Registration Desk Thu 1 Dec 08:00 a.m.
Invited Talk: Isabelle Guyon
The Data-Centric Era: How ML is Becoming an Experimental Science
NeurIPS has been in existence for more than 3 decades, each one marked by a dominant trend. The pioneering years saw the burgeoning of back-prop nets, the coming-of-age years blossomed with convex optimization, regularization, Bayesian methods, boosting, kernel methods, to name a few, and the junior years have been dominated by deep nets and big data. And now, recent analyses conclude that using ever bigger data and deeper networks is not a sustainable way of progressing. Meanwhile, other indicators show that Machine Learning is increasingly reliant upon good data and benchmarks, not only to train more powerful and/or more compact models, but also to soundly evaluate new ideas and to stress test models on their reliability, fairness, and protection against various attacks, including privacy attacks.
Simultaneously, in 2021, the NeurIPS Dataset and Benchmark track was launched and the Data-Centric AI initiative was born. This kickstarted the "data-centric era". It is gaining momentum in response to the new needs of data scientists who, admittedly, spend more time on understanding problems, designing experimental settings, and engineering datasets, than on designing and training ML models.
We will retrace the enormous collective efforts made by our community since the 1980's to share datasets and benchmarks, putting forward important milestones that led us to today's effervescence. We will pick a few hot topics that have raised controversy and have engendered novel thought-provoking contributions. Finally, we will highlight some of the most pressing issues that must be addressed by the community.
Bio :
Poster Session 5 Thu 1 Dec 11:00 a.m.
[ Hall J ]
Supervised operator learning is an emerging machine learning paradigm with applications to modeling the evolution of spatio-temporal dynamical systems and approximating general black-box relationships between functional data. We propose a novel operator learning method, LOCA (Learning Operators with Coupled Attention), motivated from the recent success of the attention mechanism. In our architecture, the input functions are mapped to a finite set of features which are then averaged with attention weights that depend on the output query locations. By coupling these attention weights together with an integral transform, LOCA is able to explicitly learn correlations in the target output functions, enabling us to approximate nonlinear operators even when the number of output function measurements in the training set is very small. Our formulation is accompanied by rigorous approximation theoretic guarantees on the universal expressiveness of the proposed model. Empirically, we evaluate the performance of LOCA on several operator learning scenarios involving systems governed by ordinary and partial differential equations, as well as a black-box climate prediction problem. Through these scenarios we demonstrate state of the art accuracy, robustness with respect to noisy input data, and a consistently small spread of errors over testing data sets, even for out-of-distribution prediction tasks.
[ Hall J ]

[ Hall J ]
Deep learning (DL) algorithms rely on massive amounts of labeled data. Semi-supervised learning (SSL) and active learning (AL) aim to reduce this label complexity by leveraging unlabeled data or carefully acquiring labels, respectively. In this work, we primarily focus on designing an AL algorithm but first argue for a change in how AL algorithms should be evaluated. Although unlabeled data is readily available in pool-based AL, AL algorithms are usually evaluated by measuring the increase in supervised learning (SL) performance at consecutive acquisition steps. Because this measures performance gains from both newly acquired instances and newly acquired labels, we propose to instead evaluate the label efficiency of AL algorithms by measuring the increase in SSL performance at consecutive acquisition steps. After surveying tools that can be used to this end, we propose our neural pre-conditioning (NPC) algorithm inspired by a Neural Tangent Kernel (NTK) analysis. Our algorithm incorporates the classifier's uncertainty on unlabeled data and penalizes redundant samples within candidate batches to efficiently acquire a diverse set of informative labels. Furthermore, we prove that NPC improves downstream training in the large-width regime in a manner previously observed to correlate with generalization. Comparisons with other AL algorithms show that a state-of-the-art …
[ Hall J ]
Machine learning models are often deployed in settings where they must be constantly updated in response to the changes in class definitions while retaining high accuracy on previously learned definitions. A classical use case is fraud detection, where new fraud schemes come one after another. While such an update can be accomplished by re-training on the complete data, the process is inefficient and prevents real-time and on-device learning. On the other hand, efficient methods that incrementally learn from new data often result in the forgetting of previously-learned knowledge. We define this problem as Learning with Dynamic Definition (LDD) and demonstrate that popular models, such as the Vision Transformer and Roberta, exhibit substantial forgetting of past definitions. We present the first practical and provable solution to LDD. Our proposal is a hash-based sparsity model \textit{RIDDLE} that solves evolving definitions by associating samples only to relevant parameters. We prove that our model is a universal function approximator and theoretically bounds the knowledge lost during the update process. On practical tasks with evolving class definition in vision and natural language processing, \textit{RIDDLE} outperforms baselines by up to 30\% on the original dataset while providing competitive accuracy on the update dataset.
[ Hall J ]

Inferring causal structure poses a combinatorial search problem that typically involves evaluating structures with a score or independence test. The resulting search is costly, and designing suitable scores or tests that capture prior knowledge is difficult. In this work, we propose to amortize causal structure learning. Rather than searching over structures, we train a variational inference model to directly predict the causal structure from observational or interventional data. This allows our inference model to acquire domain-specific inductive biases for causal discovery solely from data generated by a simulator, bypassing both the hand-engineering of suitable score functions and the search over graphs. The architecture of our inference model emulates permutation invariances that are crucial for statistical efficiency in structure learning, which facilitates generalization to significantly larger problem instances than seen during training. On synthetic data and semisynthetic gene expression data, our models exhibit robust generalization capabilities when subject to substantial distribution shifts and significantly outperform existing algorithms, especially in the challenging genomics domain. Our code and models are publicly available at: https://github.com/larslorch/avici
[ Hall J ]

A longstanding goal of the field of AI is a method for learning a highly capable, generalist agent from diverse experience. In the subfields of vision and language, this was largely achieved by scaling up transformer-based models and training them on large, diverse datasets. Motivated by this progress, we investigate whether the same strategy can be used to produce generalist reinforcement learning agents. Specifically, we show that a single transformer-based model – with a single set of weights – trained purely offline can play a suite of up to 46 Atari games simultaneously at close-to-human performance. When trained and evaluated appropriately, we find that the same trends observed in language and vision hold, including scaling of performance with model size and rapid adaptation to new games via fine-tuning. We compare several approaches in this multi-game setting, such as online and offline RL methods and behavioral cloning, and find that our Multi-Game Decision Transformer models offer the best scalability and performance. We release the pre-trained models and code to encourage further research in this direction.
[ Hall J ]
[ Hall J ]

[ Hall J ]

Many applications of text generation require incorporating different constraints to control the semantics or style of generated text. These constraints can be hard (e.g., ensuring certain keywords are included in the output) and soft (e.g., contextualizing the output with the left- or right-hand context). In this paper, we present Energy-based Constrained Decoding with Langevin Dynamics (COLD), a decoding framework which unifies constrained generation as specifying constraints through an energy function, then performing efficient differentiable reasoning over the constraints through gradient-based sampling. COLD decoding is a flexible framework that can be applied directly to off-the-shelf left-to-right language models without the need for any task-specific fine-tuning, as demonstrated through three challenging text generation applications: lexically-constrained generation, abductive reasoning, and counterfactual reasoning. Our experiments on these constrained generation tasks point to the effectiveness of our approach, both in terms of automatic and human evaluation.
[ Hall J ]

We consider the safe reinforcement learning (RL) problem of maximizing utility with extremely low constraint violation rates. Assuming no prior knowledge or pre-training of the environment safety model given a task, an agent has to learn, via exploration, which states and actions are safe. A popular approach in this line of research is to combine a model-free RL algorithm with the Lagrangian method to adjust the weight of the constraint reward relative to the utility reward dynamically. It relies on a single policy to handle the conflict between utility and constraint rewards, which is often challenging. We present SEditor, a two-policy approach that learns a safety editor policy transforming potentially unsafe actions proposed by a utility maximizer policy into safe ones. The safety editor is trained to maximize the constraint reward while minimizing a hinge loss of the utility state-action values before and after an action is edited. SEditor extends existing safety layer designs that assume simplified safety models, to general safe RL scenarios where the safety model can in theory be arbitrarily complex. As a first-order method, it is easy to implement and efficient for both inference and training. On 12 Safety Gym tasks and 2 safe racing tasks, …
[ Hall J ]

There is a recent focus on designing architectures that have an Integer Linear Programming (ILP) layer within a neural model (referred to as \emph{Neural ILP} in this paper). Neural ILP architectures are suitable for pure reasoning tasks that require data-driven constraint learning or for tasks requiring both perception (neural) and reasoning (ILP). A recent SOTA approach for end-to-end training of Neural ILP explicitly defines gradients through the ILP black box [Paulus et al. [2021]] – this trains extremely slowly, owing to a call to the underlying ILP solver for every training data point in a minibatch. In response, we present an alternative training strategy that is \emph{solver-free}, i.e., does not call the ILP solver at all at training time. Neural ILP has a set of trainable hyperplanes (for cost and constraints in ILP), together representing a polyhedron. Our key idea is that the training loss should impose that the final polyhedron separates the positives (all constraints satisfied) from the negatives (at least one violated constraint or a suboptimal cost value), via a soft-margin formulation. While positive example(s) are provided as part of the training data, we devise novel techniques for generating negative samples. Our solution is flexible enough to handle …
[ Hall J ]

Deep neural networks are susceptible to shortcut learning, using simple features to achieve low training loss without discovering essential semantic structure. Contrary to prior belief, we show that generative models alone are not sufficient to prevent shortcut learning, despite an incentive to recover a more comprehensive representation of the data than discriminative approaches. However, we observe that shortcuts are preferentially encoded with minimal information, a fact that generative models can exploit to mitigate shortcut learning. In particular, we propose Chroma-VAE, a two-pronged approach where a VAE classifier is initially trained to isolate the shortcut in a small latent subspace, allowing a secondary classifier to be trained on the complementary, shortcut-free latent subspace. In addition to demonstrating the efficacy of Chroma-VAE on benchmark and real-world shortcut learning tasks, our work highlights the potential for manipulating the latent space of generative classifiers to isolate or interpret specific correlations.
[ Hall J ]
Causal discovery for quantitative data has been extensively studied but less is known for categorical data. We propose a novel causal model for categorical data based on a new classification model, termed classification with optimal label permutation (COLP). By design, COLP is a parsimonious classifier, which gives rise to a provably identifiable causal model. A simple learning algorithm via comparing likelihood functions of causal and anti-causal models suffices to learn the causal direction. Through experiments with synthetic and real data, we demonstrate the favorable performance of the proposed COLP-based causal model compared to state-of-the-art methods. We also make available an accompanying R package COLP, which contains the proposed causal discovery algorithm and a benchmark dataset of categorical cause-effect pairs.
[ Hall J ]

Representing probability distributions by the gradient of their density functions has proven effective in modeling a wide range of continuous data modalities. However, this representation is not applicable in discrete domains where the gradient is undefined. To this end, we propose an analogous score function called the “Concrete score”, a generalization of the (Stein) score for discrete settings. Given a predefined neighborhood structure, the Concrete score of any input is defined by the rate of change of the probabilities with respect to local directional changes of the input. This formulation allows us to recover the (Stein) score in continuous domains when measuring such changes by the Euclidean distance, while using the Manhattan distance leads to our novel score function in discrete domains. Finally, we introduce a new framework to learn such scores from samples called Concrete Score Matching (CSM), and propose an efficient training objective to scale our approach to high dimensions. Empirically, we demonstrate the efficacy of CSM on density estimation tasks on a mixture of synthetic, tabular, and high-dimensional image datasets, and demonstrate that it performs favorably relative to existing baselines for modeling discrete data.
[ Hall J ]

In image segmentation, the classic approach of learning a deterministic segmentation neither accounts for noise and ambiguity in the data nor for expert disagreements about the correct segmentation. This has been addressed by architectures that predict heteroscedastic (input-dependent) segmentation uncertainty, which indicates regions of segmentations that should be treated with care. What is missing are structural insights into the uncertainty, which would be desirable for interpretability and systematic adjustments. In the context of state-of-the-art stochastic segmentation networks (SSNs), we solve this issue by dismantling the overall predicted uncertainty into smaller uncertainty components. We obtain them directly from the low-rank Gaussian distribution for the logits in the network head of SSNs, based on a previously unconsidered view of this distribution as a factor model. The rank subsequently encodes a number of latent variables, each of which controls an individual uncertainty component. Hence, we can use the latent variables (called factors) for fine-grained sample control, thereby solving an open problem from previous work. There is one caveat though--factors are only unique up to orthogonal rotations. Factor rotations allow us to structure the uncertainty in a way that endorses simplicity, non-redundancy, and separation among the individual uncertainty components. To make the overall and …
[ Hall J ]
Supervised learning in function spaces is an emerging area of machine learning research with applications to the prediction of complex physical systems such as fluid flows, solid mechanics, and climate modeling. By directly learning maps (operators) between infinite dimensional function spaces, these models are able to learn discretization invariant representations of target functions. A common approach is to represent such target functions as linear combinations of basis elements learned from data. However, there are simple scenarios where, even though the target functions form a low dimensional submanifold, a very large number of basis elements is needed for an accurate linear representation. Here we present NOMAD, a novel operator learning framework with a nonlinear decoder map capable of learning finite dimensional representations of nonlinear submanifolds in function spaces. We show this method is able to accurately learn low dimensional representations of solution manifolds to partial differential equations while outperforming linear models of larger size. Additionally, we compare to state-of-the-art operator learning methods on a complex fluid dynamics benchmark and achieve competitive performance with a significantly smaller model size and training cost.
[ Hall J ]

Equipping artificial agents with useful exploration mechanisms remains a challenge to this day. Humans, on the other hand, seem to manage the trade-off between exploration and exploitation effortlessly. In the present article, we put forward the hypothesis that they accomplish this by making optimal use of limited computational resources. We study this hypothesis by meta-learning reinforcement learning algorithms that sacrifice performance for a shorter description length (defined as the number of bits required to implement the given algorithm). The emerging class of models captures human exploration behavior better than previously considered approaches, such as Boltzmann exploration, upper confidence bound algorithms, and Thompson sampling. We additionally demonstrate that changing the description length in our class of models produces the intended effects: reducing description length captures the behavior of brain-lesioned patients while increasing it mirrors cognitive development during adolescence.
[ Hall J ]

Many classification problems consider classes that form a hierarchy. Classifiers that are aware of this hierarchy may be able to make confident predictions at a coarse level despite being uncertain at the fine-grained level. While it is generally possible to vary the granularity of predictions using a threshold at inference time, most contemporary work considers only leaf-node prediction, and almost no prior work has compared methods at multiple operating points. We present an efficient algorithm to produce operating characteristic curves for any method that assigns a score to every class in the hierarchy. Applying this technique to evaluate existing methods reveals that top-down classifiers are dominated by a naive flat softmax classifier across the entire operating range. We further propose two novel loss functions and show that a soft variant of the structured hinge loss is able to significantly outperform the flat baseline. Finally, we investigate the poor accuracy of top-down classifiers and demonstrate that they perform relatively well on unseen classes.
[ Hall J ]

[ Hall J ]
Neural Ordinary Differential Equations (NODEs) have proven successful in learning dynamical systems in terms of accurately recovering the observed trajectories. While different types of sparsity have been proposed to improve robustness, the generalization properties of NODEs for dynamical systems beyond the observed data are underexplored. We systematically study the influence of weight and feature sparsity on forecasting as well as on identifying the underlying dynamical laws. Besides assessing existing methods, we propose a regularization technique to sparsify ``input-output connections'' and extract relevant features during training. Moreover, we curate real-world datasets including human motion capture and human hematopoiesis single-cell RNA-seq data to realistically analyze different levels of out-of-distribution (OOD) generalization in forecasting and dynamics identification respectively. Our extensive empirical evaluation on these challenging benchmarks suggests that weight sparsity improves generalization in the presence of noise or irregular sampling. However, it does not prevent learning spurious feature dependencies in the inferred dynamics, rendering them impractical for predictions under interventions, or for inferring the true underlying dynamics. Instead, feature sparsity can indeed help with recovering sparse ground-truth dynamics compared to unregularized NODEs.
[ Hall J ]
We consider the problem of model compression for deep neural networks (DNNs) in the challenging one-shot/post-training setting, in which we are given an accurate trained model, and must compress it without any retraining, based only on a small amount of calibration input data. This problem has become popular in view of the emerging software and hardware support for executing models compressed via pruning and/or quantization with speedup, and well-performing solutions have been proposed independently for both compression approaches.In this paper, we introduce a new compression framework which covers both weight pruning and quantization in a unified setting, is time- and space-efficient, and considerably improves upon the practical performance of existing post-training methods. At the technical level, our approach is based on an exact and efficient realization of the classical Optimal Brain Surgeon (OBS) framework of [LeCun, Denker, and Solla, 1990] extended to also cover weight quantization at the scale of modern DNNs. From the practical perspective, our experimental results show that it can improve significantly upon the compression-accuracy trade-offs of existing post-training methods, and that it can enable the accurate compound application of both pruning and quantization in a post-training setting.
[ Hall J ]
[ Hall J ]

We introduce UViM, a unified approach capable of modeling a wide range of computer vision tasks. In contrast to previous models, UViM has the same functional form for all tasks; it requires no task-specific modifications which require extensive human expertise. The approach involves two components: (I) a base model (feed-forward) which is trained to directly predict raw vision outputs, guided by a learned discrete code and (II) a language model (autoregressive) that is trained to generate the guiding code. These components complement each other: the language model is well-suited to modeling structured interdependent data, while the base model is efficient at dealing with high-dimensional outputs. We demonstrate the effectiveness of UViM on three diverse and challenging vision tasks: panoptic segmentation, depth prediction and image colorization, where we achieve competitive and near state-of-the-art results. Our experimental results suggest that UViM is a promising candidate for a unified modeling approach in computer vision.
[ Hall J ]
Unsupervised object-centric learning aims to represent the modular, compositional, and causal structure of a scene as a set of object representations and thereby promises to resolve many critical limitations of traditional single-vector representations such as poor systematic generalization. Although there have been many remarkable advances in recent years, one of the most critical problems in this direction has been that previous methods work only with simple and synthetic scenes but not with complex and naturalistic images or videos. In this paper, we propose STEVE, an unsupervised model for object-centric learning in videos. Our proposed model makes a significant advancement by demonstrating its effectiveness on various complex and naturalistic videos unprecedented in this line of research. Interestingly, this is achieved by neither adding complexity to the model architecture nor introducing a new objective or weak supervision. Rather, it is achieved by a surprisingly simple architecture that uses a transformer-based image decoder conditioned on slots and the learning objective is simply to reconstruct the observation. Our experiment results on various complex and naturalistic videos show significant improvements compared to the previous state-of-the-art.
[ Hall J ]

[ Hall J ]
[ Hall J ]
In this paper, we study the problem of domain adaptation regression, which learns a regressor for a target domain by leveraging the knowledge from a relevant source domain. We start by proposing a distribution-informed neural network, which aims to build distribution-aware relationship of inputs and outputs from different domains. This allows us to develop a simple domain adaptation regression framework, which subsumes popular domain adaptation approaches based on domain invariant representation learning, reweighting, and adaptive Gaussian process. The resulting findings not only explain the connections of existing domain adaptation approaches, but also motivate the efficient training of domain adaptation approaches with overparameterized neural networks. We also analyze the convergence and generalization error bound of our framework based on the distribution-informed neural network. Specifically, our generalization bound focuses explicitly on the maximum mean discrepancy in the RKHS induced by the neural tangent kernel of distribution-informed neural network. This is in sharp contrast to the existing work which relies on domain discrepancy in the latent feature space heuristically formed by one or several hidden neural layers. The efficacy of our framework is also empirically verified on a variety of domain adaptation regression benchmarks.
[ Hall J ]

We investigate whether self-supervised learning (SSL) can improve online reinforcement learning (RL) from pixels. We extend the contrastive reinforcement learning framework (e.g., CURL) that jointly optimizes SSL and RL losses and conduct an extensive amount of experiments with various self-supervised losses. Our observations suggest that the existing SSL framework for RL fails to bring meaningful improvement over the baselines only taking advantage of image augmentation when the same amount of data and augmentation is used. We further perform evolutionary searches to find the optimal combination of multiple self-supervised losses for RL, but find that even such a loss combination fails to meaningfully outperform the methods that only utilize carefully designed image augmentations. After evaluating these approaches together in multiple different environments including a real-world robot environment, we confirm that no single self-supervised loss or image augmentation method can dominate all environments and that the current framework for joint optimization of SSL and RL is limited. Finally, we conduct the ablation study on multiple factors and demonstrate the properties of representations learned with different approaches.
[ Hall J ]

