]

[ Hall J ]

[ Hall J ]
Equivariant representation is necessary for the brain and artificial perceptual systems to faithfully represent the stimulus under some (Lie) group transformations. However, it remains unknown how recurrent neural circuits in the brain represent the stimulus equivariantly, nor the neural representation of abstract group operators. The present study uses a one-dimensional (1D) translation group as an example to explore the general recurrent neural circuit mechanism of the equivariant stimulus representation. We found that a continuous attractor network (CAN), a canonical neural circuit model, self-consistently generates a continuous family of stationary population responses (attractors) that represents the stimulus equivariantly. Inspired by the Drosophila's compass circuit, we found that the 1D translation operators can be represented by extra speed neurons besides the CAN, where speed neurons' responses represent the moving speed (1D translation group parameter), and their feedback connections to the CAN represent the translation generator (Lie algebra). We demonstrated that the network responses are consistent with experimental data. Our model for the first time demonstrates how recurrent neural circuitry in the brain achieves equivariant stimulus representation.
[ Hall J ]
People say, "A picture is worth a thousand words". Then how can we get the rich information out of the image? We argue that by using visual clues to bridge large pretrained vision foundation models and language models, we can do so without any extra cross-modal training. Thanks to the strong zero-shot capability of foundation models, we start by constructing a rich semantic representation of the image (e.g., image tags, object attributes / locations, captions) as a structured textual prompt, called visual clues, using a vision foundation model. Based on visual clues, we use large language model to produce a series of comprehensive descriptions for the visual content, which is then verified by the vision model again to select the candidate that aligns best with the image. We evaluate the quality of generated descriptions by quantitative and qualitative measurement. The results demonstrate the effectiveness of such a structured semantic representation.
[ Hall J ]

There exists an unequivocal distinction between the sound produced by a static source and that produced by a moving one, especially when the source moves towards or away from the microphone. In this paper, we propose to use this connection between audio and visual dynamics for solving two challenging tasks simultaneously, namely: (i) separating audio sources from a mixture using visual cues, and (ii) predicting the 3D visual motion of a sounding source using its separated audio. Towards this end, we present Audio Separator and Motion Predictor (ASMP) -- a deep learning framework that leverages the 3D structure of the scene and the motion of sound sources for better audio source separation. At the heart of ASMP is a 2.5D scene graph capturing various objects in the video and their pseudo-3D spatial proximities. This graph is constructed by registering together 2.5D monocular depth predictions from the 2D video frames and associating the 2.5D scene regions with the outputs of an object detector applied on those frames. The ASMP task is then mathematically modeled as the joint problem of: (i) recursively segmenting the 2.5D scene graph into several sub-graphs, each associated with a constituent sound in the input audio mixture (which …
[ Hall J ]

Multi-agent reinforcement learning (MARL) has emerged as a useful approach to solving decentralised decision-making problems at scale. Research in the field has been growing steadily with many breakthrough algorithms proposed in recent years. In this work, we take a closer look at this rapid development with a focus on evaluation methodologies employed across a large body of research in cooperative MARL. By conducting a detailed meta-analysis of prior work, spanning 75 papers accepted for publication from 2016 to 2022, we bring to light worrying trends that put into question the true rate of progress. We further consider these trends in a wider context and take inspiration from single-agent RL literature on similar issues with recommendations that remain applicable to MARL. Combining these recommendations, with novel insights from our analysis, we propose a standardised performance evaluation protocol for cooperative MARL. We argue that such a standard protocol, if widely adopted, would greatly improve the validity and credibility of future research, make replication and reproducibility easier, as well as improve the ability of the field to accurately gauge the rate of progress over time by being able to make sound comparisons across different works. Finally, we release our meta-analysis data publicly on …
[ Hall J ]
Many model-based reinforcement learning (RL) methods follow a similar template: fit a model to previously observed data, and then use data from that model for RL or planning. However, models that achieve better training performance (e.g., lower MSE) are not necessarily better for control: an RL agent may seek out the small fraction of states where an accurate model makes mistakes, or it might act in ways that do not expose the errors of an inaccurate model. As noted in prior work, there is an objective mismatch: models are useful if they yield good policies, but they are trained to maximize their accuracy, rather than the performance of the policies that result from them. In this work, we propose a single objective for jointly training the model and the policy, such that updates to either component increase a lower bound on expected return. To the best of our knowledge, this is the first lower bound for model-based RL that holds globally and can be efficiently estimated in continuous settings; it is the only lower bound that mends the objective mismatch problem. A version of this bound becomes tight under certain assumptions. Optimizing this bound resembles a GAN: a classifier distinguishes …
[ Hall J ]
[ Hall J ]
Many high-dimensional statistical inference problems are believed to possess inherent computational hardness. Various frameworks have been proposed to give rigorous evidence for such hardness, including lower bounds against restricted models of computation (such as low-degree functions), as well as methods rooted in statistical physics that are based on free energy landscapes. This paper aims to make a rigorous connection between the seemingly different low-degree and free-energy based approaches. We define a free-energy based criterion for hardness and formally connect it to the well-established notion of low-degree hardness for a broad class of statistical problems, namely all Gaussian additive models and certain models with a sparse planted signal. By leveraging these rigorous connections we are able to: establish that for Gaussian additive models the "algebraic" notion of low-degree hardness implies failure of "geometric" local MCMC algorithms, and provide new low-degree lower bounds for sparse linear regression which seem difficult to prove directly. These results provide both conceptual insights into the connections between different notions of hardness, as well as concrete technical tools such as new methods for proving low-degree lower bounds.
[ Hall J ]

Algorithmic fairness has received increased attention in socially sensitive domains. While rich literature on mean fairness has been established, research on quantile fairness remains sparse but vital. To fulfill great needs and advocate the significance of quantile fairness, we propose a novel framework to learn a real-valued quantile function under the fairness requirement of Demographic Parity with respect to sensitive attributes, such as race or gender, and thereby derive a reliable fair prediction interval. Using optimal transport and functional synchronization techniques, we establish theoretical guarantees of distribution-free coverage and exact fairness for the induced prediction interval constructed by fair quantiles. A hands-on pipeline is provided to incorporate flexible quantile regressions with an efficient fairness adjustment post-processing algorithm. We demonstrate the superior empirical performance of this approach on several benchmark datasets. Our results show the model’s ability to uncover the mechanism underlying the fairness-accuracy trade-off in a wide range of societal and medical applications.
[ Hall J ]

Neural ordinary differential equations (ODEs) have attracted much attention as continuous-time counterparts of deep residual neural networks (NNs), and numerous extensions for recurrent NNs have been proposed. Since the 1980s, ODEs have also been used to derive theoretical results for NN learning rules, e.g., the famous connection between Oja's rule and principal component analysis. Such rules are typically expressed as additive iterative update processes which have straightforward ODE counterparts. Here we introduce a novel combination of learning rules and Neural ODEs to build continuous-time sequence processing nets that learn to manipulate short-term memory in rapidly changing synaptic connections of other nets. This yields continuous-time counterparts of Fast Weight Programmers and linear Transformers. Our novel models outperform the best existing Neural Controlled Differential Equation based models on various time series classification tasks, while also addressing their fundamental scalability limitations. Our code is public.
[ Hall J ]
Ensemble sampling serves as a practical approximation to Thompson sampling when maintaining an exact posterior distribution over model parameters is computationally intractable. In this paper, we establish a regret bound that ensures desirable behavior when ensemble sampling is applied to the linear bandit problem. This represents the first rigorous regret analysis of ensemble sampling and is made possible by leveraging information-theoretic concepts and novel analytic techniques that may prove useful beyond the scope of this paper.
[ Hall J ]

The fundamental model of all solid crystalline materials is a periodic set of atomic centers considered up to rigid motion in Euclidean space. The major obstacle to materials discovery was highly ambiguous representations of periodic crystals that didn't allow fast and reliable comparisons and led to numerous (near-) duplicates in many databases of experimental and simulated crystals. This paper exemplarily resolves the ambiguity by invariants, which are descriptors without false negatives.The new Pointwise Distance Distributions (PDD) is a numerical matrix with a near-linear time complexity and an exactly computable metric. The strongest theoretical result is generic completeness (absence of false positives) for all finite and periodic sets of points in any dimension. The strength of PDD is shown by 200B+ pairwise comparisons of all periodic structures in the world's largest collection (Cambridge Structural Database) of existing materials over two days on a modest desktop.
[ Hall J ]

We present a new concentration of measure inequality for sums of independent bounded random variables, which we name a split-kl inequality. The inequality combines the combinatorial power of the kl inequality with ability to exploit low variance. While for Bernoulli random variables the kl inequality is tighter than the Empirical Bernstein, for random variables taking values inside a bounded interval and having low variance the Empirical Bernstein inequality is tighter than the kl. The proposed split-kl inequality yields the best of both worlds. We discuss an application of the split-kl inequality to bounding excess losses. We also derive a PAC-Bayes-split-kl inequality and use a synthetic example and several UCI datasets to compare it with the PAC-Bayes-kl, PAC-Bayes Empirical Bernstein, PAC-Bayes Unexpected Bernstein, and PAC-Bayes Empirical Bennett inequalities.
[ Hall J ]
[ Hall J ]

[ Hall J ]

Extensive efforts have been made to understand and improve the fairness of machine learning models based on observational metrics, especially in high-stakes domains such as medical insurance, education, and hiring decisions. However, there is a lack of certified fairness considering the end-to-end performance of an ML model. In this paper, we first formulate the certified fairness of an ML model trained on a given data distribution as an optimization problem based on the model performance loss bound on a fairness constrained distribution, which is within bounded distributional distance with the training distribution. We then propose a general fairness certification framework and instantiate it for both sensitive shifting and general shifting scenarios. In particular, we propose to solve the optimization problem by decomposing the original data distribution into analytical subpopulations and proving the convexity of the subproblems to solve them. We evaluate our certified fairness on six real-world datasets and show that our certification is tight in the sensitive shifting scenario and provides non-trivial certification under general shifting. Our framework is flexible to integrate additional non-skewness constraints and we show that it provides even tighter certification under different real-world scenarios. We also compare our certified fairness bound with adapted existing distributional …
[ Hall J ]

The dynamic membrane potential threshold, as one of the essential properties of a biological neuron, is a spontaneous regulation mechanism that maintains neuronal homeostasis, i.e., the constant overall spiking firing rate of a neuron. As such, the neuron firing rate is regulated by a dynamic spiking threshold, which has been extensively studied in biology. Existing work in the machine learning community does not employ bioinspired spiking threshold schemes. This work aims at bridging this gap by introducing a novel bioinspired dynamic energy-temporal threshold (BDETT) scheme for spiking neural networks (SNNs). The proposed BDETT scheme mirrors two bioplausible observations: a dynamic threshold has 1) a positive correlation with the average membrane potential and 2) a negative correlation with the preceding rate of depolarization. We validate the effectiveness of the proposed BDETT on robot obstacle avoidance and continuous control tasks under both normal conditions and various degraded conditions, including noisy observations, weights, and dynamic environments. We find that the BDETT outperforms existing static and heuristic threshold approaches by significant margins in all tested conditions, and we confirm that the proposed bioinspired dynamic threshold scheme offers homeostasis to SNNs in complex real-world tasks.
[ Hall J ]
[ Hall J ]