In this paper, we focus on multi-task classification, where related classification tasks share the same label space and are learned simultaneously. In particular, we tackle a new setting, which is more realistic than currently addressed in the literature, where categories shift from training to test data. Hence, individual tasks do not contain complete training data for the categories in the test set. To generalize to such test data, it is crucial for individual tasks to leverage knowledge from related tasks. To this end, we propose learning an association graph to transfer knowledge among tasks for missing classes. We construct the association graph with nodes representing tasks, classes and instances, and encode the relationships among the nodes in the edges to guide their mutual knowledge transfer. By message passing on the association graph, our model enhances the categorical information of each instance, making it more discriminative. To avoid spurious correlations between task and class nodes in the graph, we introduce an assignment entropy maximization that encourages each class node to balance its edge weights. This enables all tasks to fully utilize the categorical information from related tasks. An extensive evaluation on three general benchmarks and a medical dataset for skin lesion …
[ Hall J ]

Deep learning models have shown their vulnerability when dealing with adversarial attacks. Existing attacks almost perform on low-level instances, such as pixels and super-pixels, and rarely exploit semantic clues. For face recognition attacks, existing methods typically generate the l_p-norm perturbations on pixels, however, resulting in low attack transferability and high vulnerability to denoising defense models. In this work, instead of performing perturbations on the low-level pixels, we propose to generate attacks through perturbing on the high-level semantics to improve attack transferability. Specifically, a unified flexible framework, Adversarial Attributes (Adv-Attribute), is designed to generate inconspicuous and transferable attacks on face recognition, which crafts the adversarial noise and adds it into different attributes based on the guidance of the difference in face recognition features from the target. Moreover, the importance-aware attribute selection and the multi-objective optimization strategy are introduced to further ensure the balance of stealthiness and attacking strength. Extensive experiments on the FFHQ and CelebA-HQ datasets show that the proposed Adv-Attribute method achieves the state-of-the-art attacking success rates while maintaining better visual effects against recent attack methods.
[ Hall J ]

State-of-the-art deepfake detectors perform well in identifying forgeries when they are evaluated on a test set similar to the training set, but struggle to maintain good performance when the test forgeries exhibit different characteristics from the training images e.g., forgeries are created by unseen deepfake methods. Such a weak generalization capability hinders the applicability of deepfake detectors. In this paper, we introduce a new learning paradigm specially designed for the generalizable deepfake detection task. Our key idea is to construct a test-sample-specific auxiliary task to update the model before applying it to the sample. Specifically, we synthesize pseudo-training samples from each test image and create a test-time training objective to update the model. Moreover, we proposed to leverage meta-learning to ensure that a fast single-step test-time gradient descent, dubbed one-shot test-time training (OST), can be sufficient for good deepfake detection performance. Extensive results across several benchmark datasets demonstrate that our approach performs favorably against existing arts in terms of generalization to unseen data and robustness to different post-processing steps.
[ Hall J ]

Although a number of studies are devoted to novel category discovery, most of them assume a static setting where both labeled and unlabeled data are given at once for finding new categories. In this work, we focus on the application scenarios where unlabeled data are continuously fed into the category discovery system. We refer to it as the {\bf Continuous Category Discovery} ({\bf CCD}) problem, which is significantly more challenging than the static setting. A common challenge faced by novel category discovery is that different sets of features are needed for classification and category discovery: class discriminative features are preferred for classification, while rich and diverse features are more suitable for new category mining. This challenge becomes more severe for dynamic setting as the system is asked to deliver good performance for known classes over time, and at the same time continuously discover new classes from unlabeled data. To address this challenge, we develop a framework of {\bf Grow and Merge} ({\bf GM}) that works by alternating between a growing phase and a merge phase: in the growing phase, it increases the diversity of features through a continuous self-supervised learning for effective category mining, and in the merging phase, it …
[ Hall J ]

The conventional sliced Wasserstein is defined between two probability measures that have realizations as \textit{vectors}. When comparing two probability measures over images, practitioners first need to vectorize images and then project them to one-dimensional space by using matrix multiplication between the sample matrix and the projection matrix. After that, the sliced Wasserstein is evaluated by averaging the two corresponding one-dimensional projected probability measures. However, this approach has two limitations. The first limitation is that the spatial structure of images is not captured efficiently by the vectorization step; therefore, the later slicing process becomes harder to gather the discrepancy information. The second limitation is memory inefficiency since each slicing direction is a vector that has the same dimension as the images. To address these limitations, we propose novel slicing methods for sliced Wasserstein between probability measures over images that are based on the convolution operators. We derive \emph{convolution sliced Wasserstein} (CSW) and its variants via incorporating stride, dilation, and non-linear activation function into the convolution operators. We investigate the metricity of CSW as well as its sample complexity, its computational complexity, and its connection to conventional sliced Wasserstein distances. Finally, we demonstrate the favorable performance of CSW over the conventional sliced …
[ Hall J ]

Topic models infer latent topic distributions based on observed word co-occurrences in a text corpus. While typically a corpus contains documents of variable lengths, most previous topic models treat documents of different lengths uniformly, assuming that each document is sufficiently informative. However, shorter documents may have only a few word co-occurrences, resulting in inferior topic quality. Some other previous works assume that all documents are short, and leverage external auxiliary data, e.g., pretrained word embeddings and document connectivity. Orthogonal to existing works, we remedy this problem within the corpus itself by proposing a Meta-Complement Topic Model, which improves topic quality of short texts by transferring the semantic knowledge learned on long documents to complement semantically limited short texts. As a self-contained module, our framework is agnostic to auxiliary data and can be further improved by flexibly integrating them into our framework. Specifically, when incorporating document connectivity, we further extend our framework to complement documents with limited edges. Experiments demonstrate the advantage of our framework.
[ Hall J ]
Prevalent state-of-the-art instance segmentation methods fall into a query-based scheme, in which instance masks are derived by querying the image feature using a set of instance-aware embeddings. In this work, we devise a new training framework that boosts query-based models through discriminative query embedding learning. It explores two essential properties, namely dataset-level uniqueness and transformation equivariance, of the relation between queries and instances. First, our algorithm uses the queries to retrieve the corresponding instances from the whole training dataset, instead of only searching within individual scenes. As querying instances across scenes is more challenging, the segmenters are forced to learn more discriminative queries for effective instance separation. Second, our algorithm encourages both image (instance) representations and queries to be equivariant against geometric transformations, leading to more robust, instance-query matching. On top of four famous, query-based models (i.e., CondInst, SOLOv2, SOTR, and Mask2Former), our training algorithm provides significant performance gains (e.g., +1.6 – 3.2 AP) on COCO dataset. In addition, our algorithm promotes the performance of SOLOv2 by 2.7 AP, on LVISv1 dataset.
[ Hall J ]

The Combined Algorithm Selection and Hyperparameters optimization (CASH) problem is one of the fundamental problems in Automated Machine Learning (AutoML). Motivated by the success of ensemble learning, recent AutoML systems build post-hoc ensembles to output the final predictions instead of using the best single learner. However, while most CASH methods focus on searching for a single learner with the best performance, they neglect the diversity among base learners (i.e., they may suggest similar configurations to previously evaluated ones), which is also a crucial consideration when building an ensemble. To tackle this issue and further enhance the ensemble performance, we propose DivBO, a diversity-aware framework to inject explicit search of diversity into the CASH problems. In the framework, we propose to use a diversity surrogate to predict the pair-wise diversity of two unseen configurations. Furthermore, we introduce a temporary pool and a weighted acquisition function to guide the search of both performance and diversity based on Bayesian optimization. Empirical results on 15 public datasets show that DivBO achieves the best average ranks (1.82 and 1.73) on both validation and test errors among 10 compared methods, including post-hoc designs in recent AutoML systems and state-of-the-art baselines for ensemble learning on CASH problems.
[ Hall J ]
[ Hall J ]

Most cross-device federated learning (FL) studies focus on the model-homogeneous setting where the global server model and local client models are identical. However, such constraint not only excludes low-end clients who would otherwise make unique contributions to model training but also restrains clients from training large models due to on-device resource bottlenecks. In this work, we propose FedRolex, a partial training (PT)-based approach that enables model-heterogeneous FL and can train a global server model larger than the largest client model. At its core, FedRolex employs a rolling sub-model extraction scheme that allows different parts of the global server model to be evenly trained, which mitigates the client drift induced by the inconsistency between individual client models and server model architectures. Empirically, we show that FedRolex outperforms state-of-the-art PT-based model-heterogeneous FL methods (e.g. Federated Dropout) and reduces the gap between model-heterogeneous and model-homogeneous FL, especially under the large-model large-dataset regime. In addition, we provide theoretical statistical analysis on its advantage over Federated Dropout. Lastly, we evaluate FedRolex on an emulated real-world device distribution to show that FedRolex can enhance the inclusiveness of FL and boost the performance of low-end devices that would otherwise not benefit from FL. Our code is available …
[ Hall J ]
Masked Autoencoders (MAE) based on a reconstruction task have risen to be a promising paradigm for self-supervised learning (SSL) and achieve state-of-the-art performance across different benchmark datasets. However, despite its impressive empirical success, there is still limited theoretical understanding of it. In this paper, we propose a theoretical understanding of how masking matters for MAE to learn meaningful features. We establish a close connection between MAE and contrastive learning, which shows that MAE implicit aligns the mask-induced positive pairs. Built upon this connection, we develop the first downstream guarantees for MAE methods, and analyze the effect of mask ratio. Besides, as a result of the implicit alignment, we also point out the dimensional collapse issue of MAE, and propose a Uniformity-enhanced MAE (U-MAE) loss that can effectively address this issue and bring significant improvements on real-world datasets, including CIFAR-10, ImageNet-100, and ImageNet-1K. Code is available at https://github.com/zhangq327/U-MAE.
[ Hall J ]

Despite surprising performance on zero-shot transfer, pre-training a large-scale multimodal model is often prohibitive as it requires a huge amount of data and computing resources. In this paper, we propose a method (BeamCLIP) that can effectively transfer the representations of a large pre-trained multimodal model (CLIP-ViT) into a small target model (e.g., ResNet-18). For unsupervised transfer, we introduce cross-modal similarity matching (CSM) that enables a student model to learn the representations of a teacher model by matching the relative similarity distribution across text prompt embeddings. To better encode the text prompts, we design context-based prompt augmentation (CPA) that can alleviate the lexical ambiguity of input text prompts. Our experiments show that unsupervised representation transfer of a pre-trained vision-language model enables a small ResNet-18 to achieve a better ImageNet-1K top-1 linear probe accuracy (66.2%) than vision-only self-supervised learning (SSL) methods (e.g., SimCLR: 51.8%, SwAV: 63.7%), while closing the gap with supervised learning (69.8%).
[ Hall J ]

Current state-of-the-art document retrieval solutions mainly follow an index-retrieve paradigm, where the index is hard to be directly optimized for the final retrieval target. In this paper, we aim to show that an end-to-end deep neural network unifying training and indexing stages can significantly improve the recall performance of traditional methods. To this end, we propose Neural Corpus Indexer (NCI), a sequence-to-sequence network that generates relevant document identifiers directly for a designated query. To optimize the recall performance of NCI, we invent a prefix-aware weight-adaptive decoder architecture, and leverage tailored techniques including query generation, semantic document identifiers, and consistency-based regularization. Empirical studies demonstrated the superiority of NCI on two commonly used academic benchmarks, achieving +21.4% and +16.8% relative enhancement for Recall@1 on NQ320k dataset and R-Precision on TriviaQA dataset, respectively, compared to the best baseline method.
[ Hall J ]
Despite the tremendous progress in zero-shot learning (ZSL), the majority of existing methods still rely on human-annotated attributes, which are difficult to annotate and scale. An unsupervised alternative is to represent each class using the word embedding associated with its semantic class name. However, word embeddings extracted from pre-trained language models do not necessarily capture visual similarities, resulting in poor zero-shot performance. In this work, we argue that online textual documents e.g., Wikipedia, contain rich visual descriptions about object classes, therefore can be used as powerful unsupervised side information for ZSL. To this end, we propose I2DFormer, a novel transformer-based ZSL framework that jointly learns to encode images and documents by aligning both modalities in a shared embedding space. In order to distill discriminative visual words from noisy documents, we introduce a new cross-modal attention module that learns fine-grained interactions between image patches and document words. Consequently, our I2DFormer not only learns highly discriminative document embeddings that capture visual similarities but also gains the ability to localize visually relevant words in image regions. Quantitatively, we demonstrate that our I2DFormer significantly outperforms previous unsupervised semantic embeddings under both zero-shot and generalized zero-shot learning settings on three public datasets. Qualitatively, we show …
[ Hall J ]

Self-supervised multi-view stereopsis (MVS) attracts increasing attention for learning dense surface predictions from only a set of images without onerous ground-truth 3D training data for supervision. However, existing methods highly rely on the local photometric consistency, which fails to identify accurately dense correspondence in broad textureless and reflectance areas.In this paper, we show that geometric proximity such as surface connectedness and occlusion boundaries implicitly inferred from images could serve as reliable guidance for pixel-wise multi-view correspondences. With this insight, we present a novel elastic part representation which encodes physically-connected part segmentations with elastically-varying scales, shapes and boundaries. Meanwhile, a self-supervised MVS framework namely ElasticMVS is proposed to learn the representation and estimate per-view depth following a part-aware propagation and evaluation scheme. Specifically, the pixel-wise part representation is trained by a contrastive learning-based strategy, which increases the representation compactness in geometrically concentrated areas and contrasts otherwise. ElasticMVS iteratively optimizes a part-level consistency loss and a surface smoothness loss, based on a set of depth hypotheses propagated from the geometrically concentrated parts. Extensive evaluations convey the superiority of ElasticMVS in the reconstruction completeness and accuracy, as well as the efficiency and scalability. Particularly, for the challenging large-scale reconstruction benchmark, ElasticMVS demonstrates significant …
[ Hall J ]

In this paper, we tackle the problem of domain shift. Most existing methods perform training on multiple source domains using a single model, and the same trained model is used on all unseen target domains. Such solutions are sub-optimal as each target domain exhibits its own specialty, which is not adapted. Furthermore, expecting single-model training to learn extensive knowledge from multiple source domains is counterintuitive. The model is more biased toward learning only domain-invariant features and may result in negative knowledge transfer. In this work, we propose a novel framework for unsupervised test-time adaptation, which is formulated as a knowledge distillation process to address domain shift. Specifically, we incorporate Mixture-of-Experts (MoE) as teachers, where each expert is separately trained on different source domains to maximize their specialty. Given a test-time target domain, a small set of unlabeled data is sampled to query the knowledge from MoE. As the source domains are correlated to the target domains, a transformer-based aggregator then combines the domain knowledge by examining the interconnection among them. The output is treated as a supervision signal to adapt a student prediction network toward the target domain. We further employ meta-learning to enforce the aggregator to distill positive knowledge …
[ Hall J ]
Solving multi-label recognition (MLR) for images in the low-label regime is a challenging task with many real-world applications. Recent work learns an alignment between textual and visual spaces to compensate for insufficient image labels, but loses accuracy because of the limited amount of available MLR annotations. In this work, we utilize the strong alignment of textual and visual features pretrained with millions of auxiliary image-text pairs and propose \textit{Dual Context Optimization} (DualCoOp) as a unified framework for partial-label MLR and zero-shot MLR. \ours encodes positive and negative contexts with class names as part of the linguistic input (i.e. prompts). Since \ours only introduces a very light learnable overhead upon the pretrained vision-language framework, it can quickly adapt to multi-label recognition tasks that have limited annotations and even unseen classes. Experiments on standard multi-label recognition benchmarks across two challenging low-label settings demonstrate the advantages of our approach over state-of-the-art methods. Our code will be publicly available.Project page: https://cs-people.bu.edu/sunxm/DualCoOp/project.html
[ Hall J ]
A fundamental challenge of over-parameterized deep learning models is learning meaningful data representations that yield good performance on a downstream task without over-fitting spurious input features. This work proposes MaskTune, a masking strategy that prevents over-reliance on spurious (or a limited number of) features. MaskTune forces the trained model to explore new features during a single epoch finetuning by masking previously discovered features. MaskTune, unlike earlier approaches for mitigating shortcut learning, does not require any supervision, such as annotating spurious features or labels for subgroup samples in a dataset. Our empirical results on biased MNIST, CelebA, Waterbirds, and ImagenNet-9L datasets show that MaskTune is effective on tasks that often suffer from the existence of spurious correlations. Finally, we show that \method{} outperforms or achieves similar performance to the competing methods when applied to the selective classification (classification with rejection option) task. Code for MaskTune is available at https://github.com/aliasgharkhani/Masktune.
[ Hall J ]

Regularization can mitigate the generalization gap between training and inference by introducing inductive bias. Existing works have already proposed various inductive biases from diverse perspectives. However, none of them explores inductive bias from the perspective of class-dependent response distribution of individual neurons. In this paper, we conduct a substantial analysis of the characteristics of such distribution. Based on the analysis results, we articulate the Neuron Steadiness Hypothesis: the neuron with similar responses to instances of the same class leads to better generalization. Accordingly, we propose a new regularization method called Neuron Steadiness Regularization (NSR) to reduce neuron intra-class response variance. Based on the Complexity Measure, we theoretically guarantee the effectiveness of NSR for improving generalization. We conduct extensive experiments on Multilayer Perceptron, Convolutional Neural Networks, and Graph Neural Networks with popular benchmark datasets of diverse domains, which show that our Neuron Steadiness Regularization consistently outperforms the vanilla version of models with significant gain and low additional computational overhead.
[ Hall J ]

Deep Neural Networks inherit spurious correlations embedded in training data and hence may fail to predict desired labels on unseen domains (or environments), which have different distributions from the domain to provide training data. Invariance Learning (IL) has been developed recently to overcome this shortcoming; using training data in many domains, IL estimates such a predictor that is invariant to a change of domain. However, the requirement of training data in multiple domains is a strong restriction of using IL, since it demands expensive annotation. We propose a novel IL framework to overcome this problem. Assuming the availability of data from multiple domains for a higher level of classification task, for which the labeling cost is lower, we estimate an invariant predictor for the target classification task with training data gathered in a single domain. Additionally, we propose two cross-validation methods for selecting hyperparameters of invariance regularization, which has not been addressed properly in existing IL methods. The effectiveness of the proposed framework, including the cross-validation, is demonstrated empirically. Theoretical analysis reveals that our framework can estimate the desirable invariant predictor with a hyperparameter fixed correctly, and that such a preferable hyperparameter is chosen by the proposed CV methods under …
[ Hall J ]
[ Hall J ]

[ Hall J ]

Rationalization aims to strengthen the interpretability of NLP models by extracting a subset of human-intelligible pieces of their inputting texts. Conventional works generally employ a two-phase model in which a generator selects the most important pieces, followed by a predictor that makes predictions based on the selected pieces. However, such a two-phase model may incur the degeneration problem where the predictor overfits to the noise generated by a not yet well-trained generator and in turn, leads the generator to converge to a suboptimal model that tends to select senseless pieces. To tackle this challenge, we propose Folded Rationalization (FR) that folds the two phases of the rationale model into one from the perspective of text semantic extraction. The key idea of FR is to employ a unified encoder between the generator and predictor, based on which FR can facilitate a better predictor by access to valuable information blocked by the generator in the traditional two-phase model and thus bring a better generator. Empirically, we show that FR improves the F1 score by up to 10.3% as compared to state-of-the-art methods.
[ Hall J ]

Traditional knowledge distillation (KD) methods manually design student architectures to compress large models given pre-specified computational cost. This requires several trials to find viable students, and repeating the process with change in computational budget. We use Neural Architecture Search (NAS) to automatically distill several compressed students with variable cost from a large model. Existing NAS methods train a single SuperLM consisting of millions of subnetworks with weight-sharing, resulting in interference between subnetworks of different sizes. Additionally, many of these works are task-specific requiring task labels for SuperLM training. Our framework AutoDistil addresses above challenges with the following steps: (a) Incorporates inductive bias and heuristics to partition Transformer search space into K compact sub-spaces (e.g., K=3 can generate typical student sizes of base, small and tiny); (b) Trains one SuperLM for each sub-space using task-agnostic objective (e.g., self-attention distillation) with weight-sharing of students; (c) Lightweight search for the optimal student without re-training. Task-agnostic training and search allow students to be reused for fine-tuning on any downstream task. Experiments on GLUE benchmark demonstrate AutoDistil to outperform state-of-the-art KD and NAS methods with upto 3x reduction in computational cost and negligible loss in task performance. Code and model checkpoints are available at https://github.com/microsoft/autodistil.
[ Hall J ]