[ Hall J ]
How do we provably represent images succinctly so that their essential latent attributes are correctly captured by the representation to as high level of detail as possible? While today's deep networks (such as CNNs) produce image embeddings they do not have any provable properties and seem to work in mysterious non-interpretable ways. In this work we theoretically study synthetic images that are composed of a union or intersection of several mathematically specified shapes using thresholded polynomial functions (for e.g. ellipses, rectangles). We show how to produce a succinct sketch of such an image so that the sketch “smoothly” maps to the latent-coefficients producing the different shapes in the image. We prove several important properties such as: easy reconstruction of the image from the sketch, similarity preservation (similar shapes produce similar sketches), being able to index sketches so that other similar images and parts of other images can be retrieved, being able to store the sketches into a dictionary of concepts and shapes so parts of the same or different images that refer to the same shape can point to the same entry in this dictionary of common shape attributes.
[ Hall J ]

Hierarchical reinforcement learning (HRL) has been proven to be effective for tasks with sparse rewards, for it can improve the agent's exploration efficiency by discovering high-quality hierarchical structures (e.g., subgoals or options). However, automatically discovering high-quality hierarchical structures is still a great challenge. Previous HRL methods can only find the hierarchical structures in simple environments, as they are mainly achieved through the randomness of agent's policies during exploration. In complicated environments, such a randomness-driven exploration paradigm can hardly discover high-quality hierarchical structures because of the low exploration efficiency. In this paper, we propose CDHRL, a causality-driven hierarchical reinforcement learning framework, to build high-quality hierarchical structures efficiently in complicated environments. The key insight is that the causalities among environment variables are naturally fit for modeling reachable subgoals and their dependencies; thus, the causality is suitable to be the guidance in building high-quality hierarchical structures. Roughly, we build the hierarchy of subgoals based on causality autonomously, and utilize the subgoal-based policies to unfold further causality efficiently. Therefore, CDHRL leverages a causality-driven discovery instead of a randomness-driven exploration for high-quality hierarchical structure construction. The results in two complex environments, 2D-Minecraft and Eden, show that CDHRL can discover high-quality hierarchical structures and significantly enhance …
[ Hall J ]

The goal of this work is to build flexible video-language models that can generalize to various video-to-text tasks from few examples. Existing few-shot video-language learners focus exclusively on the encoder, resulting in the absence of a video-to-text decoder to handle generative tasks. Video captioners have been pretrained on large-scale video-language datasets, but they rely heavily on finetuning and lack the ability to generate text for unseen tasks in a few-shot setting. We propose VidIL, a few-shot Video-language Learner via Image and Language models, which demonstrates strong performance on few-shot video-to-text tasks without the necessity of pretraining or finetuning on any video datasets. We use image-language models to translate the video content into frame captions, object, attribute, and event phrases, and compose them into a temporal-aware template. We then instruct a language model, with a prompt containing a few in-context examples, to generate a target output from the composed content. The flexibility of prompting allows the model to capture any form of text input, such as automatic speech recognition (ASR) transcripts. Our experiments demonstrate the power of language models in understanding videos on a wide variety of video-language tasks, including video captioning, video question answering, video caption retrieval, and video future …
[ Hall J ]

Probabilistic programs provide an expressive representation language for generative models. Given a probabilistic program, we are interested in the task of posterior inference: estimating a latent variable given a set of observed variables. Existing techniques for inference in probabilistic programs often require choosing many hyper-parameters, are computationally expensive, and/or only work for restricted classes of programs. Here we formulate inference as masked language modeling: given a program, we generate a supervised dataset of variables and assignments, and randomly mask a subset of the assignments. We then train a neural network to unmask the random values, defining an approximate posterior distribution. By optimizing a single neural network across a range of programs we amortize the cost of training, yielding a "foundation" posterior able to do zero-shot inference for new programs. The foundation posterior can also be fine-tuned for a particular program and dataset by optimizing a variational inference objective. We show the efficacy of the approach, zero-shot and fine-tuned, on a benchmark of STAN programs.
[ Hall J ]
[ Hall J ]
[ Hall J ]

Overparameterized models with millions of parameters have been hugely successful. In this work, we ask: can the need for large models be, at least in part, due to the \emph{computational} limitations of the learner? Additionally, we ask, is this situation exacerbated for \emph{robust} learning? We show that this indeed could be the case. We show learning tasks for which computationally bounded learners need \emph{significantly more} model parameters than what information-theoretic learners need. Furthermore, we show that even more model parameters could be necessary for robust learning. In particular, for computationally bounded learners, we extend the recent result of Bubeck and Sellke [NeurIPS'2021] which shows that robust models might need more parameters, to the computational regime and show that bounded learners could provably need an even larger number of parameters. Then, we address the following related question: can we hope to remedy the situation for robust computationally bounded learning by restricting \emph{adversaries} to also be computationally bounded for sake of obtaining models with fewer parameters? Here again, we show that this could be possible. Specifically, building on the work of Garg, Jha, Mahloujifar, and Mahmoody [ALT'2020], we demonstrate a learning task that can be learned efficiently and robustly against a computationally …
[ Hall J ]
We study a Markov matching market involving a planner and a set of strategic agents on the two sides of the market.At each step, the agents are presented with a dynamical context, where the contexts determine the utilities. The planner controls the transition of the contexts to maximize the cumulative social welfare, while the agents aim to find a myopic stable matching at each step. Such a setting captures a range of applications including ridesharing platforms. We formalize the problem by proposing a reinforcement learning framework that integrates optimistic value iteration with maximum weight matching. The proposed algorithm addresses the coupled challenges of sequential exploration, matching stability, and function approximation. We prove that the algorithm achieves sublinear regret.
[ Hall J ]

[ Hall J ]

[ Hall J ]

Semi-supervised learning (SSL) improves model generalization by leveraging massive unlabeled data to augment limited labeled samples. However, currently, popular SSL evaluation protocols are often constrained to computer vision (CV) tasks. In addition, previous work typically trains deep neural networks from scratch, which is time-consuming and environmentally unfriendly. To address the above issues, we construct a Unified SSL Benchmark (USB) for classification by selecting 15 diverse, challenging, and comprehensive tasks from CV, natural language processing (NLP), and audio processing (Audio), on which we systematically evaluate the dominant SSL methods, and also open-source a modular and extensible codebase for fair evaluation of these SSL methods. We further provide the pre-trained versions of the state-of-the-art neural models for CV tasks to make the cost affordable for further tuning. USB enables the evaluation of a single SSL algorithm on more tasks from multiple domains but with less cost. Specifically, on a single NVIDIA V100, only 39 GPU days are required to evaluate FixMatch on 15 tasks in USB while 335 GPU days (279 GPU days on 4 CV datasets except for ImageNet) are needed on 5 CV tasks with TorchSSL.
[ Hall J ]