For a self-driving car to operate reliably, its perceptual system must generalize to the end-user's environment --- ideally without additional annotation efforts. One potential solution is to leverage unlabeled data (e.g., unlabeled LiDAR point clouds) collected from the end-users' environments (i.e. target domain) to adapt the system to the difference between training and testing environments. While extensive research has been done on such an unsupervised domain adaptation problem, one fundamental problem lingers: there is no reliable signal in the target domain to supervise the adaptation process. To overcome this issue we observe that it is easy to collect unsupervised data from multiple traversals of repeated routes. While different from conventional unsupervised domain adaptation, this assumption is extremely realistic since many drivers share the same roads. We show that this simple additional assumption is sufficient to obtain a potent signal that allows us to perform iterative self-training of 3D object detectors on the target domain. Concretely, we generate pseudo-labels with the out-of-domain detector but reduce false positives by removing detections of supposedly mobile objects that are persistent across traversals. Further, we reduce false negatives by encouraging predictions in regions that are not persistent. We experiment with our approach on two large-scale …
[ Hall J ]

Generating multivariate time series is a promising approach for sharing sensitive data in many medical, financial, and IoT applications. A common type of multivariate time series originates from a single source such as the biometric measurements from a medical patient. This leads to complex dynamical patterns between individual time series that are hard to learn by typical generation models such as GANs. There is valuable information in those patterns that machine learning models can use to better classify, predict or perform other downstream tasks. We propose a novel framework that takes time series’ common origin into account and favors channel/feature relationships preservation. The two key points of our method are: 1) the individual time series are generated from a common point in latent space and 2) a central discriminator favors the preservation of inter-channel/feature dynamics. We demonstrate empirically that our method helps preserve channel/feature correlations and that our synthetic data performs very well in downstream tasks with medical and financial data.
[ Hall J ]

In this study, we present \textit{meta-sequential prediction} (MSP), an unsupervised framework to learn the symmetry from the time sequence of length at least three. Our method leverages the stationary property~(e.g. constant velocity, constant acceleration) of the time sequence to learn the underlying equivariant structure of the dataset by simply training the encoder-decoder model to be able to predict the future observations. We will demonstrate that, with our framework, the hidden disentangled structure of the dataset naturally emerges as a by-product by applying \textit{simultaneous block-diagonalization} to the transition operators in the latent space, the procedure which is commonly used in representation theory to decompose the feature-space based on the type of response to group actions.We will showcase our method from both empirical and theoretical perspectives.Our result suggests that finding a simple structured relation and learning a model with extrapolation capability are two sides of the same coin. The code is available at https://github.com/takerum/metasequentialprediction.
[ Hall J ]
In animals and humans, curriculum learning---presenting data in a curated order---is critical to rapid learning and effective pedagogy. A long history of experiments has demonstrated the impact of curricula in a variety of animals but, despite its ubiquitous presence, a theoretical understanding of the phenomenon is still lacking. Surprisingly, in contrast to animal learning, curricula strategies are not widely used in machine learning and recent simulation studies reach the conclusion that curricula are moderately effective or ineffective in most cases. This stark difference in the importance of curriculum raises a fundamental theoretical question: when and why does curriculum learning help? In this work, we analyse a prototypical neural network model of curriculum learning in the high-dimensional limit, employing statistical physics methods. We study a task in which a sparse set of informative features are embedded amidst a large set of noisy features. We analytically derive average learning trajectories for simple neural networks on this task, which establish a clear speed benefit for curriculum learning in the online setting. However, when training experiences can be stored and replayed (for instance, during sleep), the advantage of curriculum in standard neural networks disappears, in line with observations from the deep learning literature. Inspired …
[ Hall J ]
In lifelong learning systems based on artificial neural networks, one of the biggest obstacles is the inability to retain old knowledge as new information is encountered. This phenomenon is known as catastrophic forgetting. In this paper, we propose a new kind of connectionist architecture, the Sequential Neural Coding Network, that is robust to forgetting when learning from streams of data points and, unlike networks of today, does not learn via the popular back-propagation of errors. Grounded in the neurocognitive theory of predictive coding, our model adapts its synapses in a biologically-plausible fashion while another neural system learns to direct and control this cortex-like structure, mimicking some of the task-executive control functionality of the basal ganglia. In our experiments, we demonstrate that our self-organizing system experiences significantly less forgetting compared to standard neural models, outperforming a swath of previously proposed methods, including rehearsal/data buffer-based methods, on both standard (SplitMNIST, Split Fashion MNIST, etc.) and custom benchmarks even though it is trained in a stream-like fashion. Our work offers evidence that emulating mechanisms in real neuronal systems, e.g., local learning, lateral competition, can yield new directions and possibilities for tackling the grand challenge of lifelong machine learning.
[ Hall J ]

The computational complexity of classical numerical methods for solving Partial Differential Equations (PDE) scales significantly as the resolution increases. As an important example, climate predictions require fine spatio-temporal resolutions to resolve all turbulent scales in the fluid simulations. This makes the task of accurately resolving these scales computationally out of reach even with modern supercomputers. As a result, current numerical modelers solve PDEs on grids that are too coarse (3km to 200km on each side), which hinders the accuracy and usefulness of the predictions. In this paper, we leverage the recent advances in Implicit Neural Representations (INR) to design a novel architecture that predicts the spatially continuous solution of a PDE given a spatial position query. By augmenting coordinate-based architectures with Graph Neural Networks (GNN), we enable zero-shot generalization to new non-uniform meshes and long-term predictions up to 250 frames ahead that are physically consistent. Our Mesh Agnostic Neural PDE Solver (MAgNet) is able to make accurate predictions across a variety of PDE simulation datasets and compares favorably with existing baselines. Moreover, our model generalizes well to different meshes and resolutions up to four times those trained on.
[ Hall J ]

In this paper, we propose a variational model, iterative Structural Inference of Directed Graphs (iSIDG), to infer the existence of directed interactions from observational agents’ features over a time period in a dynamical system. First, the iterative process in our model feeds the learned interactions back to encourage our model to eliminate indirect interactions and to emphasize directional representation during learning. Second, we show that extra regularization terms in the objective function for smoothness, connectiveness, and sparsity prompt our model to infer a more realistic structure and to further eliminate indirect interactions. We evaluate iSIDG on various datasets including biological networks, simulated fMRI data, and physical simulations to demonstrate that our model is able to precisely infer the existence of interactions, and is significantly superior to baseline models.
[ Hall J ]

As a pivotal component to attaining generalizable solutions in human intelligence, reasoning provides great potential for reinforcement learning (RL) agents' generalization towards varied goals by summarizing part-to-whole arguments and discovering cause-and-effect relations. However, how to discover and represent causalities remains a huge gap that hinders the development of causal RL. In this paper, we augment Goal-Conditioned RL (GCRL) with Causal Graph (CG), a structure built upon the relation between objects and events. We novelly formulate the GCRL problem into variational likelihood maximization with CG as latent variables. To optimize the derived objective, we propose a framework with theoretical performance guarantees that alternates between two steps: using interventional data to estimate the posterior of CG; using CG to learn generalizable models and interpretable policies. Due to the lack of public benchmarks that verify generalization capability under reasoning, we design nine tasks and then empirically show the effectiveness of the proposed method against five baselines on these tasks. Further theoretical analysis shows that our performance improvement is attributed to the virtuous cycle of causal discovery, transition modeling, and policy training, which aligns with the experimental evidence in extensive ablation studies.
[ Hall J ]
General Value Function (GVF) is a powerful tool to represent both the {\em predictive} and {\em retrospective} knowledge in reinforcement learning (RL). In practice, often multiple interrelated GVFs need to be evaluated jointly with pre-collected off-policy samples. In the literature, the gradient temporal difference (GTD) learning method has been adopted to evaluate GVFs in the off-policy setting, but such an approach may suffer from a large estimation error even if the function approximation class is sufficiently expressive. Moreover, none of the previous work have formally established the convergence guarantee to the ground truth GVFs under the function approximation settings. In this paper, we address both issues through the lens of a class of GVFs with causal filtering, which cover a wide range of RL applications such as reward variance, value gradient, cost in anomaly detection, stationary distribution gradient, etc. We propose a new algorithm called GenTD for off-policy GVFs evaluation and show that GenTD learns multiple interrelated multi-dimensional GVFs as efficiently as a single canonical scalar value function. We further show that unlike GTD, the learned GVFs by GenTD are guaranteed to converge to the ground truth GVFs as long as the function approximation power is sufficiently large. To our …
[ Hall J ]

Markov chain Monte Carlo (MCMC), such as Langevin dynamics, is valid for approximating intractable distributions. However, its usage is limited in the context of deep latent variable models owing to costly datapoint-wise sampling iterations and slow convergence. This paper proposes the amortized Langevin dynamics (ALD), wherein datapoint-wise MCMC iterations are entirely replaced with updates of an encoder that maps observations into latent variables. This amortization enables efficient posterior sampling without datapoint-wise iterations. Despite its efficiency, we prove that ALD is valid as an MCMC algorithm, whose Markov chain has the target posterior as a stationary distribution under mild assumptions. Based on the ALD, we also present a new deep latent variable model named the Langevin autoencoder (LAE). Interestingly, the LAE can be implemented by slightly modifying the traditional autoencoder. Using multiple synthetic datasets, we first validate that ALD can properly obtain samples from target posteriors. We also evaluate the LAE on the image generation task, and show that our LAE can outperform existing methods based on variational inference, such as the variational autoencoder, and other MCMC-based methods in terms of the test likelihood.
[ Hall J ]

Gradient Boosted Decision Tree (GBDT) is a widely-used machine learning algorithm that has been shown to achieve state-of-the-art results on many standard data science problems. We are interested in its application to multioutput problems when the output is highly multidimensional. Although there are highly effective GBDT implementations, their scalability to such problems is still unsatisfactory. In this paper, we propose novel methods aiming to accelerate the training process of GBDT in the multioutput scenario. The idea behind these methods lies in the approximate computation of a scoring function used to find the best split of decision trees. These methods are implemented in SketchBoost, which itself is integrated into our easily customizable Python-based GPU implementation of GBDT called Py-Boost. Our numerical study demonstrates that SketchBoost speeds up the training process of GBDT by up to over 40 times while achieving comparable or even better performance.
[ Hall J ]

Relative Positional Encoding (RPE), which encodes the relative distance between any pair of tokens, is one of the most successful modifications to the original Transformer. As far as we know, theoretical understanding of the RPE-based Transformers is largely unexplored. In this work, we mathematically analyze the power of RPE-based Transformers regarding whether the model is capable of approximating any continuous sequence-to-sequence functions. One may naturally assume the answer is in the affirmative---RPE-based Transformers are universal function approximators. However, we present a negative result by showing there exist continuous sequence-to-sequence functions that RPE-based Transformers cannot approximate no matter how deep and wide the neural network is. One key reason lies in that most RPEs are placed in the softmax attention that always generates a right stochastic matrix. This restricts the network from capturing positional information in the RPEs and limits its capacity. To overcome the problem and make the model more powerful, we first present sufficient conditions for RPE-based Transformers to achieve universal function approximation. With the theoretical guidance, we develop a novel attention module, called Universal RPE-based (URPE) Attention, which satisfies the conditions. Therefore, the corresponding URPE-based Transformers become universal function approximators. Extensive experiments covering typical architectures and tasks demonstrate …
[ Hall J ]

Retrosynthetic planning occupies a crucial position in synthetic chemistry and, accordingly, drug discovery, which aims to find synthetic pathways of a target molecule through a sequential decision-making process on a set of feasible reactions. While the majority of recent works focus on the prediction of feasible reactions at each step, there have been limited attempts toward improving the sequential decision-making policy. Existing strategies rely on either the expensive and high-variance value estimation by online rollout, or a settled value estimation neural network pre-trained with simulated pathways of limited diversity and no negative feedback. Besides, how to return multiple candidate pathways that are not only diverse but also desirable for chemists (e.g., affordable building block materials) remains an open challenge. To this end, we propose a Goal-dRiven Actor-critic retroSynthetic Planning (GRASP) framework, where we identify the policy that performs goal-driven retrosynthesis navigation toward a user-demand objective. Our experiments on the benchmark Pistachio dataset and a chemists-designed dataset demonstrate that the framework outperforms state-of-the-art approaches by up to 32.2% on search efficiency and 5.6% on quality. Remarkably, our user studies show that GRASP successfully plans pathways that accomplish the goal prescribed with a designated goal (building block materials).
[ Hall J ]

Graph Neural Networks (GNNs) are attracting growing attention due to their effectiveness and flexibility in modeling a variety of graph-structured data. Exiting GNN architectures usually adopt simple pooling operations~(\eg{} sum, average, max) when aggregating messages from a local neighborhood for updating node representation or pooling node representations from the entire graph to compute the graph representation. Though simple and effective, these linear operations do not model high-order non-linear interactions among nodes. We propose the Tensorized Graph Neural Network (tGNN), a highly expressive GNN architecture relying on tensor decomposition to model high-order non-linear node interactions. tGNN leverages the symmetric CP decomposition to efficiently parameterize permutation-invariant multilinear maps for modeling node interactions. Theoretical and empirical analysis on both node and graph classification tasks show the superiority of tGNN over competitive baselines. In particular, tGNN achieves the most solid results on two OGB node classification datasets and one OGB graph classification dataset.
[ Hall J ]

Morphology of neuron trees is a key indicator to delineate neuronal cell-types, analyze brain development process, and evaluate pathological changes in neurological diseases. Traditional analysis mostly relies on heuristic features and visual inspections. A quantitative, informative, and comprehensive representation of neuron morphology is largely absent but desired. To fill this gap, in this work, we adopt a Tree-LSTM network to encode neuron morphology and introduce a self-supervised learning framework named TreeMoCo to learn features without the need for labels. We test TreeMoCo on 2403 high-quality 3D neuron reconstructions of mouse brains from three different public resources. Our results show that TreeMoCo is effective in both classifying major brain cell-types and identifying sub-types. To our best knowledge, TreeMoCo is the very first to explore learning the representation of neuron tree morphology with contrastive learning. It has a great potential to shed new light on quantitative neuron morphology analysis. Code is available at https://github.com/TencentAILabHealthcare/NeuronRepresentation.
[ Hall J ]

The visual world can be parsimoniously characterized in terms of distinct entities with sparse interactions. Discovering this compositional structure in dynamic visual scenes has proven challenging for end-to-end computer vision approaches unless explicit instance-level supervision is provided. Slot-based models leveraging motion cues have recently shown great promise in learning to represent, segment, and track objects without direct supervision, but they still fail to scale to complex real-world multi-object videos. In an effort to bridge this gap, we take inspiration from human development and hypothesize that information about scene geometry in the form of depth signals can facilitate object-centric learning. We introduce SAVi++, an object-centric video model which is trained to predict depth signals from a slot-based video representation. By further leveraging best practices for model scaling, we are able to train SAVi++ to segment complex dynamic scenes recorded with moving cameras, containing both static and moving objects of diverse appearance on naturalistic backgrounds, without the need for segmentation supervision. Finally, we demonstrate that by using sparse depth signals obtained from LiDAR, SAVi++ is able to learn emergent object segmentation and tracking from videos in the real-world Waymo Open dataset.
[ Hall J ]
In this work, we present the Textless Vision-Language Transformer (TVLT), where homogeneous transformer blocks take raw visual and audio inputs for vision-and-language representation learning with minimal modality-specific design, and do not use text-specific modules such as tokenization or automatic speech recognition (ASR). TVLT is trained by reconstructing masked patches of continuous video frames and audio spectrograms (masked autoencoding) and contrastive modeling to align video and audio. TVLT attains performance comparable to its text-based counterpart on various multimodal tasks, such as visual question answering, image retrieval, video retrieval, and multimodal sentiment analysis, with 28x faster inference speed and only 1/3 of the parameters. Our findings suggest the possibility of learning compact and efficient visual-linguistic representations from low-level visual and audio signals without assuming the prior existence of text. Our code and checkpoints are available at: https://github.com/zinengtang/TVLT
[ Hall J ]

Molecule generation is central to a variety of applications. Current attention has been paid to approaching the generation task as subgraph prediction and assembling. Nevertheless, these methods usually rely on hand-crafted or external subgraph construction, and the subgraph assembling depends solely on local arrangement. In this paper, we define a novel notion, principal subgraph that is closely related to the informative pattern within molecules. Interestingly, our proposed merge-and-update subgraph extraction method can automatically discover frequent principal subgraphs from the dataset, while previous methods are incapable of. Moreover, we develop a two-step subgraph assembling strategy, which first predicts a set of subgraphs in a sequence-wise manner and then assembles all generated subgraphs globally as the final output molecule. Built upon graph variational auto-encoder, our model is demonstrated to be effective in terms of several evaluation metrics and efficiency, compared with state-of-the-art methods on distribution learning and (constrained) property optimization tasks.
[ Hall J ]
Transformers have improved the state-of-the-art in various natural language processing and computer vision tasks. However, the success of the Transformer model has not yet been duly explained. Current explanation techniques, which dissect either the self-attention mechanism or gradient-based attribution, do not necessarily provide a faithful explanation of the inner workings of Transformers due to the following reasons: first, attention weights alone without considering the magnitudes of feature values are not adequate to reveal the self-attention mechanism; second, whereas most Transformer explanation techniques utilize self-attention module, the skip-connection module, contributing a significant portion of information flows in Transformers, has not yet been sufficiently exploited in explanation; third, the gradient-based attribution of individual feature does not incorporate interaction among features in explaining the model's output. In order to tackle the above problems, we propose a novel Transformer explanation technique via attentive class activation tokens, aka, AttCAT, leveraging encoded features, their gradients, and their attention weights to generate a faithful and confident explanation for Transformer's output. Extensive experiments are conducted to demonstrate the superior performance of AttCAT, which generalizes well to different Transformer architectures, evaluation metrics, datasets, and tasks, to the baseline methods. Our code is available at: https://github.com/qiangyao1988/AttCAT.
[ Hall J ]

The aim of weakly supervised semantic segmentation (WSSS) is to learn semantic segmentation without using dense annotations. WSSS has been intensively studied for 2D images and 3D point clouds. However, the existing WSSS studies have focused on a single domain, i.e. 2D or 3D, even when multi-domain data is available. In this paper, we propose a novel joint 2D-3D WSSS framework taking advantage of WSSS in different domains, using classification labels only. Via projection, we leverage the 2D class activation map as self-supervision to enhance the 3D semantic perception. Conversely, we exploit the similarity matrix of point cloud features for training the image classifier to achieve more precise 2D segmentation. In both directions, we devise a confidence-based scoring method to reduce the effect of inaccurate self-supervision. With extensive quantitative and qualitative experiments, we verify that the proposed joint WSSS framework effectively transfers the benefit of each domain to the other domain, and the resulting semantic segmentation performance is remarkably improved in both 2D and 3D domains. On the ScanNetV2 benchmark, our framework significantly outperforms the prior WSSS approaches, suggesting a new research direction for WSSS.
[ Hall J ]

Sentence scoring aims at measuring the likelihood score of a sentence and is widely used in many natural language processing scenarios, like reranking, which is to select the best sentence from multiple candidates. Previous works on sentence scoring mainly adopted either causal language modeling (CLM) like GPT or masked language modeling (MLM) like BERT, which have some limitations: 1) CLM only utilizes unidirectional information for the probability estimation of a sentence without considering bidirectional context, which affects the scoring quality; 2) MLM can only estimate the probability of partial tokens at a time and thus requires multiple forward passes to estimate the probability of the whole sentence, which incurs large computation and time cost. In this paper, we propose \textit{Transcormer} -- a Transformer model with a novel \textit{sliding language modeling} (SLM) for sentence scoring. Specifically, our SLM adopts a triple-stream self-attention mechanism to estimate the probability of all tokens in a sentence with bidirectional context and only requires a single forward pass. SLM can avoid the limitations of CLM (only unidirectional context) and MLM (multiple forward passes) and inherit their advantages, and thus achieve high effectiveness and efficiency in scoring. Experimental results on multiple tasks demonstrate that our method achieves …
[ Hall J ]
Generating precise class-aware pseudo ground-truths, a.k.a, class activation maps (CAMs), is essential for Weakly-Supervised Semantic Segmentation. The original CAM method usually produces incomplete and inaccurate localization maps. To tackle with this issue, this paper proposes an Expansion and Shrinkage scheme based on the offset learning in the deformable convolution, to sequentially improve the recall and precision of the located object in the two respective stages. In the Expansion stage, an offset learning branch in a deformable convolution layer, referred to as expansion sampler'', seeks to sample increasingly less discriminative object regions, driven by an inverse supervision signal that maximizes image-level classification loss. The located more complete object region in the Expansion stage is then gradually narrowed down to the final object region during the Shrinkage stage. In the Shrinkage stage, the offset learning branch of another deformable convolution layer referred to as the
shrinkage sampler'', is introduced to exclude the false positive background regions attended in the Expansion stage to improve the precision of the localization maps. We conduct various experiments on PASCAL VOC 2012 and MS COCO 2014 to well demonstrate the superiority of our method over other state-of-the-art methods for Weakly-Supervised Semantic Segmentation. The code is available at …
[ Hall J ]
Graph contrastive learning (GCL) alleviates the heavy reliance on label information for graph representation learning (GRL) via self-supervised learning schemes. The core idea is to learn by maximising mutual information for similar instances, which requires similarity computation between two node instances. However, GCL is inefficient in both time and memory consumption. In addition, GCL normally requires a large number of training epochs to be well-trained on large-scale datasets. Inspired by an observation of a technical defect (i.e., inappropriate usage of Sigmoid function) commonly used in two representative GCL works, DGI and MVGRL, we revisit GCL and introduce a new learning paradigm for self-supervised graph representation learning, namely, Group Discrimination (GD), and propose a novel GD-based method called Graph Group Discrimination (GGD). Instead of similarity computation, GGD directly discriminates two groups of node samples with a very simple binary cross-entropy loss. In addition, GGD requires much fewer training epochs to obtain competitive performance compared with GCL methods on large-scale datasets. These two advantages endow GGD with very efficient property. Extensive experiments show that GGD outperforms state-of-the-art self-supervised methods on eight datasets. In particular, GGD can be trained in 0.18 seconds (6.44 seconds including data preprocessing) on ogbn-arxiv, which is orders of …
[ Hall J ]