Dataset Condensation is a newly emerging technique aiming at learning a tiny dataset that captures the rich information encoded in the original dataset. As the size of datasets contemporary machine learning models rely on becomes increasingly large, condensation methods become a prominent direction for accelerating network training and reducing data storage. Despite numerous methods have been proposed in this rapidly growing field, evaluating and comparing different condensation methods is non-trivial and still remains an open issue. The quality of condensed dataset are often shadowed by many critical contributing factors to the end performance, such as data augmentation and model architectures. The lack of a systematic way to evaluate and compare condensation methods not only hinders our understanding of existing techniques, but also discourages practical usage of the synthesized datasets. This work provides the first large-scale standardized benchmark on Dataset Condensation. It consists of a suite of evaluations to comprehensively reflect the generability and effectiveness of condensation methods through the lens of their generated dataset. Leveraging this benchmark, we conduct a large-scale study of current condensation methods, and report many insightful findings that open up new possibilities for future development. The benchmark library, including evaluators, baseline methods, and generated datasets, is …
[ Hall J ]

[ Hall J ]

Zero-cost proxies (ZC proxies) are a recent architecture performance prediction technique aiming to significantly speed up algorithms for neural architecture search (NAS). Recent work has shown that these techniques show great promise, but certain aspects, such as evaluating and exploiting their complementary strengths, are under-studied. In this work, we create NAS-Bench-Suite: we evaluate 13 ZC proxies across 28 tasks, creating by far the largest dataset (and unified codebase) for ZC proxies, enabling orders-of-magnitude faster experiments on ZC proxies, while avoiding confounding factors stemming from different implementations. To demonstrate the usefulness of NAS-Bench-Suite, we run a large-scale analysis of ZC proxies, including a bias analysis, and the first information-theoretic analysis which concludes that ZC proxies capture substantial complementary information. Motivated by these findings, we present a procedure to improve the performance of ZC proxies by reducing biases such as cell size, and we also show that incorporating all 13 ZC proxies into the surrogate models used by NAS algorithms can improve their predictive performance by up to 42%. Our code and datasets are available at https://github.com/automl/naslib/tree/zerocost.
[ Hall J ]

Proteomics is the interdisciplinary field focusing on the large-scale study of proteins. Proteins essentially organize and execute all functions within organisms. Today, the bottom-up analysis approach is the most commonly used workflow, where proteins are digested into peptides and subsequently analyzed using Tandem Mass Spectrometry (MS/MS). MS-based proteomics has transformed various fields in life sciences, such as drug discovery and biomarker identification. Today, proteomics is entering a phase where it is helpful for clinical decision-making. Computational methods are vital in turning large amounts of acquired raw MS data into information and, ultimately, knowledge. Deep learning has proved its success in multiple domains as a robust framework for supervised and unsupervised machine learning problems. In proteomics, scientists are increasingly leveraging the potential of deep learning to predict the properties of peptides based on their sequence to improve their confident identification. However, a reference dataset is missing, covering several proteomics tasks, enabling performance comparison, and evaluating reproducibility and generalization. Here, we present a large labeled proteomics dataset spanning several tasks in the domain to address this challenge. We focus on two common applications: peptide retention time and MS/MS spectrum prediction. We review existing methods and task formulations from a machine learning perspective …
[ Hall J ]
Cross-device federated learning is an emerging machine learning (ML) paradigm where a large population of devices collectively train an ML model while the data remains on the devices.This research field has a unique set of practical challenges, and to systematically make advances, new datasets curated to be compatible with this paradigm are needed.Existing federated learning benchmarks in the image domain do not accurately capture the scale and heterogeneity of many real-world use cases. We introduce FLAIR, a challenging large-scale annotated image dataset for multi-label classification suitable for federated learning.FLAIR has 429,078 images from 51,414 Flickr users and captures many of the intricacies typically encountered in federated learning, such as heterogeneous user data and a long-tailed label distribution.We implement multiple baselines in different learning setups for different tasks on this dataset. We believe FLAIR can serve as a challenging benchmark for advancing the state-of-the art in federated learning.Dataset access and the code for the benchmark are available at https://github.com/apple/ml-flair.
[ Hall J ]

Proximal Policy Optimization (PPO) is a ubiquitous on-policy reinforcement learning algorithm but is significantly less utilized than off-policy learning algorithms in multi-agent settings. This is often due to the belief that PPO is significantly less sample efficient than off-policy methods in multi-agent systems. In this work, we carefully study the performance of PPO in cooperative multi-agent settings. We show that PPO-based multi-agent algorithms achieve surprisingly strong performance in four popular multi-agent testbeds: the particle-world environments, the StarCraft multi-agent challenge, the Hanabi challenge, and Google Research Football, with minimal hyperparameter tuning and without any domain-specific algorithmic modifications or architectures. Importantly, compared to competitive off-policy methods, PPO often achieves competitive or superior results in both final returns and sample efficiency. Finally, through ablation studies, we analyze implementation and hyperparameter factors that are critical to PPO's empirical performance, and give concrete practical suggestions regarding these factors. Our results show that when using these practices, simple PPO-based methods are a strong baseline in cooperative multi-agent reinforcement learning. Source code is released at https://github.com/marlbenchmark/on-policy.
[ Hall J ]

Recording the dynamics of unscripted human interactions in the wild is challenging due to the delicate trade-offs between several factors: participant privacy, ecological validity, data fidelity, and logistical overheads. To address these, following a 'datasets for the community by the community' ethos, we propose the Conference Living Lab (ConfLab): a new concept for multimodal multisensor data collection of in-the-wild free-standing social conversations. For the first instantiation of ConfLab described here, we organized a real-life professional networking event at a major international conference. Involving 48 conference attendees, the dataset captures a diverse mix of status, acquaintance, and networking motivations. Our capture setup improves upon the data fidelity of prior in-the-wild datasets while retaining privacy sensitivity: 8 videos (1920x1080, 60 fps) from a non-invasive overhead view, and custom wearable sensors with onboard recording of body motion (full 9-axis IMU), privacy-preserving low-frequency audio (1250 Hz), and Bluetooth-based proximity. Additionally, we developed custom solutions for distributed hardware synchronization at acquisition, and time-efficient continuous annotation of body keypoints and actions at high sampling rates. Our benchmarks showcase some of the open research tasks related to in-the-wild privacy-preserving social data analysis: keypoints detection from overhead camera views, skeleton-based no-audio speaker detection, and F-formation detection.
[ Hall J ]

Video-language models (VLMs), large models pre-trained on numerous but noisy video-text pairs from the internet, have revolutionized activity recognition through their remarkable generalization and open-vocabulary capabilities. While complex human activities are often hierarchical and compositional, most existing tasks for evaluating VLMs focus only on high-level video understanding, making it difficult to accurately assess and interpret the ability of VLMs to understand complex and fine-grained human activities. Inspired by the recently proposed MOMA framework, we define activity graphs as a single universal representation of human activities that encompasses video understanding at the activity, sub-activity, and atomic action level. We redefine activity parsing as the overarching task of activity graph generation, requiring understanding human activities across all three levels. To facilitate the evaluation of models on activity parsing, we introduce MOMA-LRG (Multi-Object Multi-Actor Language-Refined Graphs), a large dataset of complex human activities with activity graph annotations that can be readily transformed into natural language sentences. Lastly, we present a model-agnostic and lightweight approach to adapting and evaluating VLMs by incorporating structured knowledge from activity graphs into VLMs, addressing the individual limitations of language and graphical models. We demonstrate strong performance on few-shot activity parsing, and our framework is intended to foster future …
[ Hall J ]
The ability to associate touch with sight is essential for tasks that require physically interacting with objects in the world. We propose a dataset with paired visual and tactile data called Touch and Go, in which human data collectors probe objects in natural environments using tactile sensors, while simultaneously recording egocentric video. In contrast to previous efforts, which have largely been confined to lab settings or simulated environments, our dataset spans a large number of “in the wild” objects and scenes. We successfully apply our dataset to a variety of multimodal learning tasks: 1) self-supervised visuo-tactile feature learning, 2) tactile-driven image stylization, i.e., making the visual appearance of an object more consistent with a given tactile signal, and 3) predicting future frames of a tactile signal from visuo-tactile inputs.
[ Hall J ]

Criminal justice is an increasingly important application domain for machine learning and algorithmic fairness, as predictive tools are becoming widely used in police, courts, and prison systems worldwide. A few relevant benchmarks have received significant attention, e.g., the COMPAS dataset, often without proper consideration of the domain context. To raise awareness of publicly available criminal justice datasets and encourage their responsible use, we conduct a survey, consider contexts, highlight potential uses, and identify gaps and limitations. We provide datasheets for 15 datasets and upload them to a public repository. We compare the datasets across several dimensions, including size, coverage of the population, and potential use, highlighting concerns. We hope that this work can provide a useful starting point for researchers looking for appropriate datasets related to criminal justice, and that the repository will continue to grow as a community effort.
[ Hall J ]

We introduce the Multi-Agent Tracking Environment (MATE), a novel multi-agent environment simulates the target coverage control problems in the real world. MATE hosts an asymmetric cooperative-competitive game consisting of two groups of learning agents--"cameras" and "targets"--with opposing interests. Specifically, "cameras", a group of directional sensors, are mandated to actively control the directional perception area to maximize the coverage rate of targets. On the other side, "targets" are mobile agents that aim to transport cargo between multiple randomly assigned warehouses while minimizing the exposure to the camera sensor networks. To showcase the practicality of MATE, we benchmark the multi-agent reinforcement learning (MARL) algorithms from different aspects, including cooperation, communication, scalability, robustness, and asymmetric self-play. We start by reporting results for cooperative tasks using MARL algorithms (MAPPO, IPPO, QMIX, MADDPG) and the results after augmenting with multi-agent communication protocols (TarMAC, I2C). We then evaluate the effectiveness of the popular self-play techniques (PSRO, fictitious self-play) in an asymmetric zero-sum competitive game. This process of co-evolution between cameras and targets helps to realize a less exploitable camera network. We also observe the emergence of different roles of the target agents while incorporating I2C into target-target communication. MATE is written purely in Python and integrated …
[ Hall J ]

In recent years, deep neural networks have demonstrated increasingly strong abilities to recognize objects and activities in videos. However, as video understanding becomes widely used in real-world applications, a key consideration is developing human-centric systems that understand not only the content of the video but also how it would affect the wellbeing and emotional state of viewers. To facilitate research in this setting, we introduce two large-scale datasets with over 60,000 videos manually annotated for emotional response and subjective wellbeing. The Video Cognitive Empathy (VCE) dataset contains annotations for distributions of fine-grained emotional responses, allowing models to gain a detailed understanding of affective states. The Video to Valence (V2V) dataset contains annotations of relative pleasantness between videos, which enables predicting a continuous spectrum of wellbeing. In experiments, we show how video models that are primarily trained to recognize actions and find contours of objects can be repurposed to understand human preferences and the emotional content of videos. Although there is room for improvement, predicting wellbeing and emotional response is on the horizon for state-of-the-art models. We hope our datasets can help foster further advances at the intersection of commonsense video understanding and human preference learning.
[ Hall J ]