Predicting conversion rate (e.g., the probability that a user will purchase an item) is a fundamental problem in machine learning based recommender systems. However, accurate conversion labels are revealed after a long delay, which harms the timeliness of recommender systems. Previous literature concentrates on utilizing early conversions to mitigate such a delayed feedback problem. In this paper, we show that post-click user behaviors are also informative to conversion rate prediction and can be used to improve timeliness. We propose a generalized delayed feedback model (GDFM) that unifies both post-click behaviors and early conversions as stochastic post-click information, which could be utilized to train GDFM in a streaming manner efficiently. Based on GDFM, we further establish a novel perspective that the performance gap introduced by delayed feedback can be attributed to a temporal gap and a sampling gap. Inspired by our analysis, we propose to measure the quality of post-click information with a combination of temporal distance and sample complexity. The training objective is re-weighted accordingly to highlight informative and timely signals. We validate our analysis on public datasets, and experimental performance confirms the effectiveness of our method.
[ Hall J ]

Adversarial training is one important algorithm to achieve robust machine learning models. However, numerous empirical results show a great performance degradation from clean training to adversarial training (e.g., 90+\% vs 67\% testing accuracy on CIFAR-10 dataset), which does not match the theoretical guarantee delivered by the existing studies. Such a gap inspires us to explore the existence of an (asymptotic) phase transition phenomenon with respect to the attack strength: adversarial training is as well behaved as clean training in the small-attack regime, but there is a sharp transition from clean training to adversarial training in the large-attack regime. We validate this conjecture in linear regression models, and conduct comprehensive experiments in deep neural networks.
[ Hall J ]

Clustering models constitute a class of unsupervised machine learning methods which are used in a number of application pipelines, and play a vital role in modern data science. With recent advancements in deep learning-- deep clustering models have emerged as the current state-of-the-art over traditional clustering approaches, especially for high-dimensional image datasets. While traditional clustering approaches have been analyzed from a robustness perspective, no prior work has investigated adversarial attacks and robustness for deep clustering models in a principled manner. To bridge this gap, we propose a blackbox attack using Generative Adversarial Networks (GANs) where the adversary does not know which deep clustering model is being used, but can query it for outputs. We analyze our attack against multiple state-of-the-art deep clustering models and real-world datasets, and find that it is highly successful. We then employ some natural unsupervised defense approaches, but find that these are unable to mitigate our attack. Finally, we attack Face++, a production-level face clustering API service, and find that we can significantly reduce its performance as well. Through this work, we thus aim to motivate the need for truly robust deep clustering models.
[ Hall J ]

Fine-tuning pretrained language models (LMs) without making any architectural changes has become a norm for learning various language downstream tasks. However, for non-language downstream tasks, a common practice is to employ task-specific designs for input, output layers, and loss functions. For instance, it is possible to fine-tune an LM into an MNIST classifier by replacing the word embedding layer with an image patch embedding layer, the word token output layer with a 10-way output layer, and the word prediction loss with a 10-way classification loss, respectively. A natural question arises: Can LM fine-tuning solve non-language downstream tasks without changing the model architecture or loss function? To answer this, we propose Language-Interfaced Fine-Tuning (LIFT) and study its efficacy and limitations by conducting an extensive empirical study on a suite of non-language classification and regression tasks. LIFT does not make any changes to the model architecture or loss function, and it solely relies on the natural language interface, enabling "no-code machine learning with LMs." We find that LIFT performs comparably well across a wide range of low-dimensional classification and regression tasks, matching the performances of the best baselines in many cases, especially for the classification tasks. We also report experimental results on …
[ Hall J ]

3D-aware image synthesis aims at learning a generative model that can render photo-realistic 2D images while capturing decent underlying 3D shapes. A popular solution is to adopt the generative adversarial network (GAN) and replace the generator with a 3D renderer, where volume rendering with neural radiance field (NeRF) is commonly used. Despite the advancement of synthesis quality, existing methods fail to obtain moderate 3D shapes. We argue that, considering the two-player game in the formulation of GANs, only making the generator 3D-aware is not enough. In other words, displacing the generative mechanism only offers the capability, but not the guarantee, of producing 3D-aware images, because the supervision of the generator primarily comes from the discriminator. To address this issue, we propose GeoD through learning a geometry-aware discriminator to improve 3D-aware GANs. Concretely, besides differentiating real and fake samples from the 2D image space, the discriminator is additionally asked to derive the geometry information from the inputs, which is then applied as the guidance of the generator. Such a simple yet effective design facilitates learning substantially more accurate 3D shapes. Extensive experiments on various generator architectures and training datasets verify the superiority of GeoD over state-of-the-art alternatives. Moreover, our approach is …
[ Hall J ]
Out-of-distribution (OOD) detection aims to identify OOD data based on representations extracted from well-trained deep models. However, existing methods largely ignore the reprogramming property of deep models and thus may not fully unleash their intrinsic strength: without modifying parameters of a well-trained deep model, we can reprogram this model for a new purpose via data-level manipulation (e.g., adding a specific feature perturbation). This property motivates us to reprogram a classification model to excel at OOD detection (a new task), and thus we propose a general methodology named watermarking in this paper. Specifically, we learn a unified pattern that is superimposed onto features of original data, and the model's detection capability is largely boosted after watermarking. Extensive experiments verify the effectiveness of watermarking, demonstrating the significance of the reprogramming property of deep models in OOD detection.
[ Hall J ]

Continuous-time dynamic graphs naturally abstract many real-world systems, such as social and transactional networks. While the research on continuous-time dynamic graph representation learning has made significant advances recently, neither graph topological properties nor temporal dependencies have been well-considered and explicitly modeled in capturing dynamic patterns. In this paper, we introduce a new approach, Neural Temporal Walks (NeurTWs), for representation learning on continuous-time dynamic graphs. By considering not only time constraints but also structural and tree traversal properties, our method conducts spatiotemporal-biased random walks to retrieve a set of representative motifs, enabling temporal nodes to be characterized effectively. With a component based on neural ordinary differential equations, the extracted motifs allow for irregularly-sampled temporal nodes to be embedded explicitly over multiple different interaction time intervals, enabling the effective capture of the underlying spatiotemporal dynamics. To enrich supervision signals, we further design a harder contrastive pretext task for model optimization. Our method demonstrates overwhelming superiority under both transductive and inductive settings on six real-world datasets.
[ Hall J ]

We propose InsNet, an expressive insertion-based text generator with efficient training and flexible decoding (parallel or sequential). Unlike most existing insertion-based text generation works that require re-encoding of the (decoding) context after each insertion operation and thus are inefficient to train, InsNet only requires one pass of context encoding for the entire insertion sequence during training by using a novel insertion-oriented position encoding to enable computation sharing. Furthermore, InsNet provides a controllable switch between parallel and sequential decoding, making it flexible to handle more parallelizable tasks such as machine translation to support efficient decoding, or less parallelizable tasks such as lexically constrained text generation to guarantee high-quality outputs. Experiments on two unsupervised lexically constrained text generation datasets and three machine translation datasets demonstrate InsNet’s advantages over previous insertion-based methods in terms of training speed, inference efficiency, and generation quality.
[ Hall J ]

Visual object recognition has been extensively studied in both neuroscience and computer vision. Recently, the most popular class of artificial systems for this task, deep convolutional neural networks (CNNs), has been shown to provide excellent models for its functional analogue in the brain, the ventral stream in visual cortex. This has prompted questions on what, if any, are the common principles underlying the reformatting of visual information as it flows through a CNN or the ventral stream. Here we consider some prominent statistical patterns that are known to exist in the internal representations of either CNNs or the visual cortex and look for them in the other system. We show that intrinsic dimensionality (ID) of object representations along the rat homologue of the ventral stream presents two distinct expansion-contraction phases, as previously shown for CNNs. Conversely, in CNNs, we show that training results in both distillation and active pruning (mirroring the increase in ID) of low- to middle-level image information in single units, as representations gain the ability to support invariant discrimination, in agreement with previous observations in rat visual cortex. Taken together, our findings suggest that CNNs and visual cortex share a similarly tight relationship between dimensionality expansion/reduction of …
[ Hall J ]

There have been multiple works that try to ascertain explanations for decisions of black box models on particular inputs by perturbing the input or by sampling around it, creating a neighborhood and then fitting a sparse (linear) model (e.g. LIME). Many of these methods are unstable and so more recent work tries to find stable or robust alternatives. However, stable solutions may not accurately represent the behavior of the model around the input. Thus, the question we ask in this paper is are we approximating the local boundary around the input accurately? In particular, are we sampling the right neighborhood so that a linear approximation of the black box is faithful to its true behavior around that input given that the black box can be highly non-linear (viz. deep relu network with many linear pieces). It is difficult to know the correct neighborhood width (or radius) as too small a width can lead to a bad condition number of the inverse covariance matrix of function fitting procedures resulting in unstable predictions, while too large a width may lead to accounting for multiple linear pieces and consequently a poor local approximation. We in this paper propose a simple approach that is …
[ Hall J ]

In academic recruitment settings, including faculty hiring and PhD admissions, committees aim to maximize the overall quality of recruited candidates, but there is uncertainty about whether a candidate would accept an offer if given one. Previous work has considered algorithms that make offers sequentially and are subject to a hard budget constraint. We argue that these modeling choices may be inconsistent with the practice of academic recruitment. Instead, we restrict ourselves to a single batch of offers, and we treat the target number of positions as a soft constraint, so we risk overshooting or undershooting the target. Specifically, our objective is to select a subset of candidates that maximizes the overall expected value associated with candidates who accept, minus an expected penalty for deviating from the target. We first analyze the guarantees provided by natural greedy heuristics, showing their desirable properties despite the simplicity. Depending on the structure of the penalty function, we further develop algorithms that provide fully polynomial-time approximation schemes and constant-factor approximations to this objective. Empirical evaluation of our algorithms corroborates these theoretical results.
[ Hall J ]

Optimal experimental design seeks to determine the most informative allocation of experiments to infer an unknown statistical quantity. In this work, we investigate optimal design of experiments for {\em estimation of linear functionals in reproducing kernel Hilbert spaces (RKHSs)}. This problem has been extensively studied in the linear regression setting under an estimability condition, which allows estimating parameters without bias. We generalize this framework to RKHSs, and allow for the linear functional to be only approximately inferred, i.e., with a fixed bias. This scenario captures many important modern applications such as estimation of gradient maps, integrals and solutions to differential equations. We provide algorithms for constructing bias-aware designs for linear functionals. We derive non-asymptotic confidence sets for fixed and adaptive designs under sub-Gaussian noise, enabling us to certify estimation with bounded error with high probability.
[ Hall J ]

Flow networks are ubiquitous in natural and engineered systems, and in order to understand and manage these networks, one must quantify the flow of commodities across their edges. This paper considers the estimation problem of predicting unlabeled edge flows from nodal supply and demand. We propose an implicit neural network layer that incorporates two fundamental physical laws: conservation of mass, and the existence of a constitutive relationship between edge flows and nodal states (e.g., Ohm's law). Computing the edge flows from these two laws is a nonlinear inverse problem, which our layer solves efficiently with a specialized contraction mapping. Using implicit differentiation to compute the solution's gradients, our model is able to learn the constitutive relationship within a semi-supervised framework. We demonstrate that our approach can accurately predict edge flows in several experiments on AC power networks and water distribution systems.
[ Hall J ]
Modeling directed graphs with differentiable representations is a fundamental requirement for performing machine learning on graph-structured data. Geometric embedding models (e.g. hyperbolic, cone, and box embeddings) excel at this task, exhibiting useful inductive biases for directed graphs. However, modeling directed graphs that both contain cycles and some element of transitivity, two properties common in real-world settings, is challenging. Box embeddings, which can be thought of as representing the graph as an intersection over some learned super-graphs, have a natural inductive bias toward modeling transitivity, but (as we prove) cannot model cycles. To this end, we propose binary code box embeddings, where a learned binary code selects a subset of graphs for intersection. We explore several variants, including global binary codes (amounting to a union over intersections) and per-vertex binary codes (allowing greater flexibility) as well as methods of regularization. Theoretical and empirical results show that the proposed models not only preserve a useful inductive bias of transitivity but also have sufficient representational capacity to model arbitrary graphs, including graphs with cycles.
[ Hall J ]

[ Hall J ]

Reducing reinforcement learning to supervised learning is a well-studied and effective approach that leverages the benefits of compact function approximation to deal with large-scale Markov decision processes. Independently, the boosting methodology (e.g. AdaBoost) has proven to be indispensable in designing efficient and accurate classification algorithms by combining rough and inaccurate rules-of-thumb.In this paper, we take a further step: we reduce reinforcement learning to a sequence of weak learning problems. Since weak learners perform only marginally better than random guesses, such subroutines constitute a weaker assumption than the availability of an accurate supervised learning oracle. We prove that the sample complexity and running time bounds of the proposed method do not explicitly depend on the number of states.While existing results on boosting operate on convex losses, the value function over policies is non-convex. We show how to use a non-convex variant of the Frank-Wolfe method for boosting, that additionally improves upon the known sample complexity and running time bounds even for reductions to supervised learning.
[ Hall J ]

[ Hall J ]

[ Hall J ]

[ Hall J ]
In this paper, we study both multi-armed and contextual bandit problems in censored environments. Our goal is to estimate the performance loss due to censorship in the context of classical algorithms designed for uncensored environments. Our main contributions include the introduction of a broad class of censorship models and their analysis in terms of the effective dimension of the problem -- a natural measure of its underlying statistical complexity and main driver of the regret bound. In particular, the effective dimension allows us to maintain the structure of the original problem at first order, while embedding it in a bigger space, and thus naturally leads to results analogous to uncensored settings. Our analysis involves a continuous generalization of the Elliptical Potential Inequality, which we believe is of independent interest. We also discover an interesting property of decision-making under censorship: a transient phase during which initial misspecification of censorship is self-corrected at an extra cost; followed by a stationary phase that reflects the inherent slowdown of learning governed by the effective dimension. Our results are useful for applications of sequential decision-making models where the feedback received depends on strategic uncertainty (e.g., agents’ willingness to follow a recommendation) and/or random uncertainty (e.g., …
[ Hall J ]

We consider the problem of partial identification, the estimation of bounds on the treatment effects from observational data. Although studied using discrete treatment variables or in specific causal graphs (e.g., instrumental variables), partial identification has been recently explored using tools from deep generative modeling. We propose a new method for partial identification of average treatment effects (ATEs) in general causal graphs using implicit generative models comprising continuous and discrete random variables. Since ATE with continuous treatment is generally non-regular, we leverage the partial derivatives of response functions to define a regular approximation of ATE, a quantity we call uniform average treatment derivative (UATD). We prove that our algorithm converges to tight bounds on ATE in linear structural causal models (SCMs). For nonlinear SCMs, we empirically show that using UATD leads to tighter and more stable bounds than methods that directly optimize the ATE.
[ Hall J ]

We introduce a novel measure for quantifying the error in input predictions. The error is based on a minimum-cost hyperedge cover in a suitably defined hypergraph and provides a general template which we apply to online graph problems. The measure captures errors due to absent predicted requests as well as unpredicted actual requests; hence, predicted and actual inputs can be of arbitrary size. We achieve refined performance guarantees for previously studied network design problems in the online-list model, such as Steiner tree and facility location. Further, we initiate the study of learning-augmented algorithms for online routing problems, such as the online traveling salesperson problem and the online dial-a-ride problem, where (transportation) requests arrive over time (online-time model). We provide a general algorithmic framework and we give error-dependent performance bounds that improve upon known worst-case barriers, when given accurate predictions, at the cost of slightly increased worst-case bounds when given predictions of arbitrary quality.
[ Hall J ]

Cascading bandits is a natural and popular model that frames the task of learning to rank from Bernoulli click feedback in a bandit setting. For the case of unstructured rewards, we prove matching upper and lower bounds for the problem-independent (i.e., gap-free) regret, both of which strictly improve the best known. A key observation is that the hard instances of this problem are those with small mean rewards, i.e., the small click-through rates that are most relevant in practice. Based on this, and the fact that small mean implies small variance for Bernoullis, our key technical result shows that variance-aware confidence sets derived from the Bernstein and Chernoff bounds lead to optimal algorithms (up to log terms), whereas Hoeffding-based algorithms suffer order-wise suboptimal regret. This sharply contrasts with the standard (non-cascading) bandit setting, where the variance-aware algorithms only improve constants. In light of this and as an additional contribution, we propose a variance-aware algorithm for the structured case of linear rewards and show its regret strictly improves the state-of-the-art.
[ Hall J ]

[ Hall J ]

[ Hall J ]
[ Hall J ]

We study the optimization problem associated with fitting two-layer ReLU neural networks with respect to the squared loss, where labels are generated by a target network. Use is made of the rich symmetry structure to develop a novel set of tools for studying the mechanism by which over-parameterization annihilates spurious minima through. Sharp analytic estimates are obtained for the loss and the Hessian spectrum at different minima, and it is shown that adding neurons can turn symmetric spurious minima into saddles through a local mechanism that does not generate new spurious minima; minima of smaller symmetry require more neurons. Using Cauchy's interlacing theorem, we prove the existence of descent directions in certain subspaces arising from the symmetry structure of the loss function. This analytic approach uses techniques, new to the field, from algebraic geometry, representation theory and symmetry breaking, and confirms rigorously the effectiveness of over-parameterization in making the associated loss landscape accessible to gradient-based methods. For a fixed number of neurons and inputs, the spectral results remain true under symmetry breaking perturbation of the target.
[ Hall J ]

Overparameterization is a key factor in the absence of convexity to explain global convergence of gradient descent (GD) for neural networks. Beside the well studied lazy regime, infinite width (mean field) analysis has been developed for shallow networks, using on convex optimization technics. To bridge the gap between the lazy and mean field regimes, we study Residual Networks (ResNets) in which the residual block has linear parameterization while still being nonlinear. Such ResNets admit both infinite depth and width limits, encoding residual blocks in a Reproducing Kernel Hilbert Space (RKHS). In this limit, we prove a local Polyak-Lojasiewicz inequality. Thus, every critical point is a global minimizer and a local convergence result of GD holds, retrieving the lazy regime. In contrast with other mean-field studies, it applies to both parametric and non-parametric cases under an expressivity condition on the residuals. Our analysis leads to a practical and quantified recipe: starting from a universal RKHS, Random Fourier Features are applied to obtain a finite dimensional parameterization satisfying with high-probability our expressivity condition.
[ Hall J ]

Comparing the representations learned by different neural networks has recently emerged as a key tool to understand various architectures and ultimately optimize them. In this work, we introduce GULP, a family of distance measures between representations that is explicitly motivated by downstream predictive tasks. By construction, GULP provides uniform control over the difference in prediction performance between two representations, with respect to regularized linear prediction tasks. Moreover, it satisfies several desirable structural properties, such as the triangle inequality and invariance under orthogonal transformations, and thus lends itself to data embedding and visualization. We extensively evaluate GULP relative to other methods, and demonstrate that it correctly differentiates between architecture families, converges over the course of training, and captures generalization performance on downstream linear tasks.
[ Hall J ]
The NP-hard problem of optimizing a shallow ReLU network can be characterized as a combinatorial search over each training example’s activation pattern followed by a constrained convex problem given a fixed set of activation patterns. We explore the implications of this combinatorial aspect of ReLU optimization in this work. We show that it can be naturally modeled via a geometric and combinatoric object known as a zonotope with its vertex set isomorphic to the set of feasible activation patterns. This assists in analysis and provides a foundation for further research. We demonstrate its usefulness when we explore the sensitivity of the optimal loss to perturbations of the training data. Later we discuss methods of zonotope vertex selection and its relevance to optimization. Overparameterization assists in training by making a randomly chosen vertex more likely to contain a good solution. We then introduce a novel polynomial-time vertex selection procedure that provably picks a vertex containing the global optimum using only double the minimum number of parameters required to fit the data. We further introduce a local greedy search heuristic over zonotope vertices and demonstrate that it outperforms gradient descent on underparameterized problems.
[ Hall J ]

[ Hall J ]
Most off-policy evaluation methods for contextual bandits have focused on the expected outcome of a policy, which is estimated via methods that at best provide only asymptotic guarantees. However, in many applications, the expectation may not be the best measure of performance as it does not capture the variability of the outcome. In addition, particularly in safety-critical settings, stronger guarantees than asymptotic correctness may be required. To address these limitations, we consider a novel application of conformal prediction to contextual bandits. Given data collected under a behavioral policy, we propose \emph{conformal off-policy prediction} (COPP), which can output reliable predictive intervals for the outcome under a new target policy. We provide theoretical finite-sample guarantees without making any additional assumptions beyond the standard contextual bandit setup, and empirically demonstrate the utility of COPP compared with existing methods on synthetic and real-world data.
[ Hall J ]

Contextual Bayesian optimization (CBO) is a powerful framework for sequential decision-making given side information, with important applications, e.g., in wind energy systems. In this setting, the learner receives context (e.g., weather conditions) at each round, and has to choose an action (e.g., turbine parameters). Standard algorithms assume no cost for switching their decisions at every round. However, in many practical applications, there is a cost associated with such changes, which should be minimized. We introduce the episodic CBO with movement costs problem and, based on the online learning approach for metrical task systems of Coester and Lee (2019), propose a novel randomized mirror descent algorithm that makes use of Gaussian Process confidence bounds. We compare its performance with the offline optimal sequence for each episode and provide rigorous regret guarantees. We further demonstrate our approach on the important real-world application of altitude optimization for Airborne Wind Energy Systems. In the presence of substantial movement costs, our algorithm consistently outperforms standard CBO algorithms.
[ Hall J ]
While Reinforcement Learning (RL) aims to train an agent from a reward function in a given environment, Inverse Reinforcement Learning (IRL) seeks to recover the reward function from observing an expert's behavior. It is well known that, in general, various reward functions can lead to the same optimal policy, and hence, IRL is ill-defined. However, \cite{cao2021identifiability} showed that, if we observe two or more experts with different discount factors or acting in different environments, the reward function can under certain conditions be identified up to a constant. This work starts by showing an equivalent identifiability statement from multiple experts in tabular MDPs based on a rank condition, which is easily verifiable and is shown to be also necessary. We then extend our result to various different scenarios, i.e., we characterize reward identifiability in the case where the reward function can be represented as a linear combination of given features, making it more interpretable, or when we have access to approximate transition matrices. Even when the reward is not identifiable, we provide conditions characterizing when data on multiple experts in a given environment allows to generalize and train an optimal agent in a new environment. Our theoretical results on reward identifiability …
[ Hall J ]

Epistemic uncertainty quantification is a crucial part of drawing credible conclusions from predictive models, whether concerned about the prediction at a given point or any downstream evaluation that uses the model as input. When the predictive model is simple and its evaluation differentiable, this task is solved by the delta method, where we propagate the asymptotically-normal uncertainty in the predictive model through the evaluation to compute standard errors and Wald confidence intervals. However, this becomes difficult when the model and/or evaluation becomes more complex. Remedies include the bootstrap, but it can be computationally infeasible when training the model even once is costly. In this paper, we propose an alternative, the implicit delta method, which works by infinitesimally regularizing the training loss of the predictive model to automatically assess downstream uncertainty. We show that the change in the evaluation due to regularization is consistent for the asymptotic variance of the evaluation estimator, even when the infinitesimal change is approximated by a finite difference. This provides both a reliable quantification of uncertainty in terms of standard errors as well as permits the construction of calibrated confidence intervals. We discuss connections to other approaches to uncertainty quantification, both Bayesian and frequentist, and demonstrate …
[ Hall J ]
A common lens to theoretically study neural net architectures is to analyze the functions they can approximate. However, the constructions from approximation theory often have unrealistic aspects, for example, reliance on infinite precision to memorize target function values. To address this issue, we propose a formal definition of statistically meaningful approximation which requires the approximating network to exhibit good statistical learnability. We present case studies on statistically meaningful approximation for two classes of functions: boolean circuits and Turing machines. We show that overparameterized feedforward neural nets can statistically meaningfully approximate boolean circuits with sample complexity depending only polynomially on the circuit size, not the size of the approximating network. In addition, we show that transformers can statistically meaningfully approximate Turing machines with computation time bounded by T, requiring sample complexity polynomial in the alphabet size, state space size, and log(T). Our analysis introduces new tools for generalization bounds that provide much tighter sample complexity guarantees than the typical VC-dimension or norm-based bounds, which may be of independent interest.
[ Hall J ]

The last few years have seen a surge of work on high dimensional statistics under privacy constraints, mostly following two main lines of work: the "worst case" line, which does not make any distributional assumptions on the input data; and the "strong assumptions" line, which assumes that the data is generated from specific families, e.g., subgaussian distributions.In this work we take a middle ground, obtaining new differentially private algorithms with polynomial sample complexity for estimating quantiles in high-dimensions, as well as estimating and sampling points of high Tukey depth, all working under very mild distributional assumptions. From the technical perspective, our work relies upon fundamental robustness results in the convex geometry literature, demonstrating how such results can be used in a private context. Our main object of interest is the (convex) floating body (FB), a notion going back to Archimedes, which is a robust and well studied high-dimensional analogue of the interquantile range of a distribution. We show how one can privately, and with polynomially many samples, (a) output an approximate interior point of the FB -- e.g., "a typical user" in a high-dimensional database -- by leveraging the robustness of the Steiner point of the FB; and at the …
[ Hall J ]
We consider experiments in dynamical systems where interventions on some experimental units impact other units through a limiting constraint (such as a limited supply of products). Despite outsize practical importance, the best estimators for this `Markovian' interference problem are largely heuristic in nature, and their bias is not well understood. We formalize the problem of inference in such experiments as one of policy evaluation. Off-policy estimators, while unbiased, apparently incur a large penalty in variance relative to state-of-the-art heuristics. We introduce an on-policy estimator: the Differences-In-Q's (DQ) estimator. We show that the DQ estimator can in general have exponentially smaller variance than off-policy evaluation. At the same time, its bias is second order in the impact of the intervention. This yields a striking bias-variance tradeoff so that the DQ estimator effectively dominates state-of-the-art alternatives. From a theoretical perspective, we introduce three separate novel techniques that are of independent interest in the theory of Reinforcement Learning (RL). Our empirical evaluation includes a set of experiments on a city-scale ride-hailing simulator.
[ Hall J ]

Coupling-based normalizing flows (e.g. RealNVP) are a popular family of normalizing flow architectures that work surprisingly well in practice. This calls for theoretical understanding. Existing work shows that such flows weakly converge to arbitrary data distributions. However, they make no statement about the stricter convergence criterion used in practice, the maximum likelihood loss. For the first time, we make a quantitative statement about this kind of convergence: We prove that all coupling-based normalizing flows perform whitening of the data distribution (i.e. diagonalize the covariance matrix) and derive corresponding convergence bounds that show a linear convergence rate in the depth of the flow. Numerical experiments demonstrate the implications of our theory and point at open questions.
[ Hall J ]

Large pretrained models can be fine-tuned with differential privacy to achieve performance approaching that of non-private models. A common theme in these results is the surprising observation that high-dimensional models can achieve favorable privacy-utility trade-offs. This seemingly contradicts known results on the model-size dependence of differentially private convex learning and raises the following research question: When does the performance of differentially private learning not degrade with increasing model size? We identify that the magnitudes of gradients projected onto subspaces is a key factor that determines performance. To precisely characterize this for private convex learning, we introduce a condition on the objective that we term restricted Lipschitz continuity and derive improved bounds for the excess empirical and population risks that are dimension- independent under additional conditions. We empirically show that in private fine-tuning of large language models, gradients obtained during fine-tuning are mostly controlled by a few principal components. This behavior is similar to conditions under which we obtain dimension-independent bounds in convex settings. Our theoretical and empirical results together provide a possible explanation for the recent success of large-scale private fine-tuning. Code to reproduce our results can be found at https://github.com/lxuechen/private-transformers/tree/main/examples/classification/spectral_analysis.
[ Hall J ]
In offline RL, constraining the learned policy to remain close to the data is essential to prevent the policy from outputting out-of-distribution (OOD) actions with erroneously overestimated values. In principle, generative adversarial networks (GAN) can provide an elegant solution to do so, with the discriminator directly providing a probability that quantifies distributional shift. However, in practice, GAN-based offline RL methods have not outperformed alternative approaches, perhaps because the generator is trained to both fool the discriminator and maximize return - two objectives that are often at odds with each other. In this paper, we show that the issue of conflicting objectives can be resolved by training two generators: one that maximizes return, with the other capturing the "remainder" of the data distribution in the offline dataset, such that the mixture of the two is close to the behavior policy. We show that not only does having two generators enable an effective GAN-based offline RL method, but also approximates a support constraint, where the policy does not need to match the entire data distribution, but only the slice of the data that leads to high long term performance. We name our method DASCO, for Dual-Generator Adversarial Support Constrained Offline RL. On …
[ Hall J ]
This work offers a novel theoretical perspective on why, despite numerous attempts, adversarial approaches to generative modeling (e.g., GANs) have not been as successful for certain generation tasks, particularly sequential tasks such as Natural Language Generation, as they have in others, such as Computer Vision. In particular, on sequential data such as text, maximum-likelihood approaches are significantly more utilized than GANs. We show that, while it may seem that maximizing likelihood is inherently different than minimizing distinguishability, this distinction is largely an artifact of the limited representational capacity of the model family, for a wide class of adversarial objectives. We give a theoretical model in which minimizing KL-divergence (i.e., maximizing likelihood) is a more efficient approach to effectively minimizing the same distinguishability criteria that adversarial models seek to optimize. Reductions show that minimizing distinguishability can be seen as simply boosting likelihood for certain families of models including n-gram models and neural networks with a softmax output layer. To achieve a full polynomial-time reduction, a novel next-token distinguishability model is considered. Some preliminary empirical evidence is also provided to substantiate our theoretical analyses.
[ Hall J ]

The need to learn from positive and unlabeled data, or PU learning, arises in many applications and has attracted increasing interest. While random forests are known to perform well on many tasks with positive and negative data, recent PU algorithms are generally based on deep neural networks, and the potential of tree-based PU learning is under-explored. In this paper, we propose new random forest algorithms for PU-learning. Key to our approach is a new interpretation of decision tree algorithms for positive and negative data as \emph{recursive greedy risk minimization algorithms}. We extend this perspective to the PU setting to develop new decision tree learning algorithms that directly minimizes PU-data based estimators for the expected risk. This allows us to develop an efficient PU random forest algorithm, PU extra trees. Our approach features three desirable properties: it is robust to the choice of the loss function in the sense that various loss functions lead to the same decision trees; it requires little hyperparameter tuning as compared to neural network based PU learning; it supports a feature importance that directly measures a feature's contribution to risk minimization. Our algorithms demonstrate strong performance on several datasets. Our code is available at \url{https://github.com/puetpaper/PUExtraTrees}.
[ Hall J ]

The predominant approach in reinforcement learning is to assign credit to actions based on the expected return. However, we show that the return may depend on the policy in a way which could lead to excessive variance in value estimation and slow down learning. Instead, we show that the advantage function can be interpreted as causal effects and shares similar properties with causal representations. Based on this insight, we propose Direct Advantage Estimation (DAE), a novel method that can model the advantage function and estimate it directly from on-policy data while simultaneously minimizing the variance of the return without requiring the (action-)value function. We also relate our method to Temporal Difference methods by showing how value functions can be seamlessly integrated into DAE. The proposed method is easy to implement and can be readily adapted by modern actor-critic methods. We evaluate DAE empirically on three discrete control domains and show that it can outperform generalized advantage estimation (GAE), a strong baseline for advantage estimation, on a majority of the environments when applied to policy optimization.
[ Hall J ]

Recent work has shown that a simple, fast method called Simple Graph Convolution (SGC) (Wu et al., 2019), which eschews deep learning, is competitive with deep methods like graph convolutional networks (GCNs) (Kipf & Welling, 2017) in common graph machine learning benchmarks. The use of graph data in SGC implicitly assumes the common but not universal graph characteristic of homophily, wherein nodes link to nodes which are similar. Here we confirm that SGC is indeed ineffective for heterophilous (i.e., non-homophilous) graphs via experiments on synthetic and real-world datasets. We propose Adaptive Simple Graph Convolution (ASGC), which we show can adapt to both homophilous and heterophilous graph structure. Like SGC, ASGC is not a deep model, and hence is fast, scalable, and interpretable; further, we can prove performance guarantees on natural synthetic data models. Empirically, ASGC is often competitive with recent deep models at node classification on a benchmark of real-world datasets. The SGC paper questioned whether the complexity of graph neural networks is warranted for common graph problems involving homophilous networks; our results similarly suggest that, while deep learning often achieves the highest performance, heterophilous structure alone does not necessitate these more involved methods.
[ Hall J ]

Explaining machine learning models is an important and increasingly popular area of research interest. The Shapley value from game theory has been proposed as a prime approach to compute feature importance towards model predictions on images, text, tabular data, and recently graph neural networks (GNNs) on graphs. In this work, we revisit the appropriateness of the Shapley value for GNN explanation, where the task is to identify the most important subgraph and constituent nodes for GNN predictions. We claim that the Shapley value is a non-ideal choice for graph data because it is by definition not structure-aware. We propose a Graph Structure-aware eXplanation (GStarX) method to leverage the critical graph structure information to improve the explanation. Specifically, we define a scoring function based on a new structure-aware value from the cooperative game theory proposed by Hamiache and Navarro (HN). When used to score node importance, the HN value utilizes graph structures to attribute cooperation surplus between neighbor nodes, resembling message passing in GNNs, so that node importance scores reflect not only the node feature importance, but also the node structural roles. We demonstrate that GStarX produces qualitatively more intuitive explanations, and quantitatively improves explanation fidelity over strong baselines on chemical …
[ Hall J ]
We study the problem of reward shaping to accelerate the training process of a reinforcement learning agent. Existing works have considered a number of different reward shaping formulations; however, they either require external domain knowledge or fail in environments with extremely sparse rewards. In this paper, we propose a novel framework, Exploration-Guided Reward Shaping (ExploRS), that operates in a fully self-supervised manner and can accelerate an agent's learning even in sparse-reward environments. The key idea of ExploRS is to learn an intrinsic reward function in combination with exploration-based bonuses to maximize the agent's utility w.r.t. extrinsic rewards. We theoretically showcase the usefulness of our reward shaping framework in a special family of MDPs. Experimental results on several environments with sparse/noisy reward signals demonstrate the effectiveness of ExploRS.
[ Hall J ]

Fine-grained categories that largely share the same set of parts cannot be discriminated based on part information alone, as they mostly differ in the way the local parts relate to the overall global structure of the object. We propose Relational Proxies, a novel approach that leverages the relational information between the global and local views of an object for encoding its semantic label. Starting with a rigorous formalization of the notion of distinguishability between fine-grained categories, we prove the necessary and sufficient conditions that a model must satisfy in order to learn the underlying decision boundaries in the fine-grained setting. We design Relational Proxies based on our theoretical findings and evaluate it on seven challenging fine-grained benchmark datasets and achieve state-of-the-art results on all of them, surpassing the performance of all existing works with a margin exceeding 4% in some cases. We also experimentally validate our theory on fine-grained distinguishability and obtain consistent results across multiple benchmarks. Implementation is available at https://github.com/abhrac/relational-proxies.
[ Hall J ]
Graph neural networks (GNNs) offer a new powerful alternative for multivariate time series forecasting, demonstrating remarkable success in a variety of spatio-temporal applications, from urban flow monitoring systems to health care informatics to financial analytics. Yet, such GNN models pre-dominantly capture only lower order interactions, that is, pairwise relations among nodes, and also largely ignore intrinsic time-conditioned information on the underlying topology of multivariate time series. To address these limitations, we propose a new time-aware GNN architecture which amplifies the power of the recently emerged simplicial neural networks with a time-conditioned topological knowledge representation in a form of zigzag persistence. That is, our new approach, Zigzag Filtration Curve based Supra-Hodge Convolution Networks (ZFC-SHCN) is built upon the two main components: (i) a new highly computationally efficientzigzag persistence curve which allows us to systematically encode time-conditioned topological information, and (ii) a new temporal multiplex graph representation module for learning higher-order network interactions. We discuss theoretical properties of the proposed time-conditioned topological knowledge representation and extensively validate the new time-aware ZFC-SHCN model in conjunction with time series forecasting on a broad range of synthetic and real-world datasets: traffic flows, COVID-19 biosurveillance, Ethereum blockchain, surface air temperature, wind energy, and vector autoregressions. Our …
[ Hall J ]

We propose a framework of generative adversarial networks with multiple discriminators, which collaborate to represent a real dataset more effectively. Our approach facilitates learning a generator consistent with the underlying data distribution based on real images and thus mitigates the chronic mode collapse problem. From the inspiration of multiple choice learning, we guide each discriminator to have expertise in a subset of the entire data and allow the generator to find reasonable correspondences between the latent and real data spaces automatically without extra supervision for training examples. Despite the use of multiple discriminators, the backbone networks are shared across the discriminators and the increase in training cost is marginal. We demonstrate the effectiveness of our algorithm using multiple evaluation metrics in the standard datasets for diverse tasks.
[ Hall J ]
[ Hall J ]

[ Hall J ]

Transfer learning from the model trained on large datasets to customized downstream tasks has been widely used as the pre-trained model can greatly boost the generalizability. However, the increasing sizes of pre-trained models also lead to a prohibitively large memory footprints for downstream transferring, making them unaffordable for personal devices. Previous work recognizes the bottleneck of the footprint to be the activation, and hence proposes various solutions such as injecting specific lite modules. In this work, we present a novel memory-efficient transfer framework called Back Razor, that can be plug-and-play applied to any pre-trained network without changing its architecture. The key idea of Back Razor is asymmetric sparsifying: pruning the activation stored for back-propagation, while keeping the forward activation dense. It is based on the observation that the stored activation, that dominates the memory footprint, is only needed for backpropagation. Such asymmetric pruning avoids affecting the precision of forward computation, thus making more aggressive pruning possible. Furthermore, we conduct the theoretical analysis for the convergence rate of Back Razor, showing that under mild conditions, our method retains the similar convergence rate as vanilla SGD. Extensive transfer learning experiments on both Convolutional Neural Networks and Vision Transformers with classification, dense prediction, …
[ Hall J ]
We study the problem of training deep networks while quantizing parameters and activations into low-precision numeric representations, a setting central to reducing energy consumption and inference time of deployed models. We propose a method that learns different precisions, as measured by bits in numeric representations, for different weights in a neural network, yielding a heterogeneous allocation of bits across parameters. Learning precisions occurs alongside learning weight values, using a strategy derived from a novel framework wherein the intractability of optimizing discrete precisions is approximated by training per-parameter noise magnitudes. We broaden this framework to also encompass learning precisions for hidden state activations, simultaneously with weight precisions and values. Our approach exposes the objective of constructing a low-precision inference-efficient model to the entirety of the training process. Experiments show that it finds highly heterogeneous precision assignments for CNNs trained on CIFAR and ImageNet, improving upon previous state-of-the-art quantization methods. Our improvements extend to the challenging scenario of learning reduced-precision GANs.
[ Hall J ]

We show that standard Transformers without graph-specific modifications can lead to promising results in graph learning both in theory and practice. Given a graph, we simply treat all nodes and edges as independent tokens, augment them with token embeddings, and feed them to a Transformer. With an appropriate choice of token embeddings, we prove that this approach is theoretically at least as expressive as an invariant graph network (2-IGN) composed of equivariant linear layers, which is already more expressive than all message-passing Graph Neural Networks (GNN). When trained on a large-scale graph dataset (PCQM4Mv2), our method coined Tokenized Graph Transformer (TokenGT) achieves significantly better results compared to GNN baselines and competitive results compared to Transformer variants with sophisticated graph-specific inductive bias. Our implementation is available at https://github.com/jw9730/tokengt.
[ Hall J ]

The stochastic contextual bandit problem, which models the trade-off between exploration and exploitation, has many real applications, including recommender systems, online advertising and clinical trials. As many other machine learning algorithms, contextual bandit algorithms often have one or more hyper-parameters. As an example, in most optimal stochastic contextual bandit algorithms, there is an unknown exploration parameter which controls the trade-off between exploration and exploitation. A proper choice of the hyper-parameters is essential for contextual bandit algorithms to perform well. However, it is infeasible to use offline tuning methods to select hyper-parameters in contextual bandit environment since there is no pre-collected dataset and the decisions have to be made in real time. To tackle this problem, we first propose a two-layer bandit structure for auto tuning the exploration parameter and further generalize it to the Syndicated Bandits framework which can learn multiple hyper-parameters dynamically in contextual bandit environment. We derive the regret bounds of our proposed Syndicated Bandits framework and show it can avoid its regret dependent exponentially in the number of hyper-parameters to be tuned. Moreover, it achieves optimal regret bounds under certain scenarios. Syndicated Bandits framework is general enough to handle the tuning tasks in many popular contextual bandit …
[ Hall J ]