Simulated humanoids are an appealing research domain due to their physical capabilities. Nonetheless, they are also challenging to control, as a policy must drive an unstable, discontinuous, and high-dimensional physical system. One widely studied approach is to utilize motion capture (MoCap) data to teach the humanoid agent low-level skills (e.g., standing, walking, and running) that can then be re-used to synthesize high-level behaviors. However, even with MoCap data, controlling simulated humanoids remains very hard, as MoCap data offers only kinematic information. Finding physical control inputs to realize the demonstrated motions requires computationally intensive methods like reinforcement learning. Thus, despite the publicly available MoCap data, its utility has been limited to institutions with large-scale compute. In this work, we dramatically lower the barrier for productive research on this topic by training and releasing high-quality agents that can track over three hours of MoCap data for a simulated humanoid in the dmcontrol physics-based environment. We release MoCapAct (Motion Capture with Actions), a dataset of these expert agents and their rollouts, which contain proprioceptive observations and actions. We demonstrate the utility of MoCapAct by using it to train a single hierarchical policy capable of tracking the entire MoCap dataset within dmcontrol …
[ Hall J ]

Accurate intraoperative diagnosis is essential for providing safe and effective care during brain tumor surgery. Our standard-of-care diagnostic methods are time, resource, and labor intensive, which restricts access to optimal surgical treatments. To address these limitations, we propose an alternative workflow that combines stimulated Raman histology (SRH), a rapid optical imaging method, with deep learning-based automated interpretation of SRH images for intraoperative brain tumor diagnosis and real-time surgical decision support. Here, we present OpenSRH, the first public dataset of clinical SRH images from 300+ brain tumors patients and 1300+ unique whole slide optical images. OpenSRH contains data from the most common brain tumors diagnoses, full pathologic annotations, whole slide tumor segmentations, raw and processed optical imaging data for end-to-end model development and validation. We provide a framework for patch-based whole slide SRH classification and inference using weak (i.e. patient-level) diagnostic labels. Finally, we benchmark two computer vision tasks: multi-class histologic brain tumor classification and patch-based contrastive representation learning. We hope OpenSRH will facilitate the clinical translation of rapid optical imaging and real-time ML-based surgical decision support in order to improve the access, safety, and efficacy of cancer surgery in the era of precision medicine.
[ Hall J ]
There has been a rapidly growing interest in Automatic Symptom Detection (ASD) and Automatic Diagnosis (AD) systems in the machine learning research literature, aiming to assist doctors in telemedicine services. These systems are designed to interact with patients, collect evidence about their symptoms and relevant antecedents, and possibly make predictions about the underlying diseases. Doctors would review the interactions, including the evidence and the predictions, collect if necessary additional information from patients, before deciding on next steps. Despite recent progress in this area, an important piece of doctors' interactions with patients is missing in the design of these systems, namely the differential diagnosis. Its absence is largely due to the lack of datasets that include such information for models to train on. In this work, we present a large-scale synthetic dataset of roughly 1.3 million patients that includes a differential diagnosis, along with the ground truth pathology, symptoms and antecedents for each patient. Unlike existing datasets which only contain binary symptoms and antecedents, this dataset also contains categorical and multi-choice symptoms and antecedents useful for efficient data collection. Moreover, some symptoms are organized in a hierarchy, making it possible to design systems able to interact with patients in a logical …
[ Hall J ]

[ Hall J ]

Offline reinforcement learning (RL) aims at learning effective policies from historical data without extra environment interactions. During our experience of applying offline RL, we noticed that previous offline RL benchmarks commonly involve significant reality gaps, which we have identified include rich and overly exploratory datasets, degraded baseline, and missing policy validation. In many real-world situations, to ensure system safety, running an overly exploratory policy to collect various data is prohibited, thus only a narrow data distribution is available. The resulting policy is regarded as effective if it is better than the working behavior policy; the policy model can be deployed only if it has been well validated, rather than accomplished the training. In this paper, we present a Near real-world offline RL benchmark, named NeoRL, to reflect these properties. NeoRL datasets are collected with a more conservative strategy. Moreover, NeoRL contains the offline training and offline validation pipeline before the online test, corresponding to real-world situations. We then evaluate recent state-of-the-art offline RL algorithms in NeoRL. The empirical results demonstrate that some offline RL algorithms are less competitive to the behavior cloning and the deterministic behavior policy, implying that they could be less effective in real-world tasks than in the …
[ Hall J ]

Extensive literature on backdoor poison attacks has studied attacks and defenses for backdoors using “digital trigger patterns.” In contrast, “physical backdoors” use physical objects as triggers, have only recently been identified, and are qualitatively different enough to resist most defenses targeting digital trigger backdoors. Research on physical backdoors is limited by access to large datasets containing real images of physical objects co-located with misclassification targets. Building these datasets is time- and labor-intensive.This work seeks to address the challenge of accessibility for research on physical backdoor attacks. We hypothesize that there may be naturally occurring physically co-located objects already present in popular datasets such as ImageNet. Once identified, a careful relabeling of these data can transform them into training samples for physical backdoor attacks. We propose a method to scalably identify these subsets of potential triggers in existing datasets, along with the specific classes they can poison. We call these naturally occurring trigger-class subsets natural backdoor datasets. Our techniques successfully identify natural backdoors in widely-available datasets, and produce models behaviorally equivalent to those trained on manually curated datasets. We release our code to allow the research community to create their own datasets for research on physical backdoor attacks.
[ Hall J ]

Surrogate models are necessary to optimize meaningful quantities in physical dynamics as their recursive numerical resolutions are often prohibitively expensive. It is mainly the case for fluid dynamics and the resolution of Navier–Stokes equations. However, despite the fast-growing field of data-driven models for physical systems, reference datasets representing real-world phenomena are lacking. In this work, we develop \textsc{AirfRANS}, a dataset for studying the two-dimensional incompressible steady-state Reynolds-Averaged Navier–Stokes equations over airfoils at a subsonic regime and for different angles of attacks. We also introduce metrics on the stress forces at the surface of geometries and visualization of boundary layers to assess the capabilities of models to accurately predict the meaningful information of the problem. Finally, we propose deep learning baselines on four machine learning tasks to study \textsc{AirfRANS} under different constraints for generalization considerations: big and scarce data regime, Reynolds number, and angle of attack extrapolation.
[ Hall J ]