The bias-variance trade-off is a well-known problem in machine learning that only gets more pronounced the less available data there is. In active learning, where labeled data is scarce or difficult to obtain, neglecting this trade-off can cause inefficient and non-optimal querying, leading to unnecessary data labeling. In this paper, we focus on active learning with Gaussian Processes (GPs). For the GP, the bias-variance trade-off is made by optimization of the two hyperparameters: the length scale and noise-term. Considering that the optimal mode of the joint posterior of the hyperparameters is equivalent to the optimal bias-variance trade-off, we approximate this joint posterior and utilize it to design two new acquisition functions. The first one is a Bayesian variant of Query-by-Committee (B-QBC), and the second is an extension that explicitly minimizes the predictive variance through a Query by Mixture of Gaussian Processes (QB-MGP) formulation. Across six simulators, we empirically show that B-QBC, on average, achieves the best marginal likelihood, whereas QB-MGP achieves the best predictive performance. We show that incorporating the bias-variance trade-off in the acquisition functions mitigates unnecessary and expensive data labeling.
[ Hall J ]

[ Hall J ]

[ Hall J ]

The kernel function and its hyperparameters are the central model selection choice in a Gaussian process (Rasmussen and Williams, 2006).Typically, the hyperparameters of the kernel are chosen by maximising the marginal likelihood, an approach known as Type-II maximum likelihood (ML-II). However, ML-II does not account for hyperparameter uncertainty, and it is well-known that this can lead to severely biased estimates and an underestimation of predictive uncertainty. While there are several works which employ fully Bayesian characterisation of GPs, relatively few propose such approaches for the sparse GPs paradigm. In this work we propose an algorithm for sparse Gaussian process regression which leverages MCMC to sample from the hyperparameter posterior within the variational inducing point framework of (Titsias, 2009). This work is closely related to (Hensman et al, 2015b) but side-steps the need to sample the inducing points, thereby significantly improving sampling efficiency in the Gaussian likelihood case. We compare this scheme against natural baselines in literature along with stochastic variational GPs (SVGPs) along with an extensive computational analysis.
[ Hall J ]

The Bradley-Terry-Luce (BTL) model is a classic and very popular statistical approach for eliciting a global ranking among a collection of items using pairwise comparison data. In applications in which the comparison outcomes are observed as a time series, it is often the case that data are non-stationary, in the sense that the true underlying ranking changes over time. In this paper we are concerned with localizing the change points in a high-dimensional BTL model with piece-wise constant parameters. We propose novel and practicable algorithms based on dynamic programming that can consistently estimate the unknown locations of the change points. We provide consistency rates for our methodology that depend explicitly on the model parameters, the temporal spacing between two consecutive change points and the magnitude of the change. We corroborate our findings with extensive numerical experiments and a real-life example.
[ Hall J ]

Complex time-varying systems are often studied by abstracting away from the dynamics of individual components to build a model of the population-level dynamics from the start. However, when building a population-level description, it can be easy to lose sight of each individual and how they contribute to the larger picture. In this paper, we present a novel transformer architecture for learning from time-varying data that builds descriptions of both the individual as well as the collective population dynamics. Rather than combining all of our data into our model at the onset, we develop a separable architecture that operates on individual time-series first before passing them forward; this induces a permutation-invariance property and can be used to transfer across systems of different size and order. After demonstrating that our model can be applied to successfully recover complex interactions and dynamics in many-body systems, we apply our approach to populations of neurons in the nervous system. On neural activity datasets, we show that our model not only yields robust decoding performance, but also provides impressive performance in transfer across recordings of different animals without any neuron-level correspondence. By enabling flexible pre-training that can be transferred to neural recordings of different size and …
[ Hall J ]
Differential equations play important roles in modeling complex physical systems. Recent advances present interesting research directions by combining differential equations with neural networks. By including noise, stochastic differential equations (SDEs) allows us to model data with uncertainty and measure imprecision. There are many variants of noises known to exist in many real-world data. For example, previously white noises are idealized and induced by Brownian motions. Nevertheless, there is a lack of machine learning models that can handle such noises. In this paper, we introduce a generalized fractional white noise to existing models and propose an efficient approximation of noise sample paths based on classical integration methods and sparse Gaussian processes. Our experimental results demonstrate that the proposed model can capture noise characteristics such as continuity from various time series data, therefore improving model fittings over existing models. We examine how we can apply our approach to score-based generative models, showing that there exists a case of our generalized noise resulting in a better image generation measure.
[ Hall J ]
We show that typical implicit regularization assumptions for deep neural networks (for regression) do not hold for coordinate-MLPs, a family of MLPs that are now ubiquitous in computer vision for representing high-frequency signals. Lack of such implicit bias disrupts smooth interpolations between training samples, and hampers generalizing across signal regions with different spectra. We investigate this behavior through a Fourier lens and uncover that as the bandwidth of a coordinate-MLP is enhanced, lower frequencies tend to get suppressed unless a suitable prior is provided explicitly. Based on these insights, we propose a simple regularization technique that can mitigate the above problem, which can be incorporated into existing networks without any architectural modifications.
[ Hall J ]

Deep learning is increasingly moving towards a transfer learning paradigm whereby large foundation models are fine-tuned on downstream tasks, starting from an initialization learned on the source task. But an initialization contains relatively little information about the source task, and does not reflect the belief that our knowledge of the source task should affect the locations and shape of optima on the downstream task.Instead, we show that we can learn highly informative posteriors from the source task, through supervised or self-supervised approaches, which then serve as the basis for priors that modify the whole loss surface on the downstream task. This simple modular approach enables significant performance gains and more data-efficient learning on a variety of downstream classification and segmentation tasks, serving as a drop-in replacement for standard pre-training strategies. These highly informative priors also can be saved for future use, similar to pre-trained weights, and stand in contrast to the zero-mean isotropic uninformative priors that are typically used in Bayesian deep learning.
[ Hall J ]

We introduce GAUDI, a generative model capable of capturing the distribution of complex and realistic 3D scenes that can be rendered immersively from a moving camera. We tackle this challenging problem with a scalable yet powerful approach, where we first optimize a latent representation that disentangles radiance fields and camera poses. This latent representation is then used to learn a generative model that enables both unconditional and conditional generation of 3D scenes. Our model generalizes previous works that focus on single objects by removing the assumption that the camera pose distribution can be shared across samples. We show that GAUDI obtains state-of-the-art performance in the unconditional generative setting across multiple datasets and allows for conditional generation of 3D scenes given conditioning variables like sparse image observations or text that describes the scene.
[ Hall J ]

Neural networks are prone to be biased towards spurious correlations between classes and latent attributes exhibited in a major portion of training data, which ruins their generalization capability. We propose a new method for training debiased classifiers with no spurious attribute label. The key idea is to employ a committee of classifiers as an auxiliary module that identifies bias-conflicting data, i.e., data without spurious correlation, and assigns large weights to them when training the main classifier. The committee is learned as a bootstrapped ensemble so that a majority of its classifiers are biased as well as being diverse, and intentionally fail to predict classes of bias-conflicting data accordingly. The consensus within the committee on prediction difficulty thus provides a reliable cue for identifying and weighting bias-conflicting data. Moreover, the committee is also trained with knowledge transferred from the main classifier so that it gradually becomes debiased along with the main classifier and emphasizes more difficult data as training progresses. On five real-world datasets, our method outperforms prior arts using no spurious attribute label like ours and even surpasses those relying on bias labels occasionally. Our code is available at https://github.com/nayeong-v-kim/LWBC.
[ Hall J ]

Multi-agent reinforcement learning (MARL) has witnessed significant progress with the development of value function factorization methods. It allows optimizing a joint action-value function through the maximization of factorized per-agent utilities. In this paper, we show that in partially observable MARL problems, an agent's ordering over its own actions could impose concurrent constraints (across different states) on the representable function class, causing significant estimation errors during training. We tackle this limitation and propose PAC, a new framework leveraging Assistive information generated from Counterfactual Predictions of optimal joint action selection, which enable explicit assistance to value function factorization through a novel counterfactual loss. A variational inference-based information encoding method is developed to collect and encode the counterfactual predictions from an estimated baseline. To enable decentralized execution, we also derive factorized per-agent policies inspired by a maximum-entropy MARL framework. We evaluate the proposed PAC on multi-agent predator-prey and a set of StarCraft II micromanagement tasks. Empirical results demonstrate improved results of PAC over state-of-the-art value-based and policy-based multi-agent reinforcement learning algorithms on all benchmarks.
[ Hall J ]

Transformer-based models show their effectiveness across multiple domains and tasks. The self-attention allows to combine information from all sequence elements into context-aware representations. However, global and local information has to be stored mostly in the same element-wise representations. Moreover, the length of an input sequence is limited by quadratic computational complexity of self-attention. In this work, we propose and study a memory-augmented segment-level recurrent Transformer (RMT). Memory allows to store and process local and global information as well as to pass information between segments of the long sequence with the help of recurrence. We implement a memory mechanism with no changes to Transformer model by adding special memory tokens to the input or output sequence. Then the model is trained to control both memory operations and sequence representations processing. Results of experiments show that RMT performs on par with the Transformer-XL on language modeling for smaller memory sizes and outperforms it for tasks that require longer sequence processing. We show that adding memory tokens to Tr-XL is able to improve its performance. This makes Recurrent Memory Transformer a promising architecture for applications that require learning of long-term dependencies and general purpose in memory processing, such as algorithmic tasks and reasoning.
[ Hall J ]

Vision Transformers (ViTs) have triggered the most recent and significant breakthroughs in computer vision. Their efficient designs are mostly guided by the indirect metric of computational complexity, i.e., FLOPs, which however has a clear gap with the direct metric such as throughput. Thus, we propose to use the direct speed evaluation on the target platform as the design principle for efficient ViTs. Particularly, we introduce LITv2, a simple and effective ViT which performs favourably against the existing state-of-the-art methods across a spectrum of different model sizes with faster speed. At the core of LITv2 is a novel self-attention mechanism, which we dub HiLo. HiLo is inspired by the insight that high frequencies in an image capture local fine details and low frequencies focus on global structures, whereas a multi-head self-attention layer neglects the characteristic of different frequencies. Therefore, we propose to disentangle the high/low frequency patterns in an attention layer by separating the heads into two groups, where one group encodes high frequencies via self-attention within each local window, and another group encodes low frequencies by performing global attention between the average-pooled low-frequency keys and values from each window and each query position in the input feature map. Benefiting from …
[ Hall J ]

The receptive field (RF), which determines the region of time series to be “seen” and used, is critical to improve the performance for time series classification (TSC). However, the variation of signal scales across and within time series data, makes it challenging to decide on proper RF sizes for TSC. In this paper, we propose a dynamic sparse network (DSN) with sparse connections for TSC, which can learn to cover various RF without cumbersome hyper-parameters tuning. The kernels in each sparse layer are sparse and can be explored under the constraint regions by dynamic sparse training, which makes it possible to reduce the resource cost. The experimental results show that the proposed DSN model can achieve state-of-art performance on both univariate and multivariate TSC datasets with less than 50% computational cost compared with recent baseline methods, opening the path towards more accurate resource-aware methods for time series analyses. Our code is publicly available at: https://github.com/QiaoXiao7282/DSN.
[ Hall J ]

Outlier detection (OD) literature exhibits numerous algorithms as it applies to diverse domains. However, given a new detection task, it is unclear how to choose an algorithm to use, nor how to set its hyperparameter(s) (HPs) in unsupervised settings. HP tuning is an ever-growing problem with the arrival of many new detectors based on deep learning, which usually come with a long list of HPs. Surprisingly, the issue of model selection in the outlier mining literature has been “the elephant in the room”; a significant factor in unlocking the utmost potential of deep methods, yet little said or done to systematically tackle the issue. In the first part of this paper, we conduct the first large-scale analysis on the HP sensitivity of deep OD methods, and through more than 35,000 trained models, quantitatively demonstrate that model selection is inevitable. Next, we design a HP-robust and scalable deep hyper-ensemble model called ROBOD that assembles models with varying HP configurations, bypassing the choice paralysis. Importantly, we introduce novel strategies to speed up ensemble training, such as parameter sharing, batch/simultaneous training, and data subsampling, that allow us to train fewer models with fewer parameters. Extensive experiments on both image and tabular datasets show …
[ Hall J ]

Human intelligence has shown remarkably lower latency and higher precision than most AI systems when processing non-stationary streaming data in real-time. Numerous neuroscience studies suggest that such abilities may be driven by internal predictive modeling. In this paper, we explore the possibility of introducing such a mechanism in unsupervised domain adaptation (UDA) for handling non-stationary streaming data for real-time streaming applications. We propose to formulate internal predictive modeling as a continuous-time Bayesian filtering problem within a stochastic dynamical system context. Such a dynamical system describes the dynamics of model parameters of a UDA model evolving with non-stationary streaming data. Building on such a dynamical system, we then develop extrapolative continuous-time Bayesian neural networks (ECBNN), which generalize existing Bayesian neural networks to represent temporal dynamics and allow us to extrapolate the distribution of model parameters before observing the incoming data, therefore effectively reducing the latency. Remarkably, our empirical results show that ECBNN is capable of continuously generating better distributions of model parameters along the time axis given historical data only, thereby achieving (1) training-free test-time adaptation with low latency, (2) gradually improved alignment between the source and target features and (3) gradually improved model performance over time during the real-time testing …
[ Hall J ]

Using machine learning to solve combinatorial optimization (CO) problems is challenging, especially when the data is unlabeled. This work proposes an unsupervised learning framework for CO problems. Our framework follows the standard relaxation-plus-rounding approach and adopts neural networks to parameterize the relaxed solutions so that simple back-propagation can train them end-to-end. Our key contribution is the observation that if the relaxed objective satisfies entry-wise concavity, a low optimization loss guarantees the quality of the obtained integral solutions. This observation significantly generalizes the applicability of the previous framework inspired by Erdos' probabilistic method (Karalias & Loukas, 2020). Our framework is particularly suitable to guide the design of objective models in the applications where the objectives are not given explicitly while requiring being modeled and learned first. We evaluate our framework by solving a synthetic graph optimization problem, and two real-world applications including resource allocation in circuit design and approximate computing. Our framework largely outperforms the baselines based on reinforcement learning and Gumbel-softmax tricks.
[ Hall J ]

[ Hall J ]

[ Hall J ]

In many real-world inverse problems, only incomplete measurement data are available for training which can pose a problem for learning a reconstruction function. Indeed, unsupervised learning using a fixed incomplete measurement process is impossible in general, as there is no information in the nullspace of the measurement operator. This limitation can be overcome by using measurements from multiple operators. While this idea has been successfully applied in various applications, a precise characterization of the conditions for learning is still lacking. In this paper, we fill this gap by presenting necessary and sufficient conditions for learning the underlying signal model needed for reconstruction which indicate the interplay between the number of distinct measurement operators, the number of measurements per operator, the dimension of the model and the dimension of the signals. Furthermore, we propose a novel and conceptually simple unsupervised learning loss which only requires access to incomplete measurement data and achieves a performance on par with supervised learning when the sufficient condition is verified. We validate our theoretical bounds and demonstrate the advantages of the proposed unsupervised loss compared to previous methods via a series of experiments on various imaging inverse problems, such as accelerated magnetic resonance imaging, compressed sensing …
[ Hall J ]

We study generalization properties of random features (RF) regression in high dimensions optimized by stochastic gradient descent (SGD) in under-/over-parameterized regime. In this work, we derive precise non-asymptotic error bounds of RF regression under both constant and polynomial-decay step-size SGD setting, and observe the double descent phenomenon both theoretically and empirically. Our analysis shows how to cope with multiple randomness sources of initialization, label noise, and data sampling (as well as stochastic gradients) with no closed-form solution, and also goes beyond the commonly-used Gaussian/spherical data assumption. Our theoretical results demonstrate that, with SGD training, RF regression still generalizes well for interpolation learning, and is able to characterize the double descent behavior by the unimodality of variance and monotonic decrease of bias. Besides, we also prove that the constant step-size SGD setting incurs no loss in convergence rate when compared to the exact minimum-norm interpolator, as a theoretical justification of using SGD in practice.
[ Hall J ]
Neural Architecture Search (NAS) has fostered the automatic discovery of state-of-the-art neural architectures. Despite the progress achieved with NAS, so far there is little attention to theoretical guarantees on NAS. In this work, we study the generalization properties of NAS under a unifying framework enabling (deep) layer skip connection search and activation function search. To this end, we derive the lower (and upper) bounds of the minimum eigenvalue of the Neural Tangent Kernel (NTK) under the (in)finite-width regime using a certain search space including mixed activation functions, fully connected, and residual neural networks. We use the minimum eigenvalue to establish generalization error bounds of NAS in the stochastic gradient descent training. Importantly, we theoretically and experimentally show how the derived results can guide NAS to select the top-performing architectures, even in the case without training, leading to a train-free algorithm based on our theory. Accordingly, our numerical validation shed light on the design of computationally efficient methods for NAS. Our analysis is non-trivial due to the coupling of various architectures and activation functions under the unifying framework and has its own interest in providing the lower bound of the minimum eigenvalue of NTK in deep learning theory.
[ Hall J ]

Stochastic Programming is a powerful modeling framework for decision-making under uncertainty. In this work, we tackle two-stage stochastic programs (2SPs), the most widely used class of stochastic programming models. Solving 2SPs exactly requires optimizing over an expected value function that is computationally intractable. Having a mixed-integer linear program (MIP) or a nonlinear program (NLP) in the second stage further aggravates the intractability, even when specialized algorithms that exploit problem structure are employed.Finding high-quality (first-stage) solutions -- without leveraging problem structure -- can be crucial in such settings. We develop Neur2SP, a new method that approximates the expected value function via a neural network to obtain a surrogate model that can be solved more efficiently than the traditional extensive formulation approach. Neur2SP makes no assumptions about the problem structure, in particular about the second-stage problem, and can be implemented using an off-the-shelf MIP solver. Our extensive computational experiments on four benchmark 2SP problem classes with different structures (containing MIP and NLP second-stage problems) demonstrate the efficiency (time) and efficacy (solution quality) of Neur2SP. In under 1.66 seconds, Neur2SP finds high-quality solutions across all problems even as the number of scenarios increases, an ideal property that is difficult to have for traditional …
[ Hall J ]
Inverse reinforcement learning (IRL) seeks to infer a cost function that explains the underlying goals and preferences of expert demonstrations. This paper presents Receding Horizon Inverse Reinforcement Learning (RHIRL), a new IRL algorithm for high-dimensional, noisy, continuous systems with black-box dynamic models. RHIRL addresses two key challenges of IRL: scalability and robustness. To handle high-dimensional continuous systems, RHIRL matches the induced optimal trajectories with expert demonstrations locally in a receding horizon manner and stitches'' together the local solutions to learn the cost; it thereby avoids the
curse of dimensionality''. This contrasts sharply with earlier algorithms that match with expert demonstrations globally over the entire high-dimensional state space. To be robust against imperfect expert demonstrations and control noise, RHIRL learns a state-dependent cost function ``disentangled'' from system dynamics under mild conditions. Experiments on benchmark tasks show that RHIRL outperforms several leading IRL algorithms in most instances. We also prove that the cumulative error of RHIRL grows linearly with the task duration.
[ Hall J ]
Recent work has seen the development of general purpose neural architectures that can be trained to perform tasks across diverse data modalities. General purpose models typically make few assumptions about the underlying data-structure and are known to perform well in the large-data regime. At the same time, there has been growing interest in modular neural architectures that represent the data using sparsely interacting modules. These models can be more robust out-of-distribution, computationally efficient, and capable of sample-efficient adaptation to new data. However, they tend to make domain-specific assumptions about the data, and present challenges in how module behavior (i.e., parameterization) and connectivity (i.e., their layout) can be jointly learned. In this work, we introduce a general purpose, yet modular neural architecture called Neural Attentive Circuits (NACs) that jointly learns the parameterization and a sparse connectivity of neural modules without using domain knowledge. NACs are best understood as the combination of two systems that are jointly trained end-to-end: one that determines the module configuration and the other that executes it on an input. We demonstrate qualitatively that NACs learn diverse and meaningful module configurations on the Natural Language and Visual Reasoning for Real (NLVR2) dataset without additional supervision. Quantitatively, we show …
[ Hall J ]
Modeling multi-agent systems requires understanding how agents interact. Such systems are often difficult to model because they can involve a variety of types of interactions that layer together to drive rich social behavioral dynamics. Here we introduce a method for accurately modeling multi-agent systems. We present Interaction Modeling with Multiplex Attention (IMMA), a forward prediction model that uses a multiplex latent graph to represent multiple independent types of interactions and attention to account for relations of different strengths. We also introduce Progressive Layer Training, a training strategy for this architecture. We show that our approach outperforms state-of-the-art models in trajectory forecasting and relation inference, spanning three multi-agent scenarios: social navigation, cooperative task achievement, and team sports. We further demonstrate that our approach can improve zero-shot generalization and allows us to probe how different interactions impact agent behavior.
[ Hall J ]

Neural networks are known to exploit spurious artifacts (or shortcuts) that co-occur with a target label, exhibiting heuristic memorization. On the other hand, networks have been shown to memorize training examples, resulting in example-level memorization. These kinds of memorization impede generalization of networks beyond their training distributions. Detecting such memorization could be challenging, often requiring researchers to curate tailored test sets. In this work, we hypothesize—and subsequently show—that the diversity in the activation patterns of different neurons is reflective of model generalization and memorization. We quantify the diversity in the neural activations through information-theoretic measures and find support for our hypothesis in experiments spanning several natural language and vision tasks. Importantly, we discover that information organization points to the two forms of memorization, even for neural activations computed on unlabeled in-distribution examples. Lastly, we demonstrate the utility of our findings for the problem of model selection.
[ Hall J ]
A striking observation about iterative magnitude pruning (IMP; Frankle et al. 2020) is that—after just a few hundred steps of dense training—the method can find a sparse sub-network that can be trained to the same accuracy as the dense network. However, the same does not hold at step 0, i.e. random initialization. In this work, we seek to understand how this early phase of pre-training leads to a good initialization for IMP both through the lens of the data distribution and the loss landscape geometry. Empirically we observe that, holding the number of pre-training iterations constant, training on a small fraction of (randomly chosen) data suffices to obtain an equally good initialization for IMP. We additionally observe that by pre-training only on "easy" training data, we can decrease the number of steps necessary to find a good initialization for IMP compared to training on the full dataset or a randomly chosen subset. Finally, we identify novel properties of the loss landscape of dense networks that are predictive of IMP performance, showing in particular that more examples being linearly mode connected in the dense network correlates well with good initializations for IMP. Combined, these results provide new insight into the role …
[ Hall J ]

In this paper, we study the statistical limits in terms of Sobolev norms of gradient descent for solving inverse problem from randomly sampled noisy observations using a general class of objective functions. Our class of objective functions includes Sobolev training for kernel regression, Deep Ritz Methods (DRM), and Physics Informed Neural Networks (PINN) for solving elliptic partial differential equations (PDEs) as special cases. We consider a potentially infinite-dimensional parameterization of our model using a suitable Reproducing Kernel Hilbert Space and a continuous parameterization of problem hardness through the definition of kernel integral operators. We prove that gradient descent over this objective function can also achieve statistical optimality and the optimal number of passes over the data increases with sample size. Based on our theory, we explain an implicit acceleration of using a Sobolev norm as the objective function for training, inferring that the optimal number of epochs of DRM becomes larger than the number of PINN when both the data size and the hardness of tasks increase, although both DRM and PINN can achieve statistical optimality.
[ Hall J ]

[ Hall J ]

Stochastic gradient descent (SGD) is a pillar of modern machine learning, serving as the go-to optimization algorithm for a diverse array of problems. While the empirical success of SGD is often attributed to its computational efficiency and favorable generalization behavior, neither effect is well understood and disentangling them remains an open problem. Even in the simple setting of convex quadratic problems, worst-case analyses give an asymptotic convergence rate for SGD that is no better than full-batch gradient descent (GD), and the purported implicit regularization effects of SGD lack a precise explanation. In this work, we study the dynamics of multi-pass SGD on high-dimensional convex quadratics and establish an asymptotic equivalence to a stochastic differential equation, which we call homogenized stochastic gradient descent (HSGD), whose solutions we characterize explicitly in terms of a Volterra integral equation. These results yield precise formulas for the learning and risk trajectories, which reveal a mechanism of implicit conditioning that explains the efficiency of SGD relative to GD. We also prove that the noise from SGD negatively impacts generalization performance, ruling out the possibility of any type of implicit regularization in this context. Finally, we show how to adapt the HSGD formalism to include streaming SGD, …
[ Hall J ]

Learning With Opponent-Learning Awareness (LOLA) (Foerster et al. [2018a]) is a multi-agent reinforcement learning algorithm that typically learns reciprocity-based cooperation in partially competitive environments. However, LOLA often fails to learn such behaviour on more complex policy spaces parameterized by neural networks, partly because the update rule is sensitive to the policy parameterization. This problem is especially pronounced in the opponent modeling setting, where the opponent's policy is unknown and must be inferred from observations; in such settings, LOLA is ill-specified because behaviorally equivalent opponent policies can result in non-equivalent updates. To address this shortcoming, we reinterpret LOLA as approximating a proximal operator, and then derive a new algorithm, proximal LOLA (POLA), which uses the proximal formulation directly. Unlike LOLA, the POLA updates are parameterization invariant, in the sense that when the proximal objective has a unique optimum, behaviorally equivalent policies result in behaviorally equivalent updates. We then present practical approximations to the ideal POLA update, which we evaluate in several partially competitive environments with function approximation and opponent modeling. This empirically demonstrates that POLA achieves reciprocity-based cooperation more reliably than LOLA.
[ Hall J ]
The factorization of state-action value functions for Multi-Agent Reinforcement Learning (MARL) is important. Existing studies are limited by their representation capability, sample efficiency, and approximation error. To address these challenges, we propose, ResQ, a MARL value function factorization method, which can find the optimal joint policy for any state-action value function through residual functions. ResQ masks some state-action value pairs from a joint state-action value function, which is transformed as the sum of a main function and a residual function. ResQ can be used with mean-value and stochastic-value RL. We theoretically show that ResQ can satisfy both the individual global max (IGM) and the distributional IGM principle without representation limitations. Through experiments on matrix games, the predator-prey, and StarCraft benchmarks, we show that ResQ can obtain better results than multiple expected/stochastic value factorization methods.
[ Hall J ]

Information-theoretic Bayesian optimization techniques have become popular for optimizing expensive-to-evaluate black-box functions due to their non-myopic qualities. Entropy Search and Predictive Entropy Search both consider the entropy over the optimum in the input space, while the recent Max-value Entropy Search considers the entropy over the optimal value in the output space. We propose Joint Entropy Search (JES), a novel information-theoretic acquisition function that considers an entirely new quantity, namely the entropy over the joint optimal probability density over both input and output space. To incorporate this information, we consider the reduction in entropy from conditioning on fantasized optimal input/output pairs. The resulting approach primarily relies on standard GP machinery and removes complex approximations typically associated with information-theoretic methods. With minimal computational overhead, JES shows superior decision-making, and yields state-of-the-art performance for information-theoretic approaches across a wide suite of tasks. As a light-weight approach with superior results, JES provides a new go-to acquisition function for Bayesian optimization.
[ Hall J ]
Many generative models synthesize data by transforming a standard Gaussian random variable using a deterministic neural network. Among these models are the Variational Autoencoders and the Generative Adversarial Networks. In this work, we call them "push-forward" models and study their expressivity. We formally demonstrate that the Lipschitz constant of these generative networks has to be large in order to fit multimodal distributions. More precisely, we show that the total variation distance and the Kullback-Leibler divergence between the generated and the data distribution are bounded from below by a constant depending on the mode separation and the Lipschitz constant. Since constraining the Lipschitz constants of neural networks is a common way to stabilize generative models, there is a provable trade-off between the ability of push-forward models to approximate multimodal distributions and the stability of their training. We validate our findings on one-dimensional and image datasets and empirically show that the recently introduced diffusion models do not suffer of such limitation.
[ Hall J ]

Domain decomposition methods are widely used and effective in the approximation of solutions to partial differential equations. Yet the \textit{optimal} construction of these methods requires tedious analysis and is often available only in simplified, structured-grid settings, limiting their use for more complex problems. In this work, we generalize optimized Schwarz domain decomposition methods to unstructured-grid problems, using Graph Convolutional Neural Networks (GCNNs) and unsupervised learning to learn optimal modifications at subdomain interfaces. A key ingredient in our approach is an improved loss function, enabling effective training on relatively small problems, but robust performance on arbitrarily large problems, with computational cost linear in problem size. The performance of the learned linear solvers is compared with both classical and optimized domain decomposition algorithms, for both structured- and unstructured-grid problems.
[ Hall J ]

With the advent of deep learning over the last decade, a considerable amount of effort has gone into better understanding and enhancing Stochastic Gradient Descent so as to improve the performance and stability of artificial neural network training. Active research fields in this area include exploiting second order information of the loss landscape and improving the understanding of chaotic dynamics in optimization. This paper exploits the theoretical connection between the curvature of the loss landscape and chaotic dynamics in neural network training to propose a modified SGD ensuring non-chaotic training dynamics to study the importance thereof in NN training. Building on this, we present empirical evidence suggesting that the negative eigenspectrum - and thus directions of local chaos - cannot be removed from SGD without hurting training performance. Extending our empirical analysis to long-term chaos dynamics, we challenge the widespread understanding of convergence against a confined region in parameter space. Our results show that although chaotic network behavior is mostly confined to the initial training phase, models perturbed upon initialization do diverge at a slow pace even after reaching top training performance, and that their divergence can be modelled through a composition of a random walk and a linear divergence. …
[ Hall J ]

In this paper, we provide an in-depth study of Stochastic Backpropagation (SBP) when training deep neural networks for standard image classification and object detection tasks. During backward propagation, SBP calculates gradients by using only a subset of feature maps to save GPU memory and computational cost. We interpret SBP as an efficient way to implement stochastic gradient decent by performing backpropagation dropout, which leads to significant memory saving and training run-time reduction, with a minimal impact on the overall model accuracy. We offer best practices to apply SBP for training image recognition models, which can be adopted in learning a wide range of deep neural networks. Experiments on image classification and object detection show that SBP can save up to 40% of GPU memory with less than 1% accuracy degradation. Code is available at: https://github.com/amazon-research/stochastic-backpropagation
[ Hall J ]

[ Hall J ]

The theory of representation learning aims to build methods that provably invert the data generating process with minimal domain knowledge or any source of supervision. Most prior approaches require strong distributional assumptions on the latent variables and weak supervision (auxiliary information such as timestamps) to provide provable identification guarantees. In this work, we show that if one has weak supervision from observations generated by sparse perturbations of the latent variables--e.g. images in a reinforcement learning environment where actions move individual sprites--identification is achievable under unknown continuous latent distributions. We show that if the perturbations are applied only on mutually exclusive blocks of latents, we identify the latents up to those blocks. We also show that if these perturbation blocks overlap, we identify latents up to the smallest blocks shared across perturbations. Consequently, if there are blocks that intersect in one latent variable only, then such latents are identified up to permutation and scaling. We propose a natural estimation procedure based on this theory and illustrate it on low-dimensional synthetic and image-based experiments.
[ Hall J ]
Given data from diverse sets of distinct distributions, domain generalization aims to learn models that generalize to unseen distributions. A common approach is designing a data-driven surrogate penalty to capture generalization and minimize the empirical risk jointly with the penalty. We argue that a significant failure mode of this recipe is an excess risk due to an erroneous penalty or hardness in joint optimization. We present an approach that eliminates this problem. Instead of jointly minimizing empirical risk with the penalty, we minimize the penalty under the constraint of optimality of the empirical risk. This change guarantees that the domain generalization penalty cannot impair optimization of the empirical risk, \ie, in-distribution performance. To solve the proposed optimization problem, we demonstrate an exciting connection to rate-distortion theory and utilize its tools to design an efficient method. Our approach can be applied to any penalty-based domain generalization method, and we demonstrate its effectiveness by applying it to three examplar methods from the literature, showing significant improvements.
[ Hall J ]
Estimating the effects of continuous-valued interventions from observational data is a critically important task for climate science, healthcare, and economics. Recent work focuses on designing neural network architectures and regularization functions to allow for scalable estimation of average and individual-level dose-response curves from high-dimensional, large-sample data. Such methodologies assume ignorability (observation of all confounding variables) and positivity (observation of all treatment levels for every covariate value describing a set of units), assumptions problematic in the continuous treatment regime. Scalable sensitivity and uncertainty analyses to understand the ignorance induced in causal estimates when these assumptions are relaxed are less studied. Here, we develop a continuous treatment-effect marginal sensitivity model (CMSM) and derive bounds that agree with the observed data and a researcher-defined level of hidden confounding. We introduce a scalable algorithm and uncertainty-aware deep models to derive and estimate these bounds for high-dimensional, large-sample observational data. We work in concert with climate scientists interested in the climatological impacts of human emissions on cloud properties using satellite observations from the past 15 years. This problem is known to be complicated by many unobserved confounders.
[ Hall J ]

A core goal in systems neuroscience and neuroethology is to understand how neural circuits generate naturalistic behavior. One foundational idea is that complex naturalistic behavior may be composed of sequences of stereotyped behavioral syllables, which combine to generate rich sequences of actions. To investigate this, a common approach is to use autoregressive hidden Markov models (ARHMMs) to segment video into discrete behavioral syllables. While these approaches have been successful in extracting syllables that are interpretable, they fail to account for other forms of behavioral variability, such as differences in speed, which may be better described as continuous in nature. To overcome these limitations, we introduce a class of warped ARHMMs (WARHMM). As is the case in the ARHMM, behavior is modeled as a mixture of autoregressive dynamics. However, the dynamics under each discrete latent state (i.e. each behavioral syllable) are additionally modulated by a continuous latent ``warping variable.'' We present two versions of warped ARHMM in which the warping variable affects the dynamics of each syllable either linearly or nonlinearly. Using depth-camera recordings of freely moving mice, we demonstrate that the failure of ARHMMs to account for continuous behavioral variability results in duplicate cluster assignments. WARHMM achieves similar performance to …
[ Hall J ]

[ Hall J ]
We find a surprising connection between multitask learning and robustness to neuron failures. Our experiments show that bilingual language models retain higher performance under various neuron perturbations, such as random deletions, magnitude pruning and weight noise. Our study is motivated by research in cognitive science showing that symptoms of dementia and cognitive decline appear later in bilingual speakers compared to monolingual patients with similar brain damage, a phenomenon called bilingual cognitive reserve. Our language model experiments replicate this phenomenon on bilingual GPT-2 and other models.We provide a theoretical justification of this robustness by mathematically analyzing linear representation learning and showing that multitasking creates more robust representations. We open-source our code and models in the following URL: https://github.com/giannisdaras/multilingual_robustness.
[ Hall J ]

We introduce a representation learning framework for spatial trajectories. We represent partial observations of trajectories as probability distributions in a learned latent space, which characterize the uncertainty about unobserved parts of the trajectory. Our framework allows us to obtain samples from a trajectory for any continuous point in time—both interpolating and extrapolating. Our flexible approach supports directly modifying specific attributes of a trajectory, such as its pace, as well as combining different partial observations into single representations. Experiments show our method's superiority over baselines in prediction tasks.
[ Hall J ]
[ Hall J ]
[ Hall J ]
More than twenty years after its introduction, Annealed Importance Sampling (AIS) remains one of the most effective methods for marginal likelihood estimation. It relies on a sequence of distributions interpolating between a tractable initial distribution and the target distribution of interest which we simulate from approximately using a non-homogeneous Markov chain. To obtain an importance sampling estimate of the marginal likelihood, AIS introduces an extended target distribution to reweight the Markov chain proposal. While much effort has been devoted to improving the proposal distribution used by AIS, by changing the intermediate distributions and corresponding Markov kernels, an underappreciated issue is that AIS uses a convenient but suboptimal extended target distribution. This can hinder its performance. We here leverage recent progress in score-based generative modeling (SGM) to approximate the optimal extended target distribution for AIS proposals corresponding to the discretization of Langevin and Hamiltonian dynamics. We demonstrate these novel, differentiable, AIS procedures on a number of synthetic benchmark distributions and variational auto-encoders.
[ Hall J ]
While there has been extensive work on learning from offline data for contextual multi-armed bandit settings, existing methods typically assume there is no environment shift: that the learned policy will operate in the same environmental process as that of data collection. However, this assumption may limit the use of these methods for many practical situations where there may be distribution shifts. In this work we propose Factored Distributionally Robust Optimization (Factored-DRO), which is able to separately handle distribution shifts in the context distribution and shifts in the reward generating process. Prior work that either ignores potential shifts in the context, or considers them jointly, can lead to performance that is too conservative, especially under certain forms of reward feedback. Our Factored-DRO objective mitigates this by considering the shifts separately, and our proposed estimators are consistent and converge asymptotically. We also introduce a practical algorithm and demonstrate promising empirical results in environments based on real-world datasets, such as voting outcomes and scene classification.
[ Hall J ]
The availability of large pre-trained models is changing the landscape of Machine Learning research and practice, moving from a "training from scratch" to a "fine-tuning'' paradigm. While in some applications the goal is to "nudge'' the pre-trained distribution towards preferred outputs, in others it is to steer it towards a different distribution over the sample space. Two main paradigms have emerged to tackle this challenge: Reward Maximization (RM) and, more recently, Distribution Matching (DM). RM applies standard Reinforcement Learning (RL) techniques, such as Policy Gradients, to gradually increase the reward signal. DM prescribes to first make explicit the target distribution that the model is fine-tuned to approximate. Here we explore the theoretical connections between the two paradigms and show that methods such as KL-control developed in the RM paradigm can also be construed as belonging to DM. We further observe that while DM differs from RM, it can suffer from similar training difficulties, such as high gradient variance. We leverage connections between the two paradigms to import the concept of baseline into DM methods. We empirically validate the benefits of adding a baseline on an array of controllable language generation tasks such as constraining topic, sentiment, and gender distributions in …
[ Hall J ]

Building generally capable agents is a grand challenge for deep reinforcement learning (RL). To approach this challenge practically, we outline two key desiderata: 1) to facilitate generalization, exploration should be task agnostic; 2) to facilitate scalability, exploration policies should collect large quantities of data without costly centralized retraining. Combining these two properties, we introduce the reward-free deployment efficiency setting, a new paradigm for RL research. We then present CASCADE, a novel approach for self-supervised exploration in this new setting. CASCADE seeks to learn a world model by collecting data with a population of agents, using an information theoretic objective inspired by Bayesian Active Learning. CASCADE achieves this by specifically maximizing the diversity of trajectories sampled by the population through a novel cascading objective. We provide theoretical intuition for CASCADE which we show in a tabular setting improves upon naïve approaches that do not account for population diversity. We then demonstrate that CASCADE collects diverse task-agnostic datasets and learns agents that generalize zero-shot to novel, unseen downstream tasks on Atari, MiniGrid, Crafter and the DM Control Suite. Code and videos are available at https://ycxuyingchen.github.io/cascade/
[ Hall J ]

Learning policies that effectively utilize language instructions in complex, multi-task environments is an important problem in imitation learning. While it is possible to condition on the entire language instruction directly, such an approach could suffer from generalization issues. To encode complex instructions into skills that can generalize to unseen instructions, we propose Learning Interpretable Skill Abstractions (LISA), a hierarchical imitation learning framework that can learn diverse, interpretable skills from language-conditioned demonstrations. LISA uses vector quantization to learn discrete skill codes that are highly correlated with language instructions and the behavior of the learned policy. In navigation and robotic manipulation environments, LISA is able to outperform a strong non-hierarchical baseline in the low data regime and compose learned skills to solve tasks containing unseen long-range instructions. Our method demonstrates a more natural way to condition on language in sequential decision-making problems and achieve interpretable and controllable behavior with the learned skills.
[ Hall J ]

Inverse rendering of an object under entirely unknown capture conditions is a fundamental challenge in computer vision and graphics. Neural approaches such as NeRF have achieved photorealistic results on novel view synthesis, but they require known camera poses. Solving this problem with unknown camera poses is highly challenging as it requires joint optimization over shape, radiance, and pose. This problem is exacerbated when the input images are captured in the wild with varying backgrounds and illuminations. Standard pose estimation techniques fail in such image collections in the wild due to very few estimated correspondences across images. Furthermore, NeRF cannot relight a scene under any illumination, as it operates on radiance (the product of reflectance and illumination). We propose a joint optimization framework to estimate the shape, BRDF, and per-image camera pose and illumination. Our method works on in-the-wild online image collections of an object and produces relightable 3D assets for several use-cases such as AR/VR. To our knowledge, our method is the first to tackle this severely unconstrained task with minimal user interaction.
[ Hall J ]

We study a new paradigm of knowledge transfer that aims at encoding graph topological information into graph neural networks (GNNs) by distilling knowledge from a teacher GNN model trained on a complete graph to a student GNN model operating on a smaller or sparser graph. To this end, we revisit the connection between thermodynamics and the behavior of GNN, based on which we propose Neural Heat Kernel (NHK) to encapsulate the geometric property of the underlying manifold concerning the architecture of GNNs. A fundamental and principled solution is derived by aligning NHKs on teacher and student models, dubbed as Geometric Knowledge Distillation. We develop non- and parametric instantiations and demonstrate their efficacy in various experimental settings for knowledge distillation regarding different types of privileged topological information and teacher-student schemes.
[ Hall J ]