While several types of post hoc explanation methods have been proposed in recent literature, there is very little work on systematically benchmarking these methods. Here, we introduce OpenXAI, a comprehensive and extensible open-source framework for evaluating and benchmarking post hoc explanation methods. OpenXAI comprises of the following key components: (i) a flexible synthetic data generator and a collection of diverse real-world datasets, pre-trained models, and state-of-the-art feature attribution methods, (ii) open-source implementations of twenty-two quantitative metrics for evaluating faithfulness, stability (robustness), and fairness of explanation methods, and (iii) the first ever public XAI leaderboards to readily compare several explanation methods across a wide variety of metrics, models, and datasets. OpenXAI is easily extensible, as users can readily evaluate custom explanation methods and incorporate them into our leaderboards. Overall, OpenXAI provides an automated end-to-end pipeline that not only simplifies and standardizes the evaluation of post hoc explanation methods, but also promotes transparency and reproducibility in benchmarking these methods. While the first release of OpenXAI supports only tabular datasets, the explanation methods and metrics that we consider are general enough to be applicable to other data modalities. OpenXAI datasets and data loaders, implementations of state-of-the-art explanation methods and evaluation metrics, as well …
[ Hall J ]

Groundbreaking language-vision architectures like CLIP and DALL-E proved the utility of training on large amounts of noisy image-text data, without relying on expensive accurate labels used in standard vision unimodal supervised learning. The resulting models showed capabilities of strong text-guided image generation and transfer to downstream tasks, while performing remarkably at zero-shot classification with noteworthy out-of-distribution robustness. Since then, large-scale language-vision models like ALIGN, BASIC, GLIDE, Flamingo and Imagen made further improvements. Studying the training and capabilities of such models requires datasets containing billions of image-text pairs. Until now, no datasets of this size have been made openly available for the broader research community. To address this problem and democratize research on large-scale multi-modal models, we present LAION-5B - a dataset consisting of 5.85 billion CLIP-filtered image-text pairs, of which 2.32B contain English language. We show successful replication and fine-tuning of foundational models like CLIP, GLIDE and Stable Diffusion using the dataset, and discuss further experiments enabled with an openly available dataset of this scale. Additionally we provide several nearest neighbor indices, an improved web-interface for dataset exploration and subset generation, and detection scores for watermark, NSFW, and toxic content detection.
[ Hall J ]

This paper describes the OCCGEN toolkit, which allows extracting multilingual parallel data balanced in gender within occupations. OCCGEN can extract datasets that reflect gender diversity (beyond binary) more fairly in society to be further used to explicitly mitigate occupational gender stereotypes. We propose two use cases that extract evaluation datasets for machine translation in four high-resourcelanguages from different linguistic families and in a low-resource African language. Our analysis of these use cases shows that translation outputs in high-resource languages tend to worsen in feminine subsets (compared to masculine). This can be explained because less attention is paid to the source sentence. Then, more attention is given to the target prefix overgeneralizing to the most frequent masculine forms.
[ Hall J ]
Addressing fairness concerns about machine learning models is a crucial step towards their long-term adoption in real-world automated systems. While many approaches have been developed for training fair models from data, little is known about the robustness of these methods to data corruption. In this work we consider fairness-aware learning under worst-case data manipulations. We show that an adversary can in some situations force any learner to return an overly biased classifier, regardless of the sample size and with or without degrading accuracy, and that the strength of the excess bias increases for learning problems with underrepresented protected groups in the data. We also prove that our hardness results are tight up to constant factors. To this end, we study two natural learning algorithms that optimize for both accuracy and fairness and show that these algorithms enjoy guarantees that are order-optimal in terms of the corruption ratio and the protected groups frequencies in the large data limit.
[ Hall J ]
[ Hall J ]

[ Hall J ]
There has been a surge of works bridging MCMC sampling and optimization, with a specific focus on translating non-asymptotic convergence guarantees for optimization problems into the analysis of Langevin algorithms in MCMC sampling. A conspicuous distinction between the convergence analysis of Langevin sampling and that of optimization is that all known convergence rates for Langevin algorithms depend on the dimensionality of the problem, whereas the convergence rates for optimization are dimension-free for convex problems. Whether a dimension independent convergence rate can be achieved by the Langevin algorithm is thus a long-standing open problem. This paper provides an affirmative answer to this problem for the case of either Lipschitz or smooth convex functions with normal priors. By viewing Langevin algorithm as composite optimization, we develop a new analysis technique that leads to dimension independent convergence rates for such problems.
[ Hall J ]

The claims of the paper are threefold: (1) Cecilia made the surprising yet intriguing discovery that all sources of nondeterminism exhibit a similar degree of variability in the model performance of a neural network throughout the training process. (2) To explain this fact, they have identified model instability during training as the key factor contributing to this phenomenon. (3) They have also proposed two approaches (Accelerated Ensembling and Test-Time Data Augmentation) to mitigate the impact on run-to-run variability without incurring additional training costs. In the paper, the experiments were performed on two types of datasets (image classification and language modelling). However, due to intensive training and time required for each experiment, we will only consider image classification for testing all three claims.
[ Hall J ]

Scope of Reproducibility This report aims to reproduce the results in the paper 'Fairness and Bias in Online Selection'. The paper presents optimal and fair alternatives for existing Secretary and Prophet algorithms. Reproducing the paper involves validating three claims made by the authors: (1) The presented baselines are either unfair or have low performance, (2) The proposed algorithms are perfectly fair, and (3) The proposed algorithms perform comparably to or even better than the presented baselines. Methodology We recreate the algorithms and perform experiments to validate the authors' initial claims for both problems under various settings, with the use of both real and synthetic data. The authors conducted the experiments in the C++ programming language. We largely used the paper as a resource to reimplement all algorithms and experiments from scratch in Python, only consulting the authors' code base when needed. Results For the Multi-Color Secretary problem, we were able to recreate the outcomes, as well as the performance of the proposed algorithm (with a margin of 3-4%). However, one baseline within the second experiment returned different results, due to inconsistencies in the original implementation. In the context of the Multi-Color Prophet problem, we were not able to exactly reproduce …
[ Hall J ]

Scope of Reproducibility: The main claims we are trying to reproduce are that bias controlled training or combining counterfactual data augmentation, the positively biased data collected by Dinan et al. [5], and bias controlled training for the LIGHT dataset yields generated dialogue in which the percent of gendered words and male bias closely match the ground truth. Methodology: We fine-tuned a transformer model, pre-trained on Reddit data [1], using the ParlAI API [8] with counterfactual data augmentation, positively biased data collection, bias controlled training, and all three bias mitigation techniques combined, as discussed in the original paper [5]. We implemented counterfactual data augmentation and bias controlled training ourselves. All models were trained and evaluated using a single NVIDIA Tesla P100 PCIe GPU, which took between 1.3 and 4.6 GPU hours approximately. Results: Overall, our results support the main claims of the original paper [5]. Although the percent gendered words and male bias in our results are not exactly the same as those in the original paper [5], the main trends are the same. The main difference is lower male bias for the baseline model in our results. However, our findings and the trend similarities between our results and those obtained …
[ Hall J ]

Scope of Reproducibility The core finding of the paper is a novel architecture FamNet for handling the few-shot counting task. We examine its implementation in the provided code on GitHub and compare it to the theory in the original paper. The authors also introduce a data set with 147 visual categories FSC-147, which we analyze. We try to reproduce the authors’ results on it and on CARPK data set. Additionally, we test FamNet on a category specific data set JHU-CROWD++. Furthermore, we try to reproduce the ground truth density maps, the code for which is not provided by the authors. Methodology We use the combination of the authors’ and our own code, for parts where the code is not provided (e.g., generating ground truth density maps, CARPK data set preprocessing). We also modify some parts of the authors’ code so that we can evaluate the model on various data sets. For running the code we used the Quadro RTX 5000 GPU and had a total computation time of approximately 50 GPU hours. Results We could not reproduce the density maps, but we produced similar density maps by modifying some of the parameters. We exactly reproduced the results on the paper’s …
Social: Industry, Academia, and the In-Betweens Wed 30 Nov 06:00 p.m.
The purpose of this Social is to explore and begin eliminating the ostensible barriers between research communities in industry and academia. By inviting NeurIPS participants to attend regardless of their institutional affiliation, employment status, or educational background, our intention is to foster connections and networking opportunities between practitioners who may not otherwise meet through conventional forums. Our discussion will explore the transition from academia to industry (and vice-versa), as well as the fruitful collaborations that follow from dismantling the idea of such transitions altogether.
More information here!
NeurIPS Town Hall Wed 30 Nov 06:00 p.m.
The Town Hall meeting is an opportunity to connect and to learn about how this year's conference was organized. It is also a place where you can ask questions and provide feedback to the NeurIPS organizers and Board. We encourage you to submit questions in advance via townhall@neurips.cc. This event is open to all registered attendees of NeurIPS 2022.
Social: Women in AI Ignite Wed 30 Nov 06:00 p.m.
Join us for 5-minute Ignite talks by women in AI. The idea of Women in AI Ignite Social is based on our experience hosting Ignite sessions at conferences around the world. Everyone is welcome; our speakers are women.
We hosted awesome socials at NeurIPS 2019-21, and would love your support to host one at NeurIPS 2022. To learn more, check out the Twitter moment Women in AI Ignite at NeurIPS 2019, our inaugural year.
Sign-Up Form.
Social: Gulf Coast AI Wed 30 Nov 06:00 p.m.
NeurIPS 2022 is happening in New Orleans, one of the hearts of the Gulf Coast region and a vibrant area for AI research and application. The goal of this social is to provide a forum and opportunity to raise awareness about the work happening in the region, including the unique and pressing challenges where AI/ML/DS research can have impact including coastal, climate, logistics, and materials. And also, a fun and interactive forum for participants to discuss these challenges and socialize within the broader NeurIPS community. We will gather for drinks and an interactive program where we will hear from a panel of both AI researchers and others working in key industries along the Gulf Coast. Join us for a great time and meeting new folks from around the Gulf Coast AI community!
Social: Early-Career Researchers Interested in ML & Climate Change Wed 30 Nov 06:00 p.m.
This is an in-person social for early-career researchers wanting to work in the ML & Climate Change research field. The nature of this research area is inherently interdisciplinary and we welcome researchers from different backgrounds and interests. The social offers the opportunity for networking and informal discussion; aiming to both connect people starting out and introducing them to current ML & Climate Change researchers. We will start with an icebreaker bingo, followed by roundtable discussions on different topics, such as how to start interdisciplinary collaborations, finding and working with real-world data, the most impactful/urgent areas of research, and how to find jobs in ML & Climate Change, etc.
Confirmed roundtable moderators: Alex Hernandez-Garcia (Mila), Konstantin Klemmer (Microsoft Research New England and Climate Change AI), Anna Kwa (Allen Institute for AI), Alexandre Lacoste (ServiceNow), Mélisande Teng (Mila), and Bianca Zadrozny (IBM Research).
Social: From Old Biases to New Opportunities: Annotator Empowerment and Data Excellence Wed 30 Nov 06:00 p.m.
We’d like to welcome participants to discuss how to build ML systems immune to biases, obtain representative datasets, and resolve disagreements among annotators in order to bring out high-quality AI products. We’d like to do that while also empowering digital workers, i.e., getting tangible benefits from improving AI systems through data excellence. We are especially interested in inviting people from different backgrounds and opinions on how imperfect AI systems impact people’s lives and how the training data can be changed to improve the state of affairs.