[ Hall J ]
Modern machine learning models are opaque, and as a result there is a burgeoning academic subfield on methods that explain these models' behavior. However, what is the precise goal of providing such explanations, and how can we demonstrate that explanations achieve this goal? Some research argues that explanations should help teach a student (either human or machine) to simulate the model being explained, and that the quality of explanations can be measured by the simulation accuracy of students on unexplained examples. In this work, leveraging meta-learning techniques, we extend this idea to improve the quality of the explanations themselves, specifically by optimizing explanations such that student models more effectively learn to simulate the original model. We train models on three natural language processing and computer vision tasks, and find that students trained with explanations extracted with our framework are able to simulate the teacher significantly more effectively than ones produced with previous methods. Through human annotations and a user study, we further find that these learned explanations more closely align with how humans would explain the required decisions in these tasks. Our code is available at https://github.com/coderpat/learning-scaffold.
[ Hall J ]

Next Best View computation (NBV) is a long-standing problem in robotics, and consists in identifying the next most informative sensor position(s) for reconstructing a 3D object or scene efficiently and accurately. Like most current methods, we consider NBV prediction from a depth sensor like Lidar systems. Learning-based methods relying on a volumetric representation of the scene are suitable for path planning, but have lower accuracy than methods using a surface-based representation. However, the latter do not scale well with the size of the scene and constrain the camera to a small number of poses. To obtain the advantages of both representations, we show that we can maximize surface metrics by Monte Carlo integration over a volumetric representation. In particular, we propose an approach, SCONE, that relies on two neural modules: The first module predicts occupancy probability in the entire volume of the scene. Given any new camera pose, the second module samples points in the scene based on their occupancy probability and leverages a self-attention mechanism to predict the visibility of the samples. Finally, we integrate the visibility to evaluate the gain in surface coverage for the new camera pose. NBV is selected as the pose that maximizes the gain …
[ Hall J ]
Surface reconstruction has been seeing a lot of progress lately by utilizing Implicit Neural Representations (INRs). Despite their success, INRs often introduce hard to control inductive bias (i.e., the solution surface can exhibit unexplainable behaviours), have costly inference, and are slow to train. The goal of this work is to show that replacing neural networks with simple grid functions, along with two novel geometric priors achieve comparable results to INRs, with instant inference, and improved training times. To that end we introduce VisCo Grids: a grid-based surface reconstruction method incorporating Viscosity and Coarea priors. Intuitively, the Viscosity prior replaces the smoothness inductive bias of INRs, while the Coarea favors a minimal area solution. Experimenting with VisCo Grids on a standard reconstruction baseline provided comparable results to the best performing INRs on this dataset.
[ Hall J ]
[ Hall J ]

[ Hall J ]

We propose a consolidated cross-validation (CV) algorithm for training and tuning the support vector machines (SVM) on reproducing kernel Hilbert spaces. Our consolidated CV algorithm utilizes a recently proposed exact leave-one-out formula for the SVM and accelerates the SVM computation via a data reduction strategy. In addition, to compute the SVM with the bias term (intercept), which is not handled by the existing data reduction methods, we propose a novel two-stage consolidated CV algorithm. With numerical studies, we demonstrate that our algorithm is about an order of magnitude faster than the two mainstream SVM solvers, kernlab and LIBSVM, with almost the same accuracy.
[ Hall J ]

This paper introduces RISE, a robust individualized decision learning framework with sensitive variables, where sensitive variables are collectible data and important to the intervention decision, but their inclusion in decision making is prohibited due to reasons such as delayed availability or fairness concerns. A naive baseline is to ignore these sensitive variables in learning decision rules, leading to significant uncertainty and bias. To address this, we propose a decision learning framework to incorporate sensitive variables during offline training but not include them in the input of the learned decision rule during model deployment. Specifically, from a causal perspective, the proposed framework intends to improve the worst-case outcomes of individuals caused by sensitive variables that are unavailable at the time of decision. Unlike most existing literature that uses mean-optimal objectives, we propose a robust learning framework by finding a newly defined quantile- or infimum-optimal decision rule. The reliable performance of the proposed method is demonstrated through synthetic experiments and three real-world applications.
[ Hall J ]
[ Hall J ]
[ Hall J ]
[ Hall J ]

Does it matter whether one randomly initializes a neural network (NN) from Gaussian, uniform, or other distributions? We show the answer is ”yes” in some parameter tensors (the so-called matrix-like parameters) but ”no” in others when the NN is wide. This is a specific instance of a more general universality principle for Tensor Programs (TP) that informs precisely when the limit of a program depends on the distribution of its initial matrices and vectors. To obtain this principle, we develop the theory of non-Gaussian Tensor Programs. As corollaries, we obtain all previous consequences of the TP framework (such as NNGP/NTK correspondence, Free Independence Principle, Dynamical Dichotomy Theorem, and μ-parametrization) for NNs with non-Gaussian weights.
[ Hall J ]

This paper proposes a fast and scalable method for uncertainty quantification of machine learning models' predictions. First, we show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution. Importantly, the approach allows to disentangle explicitly \textit{aleatoric} and \textit{epistemic} uncertainties. The resulting method works directly in the feature space. However, one can apply it to any neural network by considering an embedding of the data induced by the network. We demonstrate the strong performance of the method in uncertainty estimation tasks on text classification problems and a variety of real-world image datasets, such as MNIST, SVHN, CIFAR-100 and several versions of ImageNet.
[ Hall J ]

[ Hall J ]
[ Hall J ]

[ Hall J ]
[ Hall J ]
[ Hall J ]

[ Hall J ]

[ Hall J ]

Machine Learning (ML) research has focused on maximizing the accuracy of predictive tasks. ML models, however, are increasingly more complex, resource intensive, and costlier to deploy in resource-constrained environments. These issues are exacerbated for prediction tasks with sequential classification on progressively transitioned stages with “happens-before” relation between them.We argue that it is possible to “unfold” a monolithic single multi-class classifier, typically trained for all stages using all data, into a series of single-stage classifiers. Each single- stage classifier can be cascaded gradually from cheaper to more expensive binary classifiers that are trained using only the necessary data modalities or features required for that stage. UnfoldML is a cost-aware and uncertainty-based dynamic 2D prediction pipeline for multi-stage classification that enables (1) navigation of the accuracy/cost tradeoff space, (2) reducing the spatio-temporal cost of inference by orders of magnitude, and (3) early prediction on proceeding stages. UnfoldML achieves orders of magnitude better cost in clinical settings, while detecting multi- stage disease development in real time. It achieves within 0.1% accuracy from the highest-performing multi-class baseline, while saving close to 20X on spatio- temporal cost of inference and earlier (3.5hrs) disease onset prediction. We also show that UnfoldML generalizes to image classification, where …
[ Hall J ]

[ Hall J ]
In recent years, neural implicit surface reconstruction methods have become popular for multi-view 3D reconstruction. In contrast to traditional multi-view stereo methods, these approaches tend to produce smoother and more complete reconstructions due to the inductive smoothness bias of neural networks. State-of-the-art neural implicit methods allow for high-quality reconstructions of simple scenes from many input views. Yet, their performance drops significantly for larger and more complex scenes and scenes captured from sparse viewpoints. This is caused primarily by the inherent ambiguity in the RGB reconstruction loss that does not provide enough constraints, in particular in less-observed and textureless areas. Motivated by recent advances in the area of monocular geometry prediction, we systematically explore the utility these cues provide for improving neural implicit surface reconstruction. We demonstrate that depth and normal cues, predicted by general-purpose monocular estimators, significantly improve reconstruction quality and optimization time. Further, we analyse and investigate multiple design choices for representing neural implicit surfaces, ranging from monolithic MLP models over single-grid to multi-resolution grid representations. We observe that geometric monocular priors improve performance both for small-scale single-object as well as large-scale multi-object scenes, independent of the choice of representation.
[ Hall J ]

We present a new implicit warping framework for image animation using sets of source images through the transfer of motion of a driving video. A single cross-modal attention layer is used to find correspondences between the source images and the driving image, choose the most appropriate features from different source images, and warp the selected features. This is in contrast to the existing methods that use explicit flow-based warping, which is designed for animation using a single source and does not extend well to multiple sources. The pick-and-choose capability of our framework helps it achieve state-of-the-art results on multiple datasets for image animation using both single and multiple source images.
[ Hall J ]

Humans are remarkably flexible in understanding viewpoint changes due to visual cortex supporting the perception of 3D structure. In contrast, most of the computer vision models that learn visual representation from a pool of 2D images often fail to generalize over novel camera viewpoints. Recently, the vision architectures have shifted towards convolution-free architectures, visual Transformers, which operate on tokens derived from image patches. However, these Transformers do not perform explicit operations to learn viewpoint-agnostic representation for visual understanding. To this end, we propose a 3D Token Representation Layer (3DTRL) that estimates the 3D positional information of the visual tokens and leverages it for learning viewpoint-agnostic representations. The key elements of 3DTRL include a pseudo-depth estimator and a learned camera matrix to impose geometric transformations on the tokens, trained in an unsupervised fashion. These enable 3DTRL to recover the 3D positional information of the tokens from 2D patches. In practice, 3DTRL is easily plugged-in into a Transformer. Our experiments demonstrate the effectiveness of 3DTRL in many vision tasks including image classification, multi-view video alignment, and action recognition. The models with 3DTRL outperform their backbone Transformers in all the tasks with minimal added computation. Our code is available at https://github.com/elicassion/3DTRL.
[ Hall J ]
We present a unified Vision-Language pretrained Model (VLMo) that jointly learns a dual encoder and a fusion encoder with a modular Transformer network. Specifically, we introduce Multiway Transformer, where each block contains a pool of modality-specific experts and a shared self-attention layer. Because of the modeling flexibility of Multiway Transformer, pretrained VLMo can be fine-tuned as a fusion encoder for vision-language classification tasks, or used as a dual encoder for efficient image-text retrieval. Moreover, we propose a stagewise pre-training strategy, which effectively leverages large-scale image-only and text-only data besides image-text pairs. Experimental results show that VLMo achieves state-of-the-art results on various vision-language tasks, including VQA, NLVR2 and image-text retrieval.
[ Hall J ]

Few-shot image generation (FSIG) aims to learn to generate new and diverse samples given an extremely limited number of samples from a domain, e.g., 10 training samples. Recent work has addressed the problem using transfer learning approach, leveraging a GAN pretrained on a large-scale source domain dataset and adapting that model to the target domain based on very limited target domain samples. Central to recent FSIG methods are knowledge preserving criteria, which aim to select a subset of source model's knowledge to be preserved into the adapted model. However, a major limitation of existing methods is that their knowledge preserving criteria consider only source domain/source task, and they fail to consider target domain/adaptation task in selecting source model's knowledge, casting doubt on their suitability for setups of different proximity between source and target domain. Our work makes two contributions. As our first contribution, we re-visit recent FSIG works and their experiments. Our important finding is that, under setups which assumption of close proximity between source and target domains is relaxed, existing state-of-the-art (SOTA) methods which consider only source domain/source task in knowledge preserving perform no better than a baseline fine-tuning method. To address the limitation of existing methods, as our …
[ Hall J ]
Pre-trained vision-language models (e.g., CLIP) have shown promising zero-shot generalization in many downstream tasks with properly designed text prompts. Instead of relying on hand-engineered prompts, recent works learn prompts using the training data from downstream tasks. While effective, training on domain-specific data reduces a model's generalization capability to unseen new domains. In this work, we propose test-time prompt tuning (TPT), a method that can learn adaptive prompts on the fly with a single test sample. TPT optimizes the prompt by minimizing the entropy with confidence selection so that the model has consistent predictions across different augmented views of each test sample. In evaluating generalization to natural distribution shifts, TPT improves the zero-shot top-1 accuracy of CLIP by 3.6\% on average, surpassing previous prompt tuning approaches that require additional task-specific training data. In evaluating cross-dataset generalization with unseen categories, TPTperforms on par with the state-of-the-art approaches that use additional training data.
[ Hall J ]

Mixup is a commonly adopted data augmentation technique for image classification. Recent advances in mixup methods primarily focus on mixing based on saliency. However, many saliency detectors require intense computation and are especially burdensome for parameter-heavy transformer models. To this end, we propose TokenMixup, an efficient attention-guided token-level data augmentation method that aims to maximize the saliency of a mixed set of tokens. TokenMixup provides ×15 faster saliency-aware data augmentation compared to gradient-based methods. Moreover, we introduce a variant of TokenMixup which mixes tokens within a single instance, thereby enabling multi-scale feature augmentation. Experiments show that our methods significantly improve the baseline models’ performance on CIFAR and ImageNet-1K, while being more efficient than previous methods. We also reach state-of-the-art performance on CIFAR-100 among from-scratch transformer models. Code is available at https://github.com/mlvlab/TokenMixup.
[ Hall J ]

Electroencephalography (EEG) provides access to neuronal dynamics non-invasively with millisecond resolution, rendering it a viable method in neuroscience and healthcare. However, its utility is limited as current EEG technology does not generalize well across domains (i.e., sessions and subjects) without expensive supervised re-calibration. Contemporary methods cast this transfer learning (TL) problem as a multi-source/-target unsupervised domain adaptation (UDA) problem and address it with deep learning or shallow, Riemannian geometry aware alignment methods. Both directions have, so far, failed to consistently close the performance gap to state-of-the-art domain-specific methods based on tangent space mapping (TSM) on the symmetric, positive definite (SPD) manifold.Here, we propose a machine learning framework that enables, for the first time, learning domain-invariant TSM models in an end-to-end fashion. To achieve this, we propose a new building block for geometric deep learning, which we denote SPD domain-specific momentum batch normalization (SPDDSMBN). A SPDDSMBN layer can transform domain-specific SPD inputs into domain-invariant SPD outputs, and can be readily applied to multi-source/-target and online UDA scenarios. In extensive experiments with 6 diverse EEG brain-computer interface (BCI) datasets, we obtain state-of-the-art performance in inter-session and -subject TL with a simple, intrinsically interpretable network architecture, which we denote TSMNet. Code: https://github.com/rkobler/TSMNet
[ Hall J ]
We propose a locally hierarchical auto-regressive model with multiple resolutions of discrete codes. In the first stage of our algorithm, we represent an image with a pyramid of codes using Hierarchically Quantized Variational AutoEncoder (HQ-VAE), which disentangles the information contained in the multi-level codes. For an example of two-level codes, we create two separate pathways to carry high-level coarse structures of input images using top codes while compensating for missing fine details by constructing a residual connection for bottom codes. An appropriate selection of resizing operations for code embedding maps enables top codes to capture maximal information within images and the first stage algorithm achieves better performance on both vector quantization and image generation. The second stage adopts Hierarchically Quantized Transformer (HQ-Transformer) to process a sequence of local pyramids, which consist of a single top code and its corresponding bottom codes. Contrary to other hierarchical models, we sample bottom codes in parallel by exploiting the conditional independence assumption on the bottom codes. This assumption is naturally harvested from our first-stage model, HQ-VAE, where the bottom code learns to describe local details. On class-conditional and text-conditional generation benchmarks, our model shows competitive performance to previous AR models in terms of fidelity …
[ Hall J ]

Periodic graphs are graphs consisting of repetitive local structures, such as crystal nets and polygon mesh. Their generative modeling has great potential in real-world applications such as material design and graphics synthesis. Classical models either rely on domain-specific predefined generation principles (e.g., in crystal net design), or follow geometry-based prescribed rules. Recently, deep generative models have shown great promise in automatically generating general graphs. However, their advancement into periodic graphs has not been well explored due to several key challenges in 1) maintaining graph periodicity; 2) disentangling local and global patterns; and 3) efficiency in learning repetitive patterns. To address them, this paper proposes Periodical-Graph Disentangled Variational Auto-encoder (PGD-VAE), a new deep generative model for periodic graphs that can automatically learn, disentangle, and generate local and global graph patterns. Specifically, we develop a new periodic graph encoder consisting of global-pattern encoder and local-pattern encoder that ensures to disentangle the representation into global and local semantics. We then propose a new periodic graph decoder consisting of local structure decoder, neighborhood decoder, and global structure decoder, as well as the assembler of their outputs that guarantees periodicity. Moreover, we design a new model learning objective that helps ensure the invariance of local-semantic …
[ Hall J ]

Masked Autoencoders (MAE) have shown great potentials in self-supervised pre-training for language and 2D image transformers. However, it still remains an open question on how to exploit masked autoencoding for learning 3D representations of irregular point clouds. In this paper, we propose Point-M2AE, a strong Multi-scale MAE pre-training framework for hierarchical self-supervised learning of 3D point clouds. Unlike the standard transformer in MAE, we modify the encoder and decoder into pyramid architectures to progressively model spatial geometries and capture both fine-grained and high-level semantics of 3D shapes. For the encoder that downsamples point tokens by stages, we design a multi-scale masking strategy to generate consistent visible regions across scales, and adopt a local spatial self-attention mechanism during fine-tuning to focus on neighboring patterns. By multi-scale token propagation, the lightweight decoder gradually upsamples point tokens with complementary skip connections from the encoder, which further promotes the reconstruction from a global-to-local perspective. Extensive experiments demonstrate the state-of-the-art performance of Point-M2AE for 3D representation learning. With a frozen encoder after pre-training, Point-M2AE achieves 92.9% accuracy for linear SVM on ModelNet40, even surpassing some fully trained methods. By fine-tuning on downstream tasks, Point-M2AE achieves 86.43% accuracy on ScanObjectNN, +3.36% to the second-best, and largely …
[ Hall J ]

The analysis of spatio-temporal sequences plays an important role in many real-world applications, demanding a high model capacity to capture the interdependence among spatial and temporal dimensions. Previous studies provided separated network design in three categories: spatial first, temporal first, and spatio-temporal synchronous. However, the manually-designed heterogeneous models can hardly meet the spatio-temporal dependency capturing priority for various tasks. To address this, we proposed a universal modeling framework with three distinctive characteristics: (i) Attention-based network backbone, including S2T Layer (spatial first), T2S Layer (temporal first), and STS Layer (spatio-temporal synchronous). (ii) The universal modeling framework, named UniST, with a unified architecture that enables flexible modeling priorities with the proposed three different modules. (iii) An automatic search strategy, named AutoST, automatically searches the optimal spatio-temporal modeling priority by network architecture search. Extensive experiments on five real-world datasets demonstrate that UniST with any single type of our three proposed modules can achieve state-of-the-art performance. Furthermore, AutoST can achieve overwhelming performance with UniST.
[ Hall J ]

Video-Language Pretraining (VLP), which aims to learn transferable representation to advance a wide range of video-text downstream tasks, has recently received increasing attention. Best performing works rely on large-scale, 3rd-person video-text datasets, such as HowTo100M. In this work, we exploit the recently released Ego4D dataset to pioneer Egocentric VLP along three directions. (i) We create EgoClip, a 1st-person video-text pretraining dataset comprising 3.8M clip-text pairs well-chosen from Ego4D, covering a large variety of human daily activities. (ii) We propose a novel pretraining objective, dubbed EgoNCE, which adapts video-text contrastive learning to the egocentric domain by mining egocentric-aware positive and negative samples. (iii) We introduce EgoMCQ, a development benchmark that is close to EgoClip and hence can support effective validation and fast exploration of our design decisions in EgoClip and EgoNCE. Furthermore, we demonstrate strong performance on five egocentric downstream tasks across three datasets: video-text retrieval on EPIC-KITCHENS-100; action recognition on Charades-Ego; natural language query, moment query, and object state change classification on Ego4D challenge benchmarks. The dataset and code are available at https://github.com/showlab/EgoVLP.
[ Hall J ]

Getting robots to navigate to multiple objects autonomously is essential yet difficult in robot applications. One of the key challenges is how to explore environments efficiently with camera sensors only. Existing navigation methods mainly focus on fixed cameras and few attempts have been made to navigate with active cameras. As a result, the agent may take a very long time to perceive the environment due to limited camera scope. In contrast, humans typically gain a larger field of view by looking around for a better perception of the environment. How to make robots perceive the environment as efficiently as humans is a fundamental problem in robotics. In this paper, we consider navigating to multiple objects more efficiently with active cameras. Specifically, we cast moving camera to a Markov Decision Process and reformulate the active camera problem as a reinforcement learning problem. However, we have to address two new challenges: 1) how to learn a good camera policy in complex environments and 2) how to coordinate it with the navigation policy. To address these, we carefully design a reward function to encourage the agent to explore more areas by moving camera actively. Moreover, we exploit human experience to infer a rule-based …
[ Hall J ]

Visual information arriving at the retina is transmitted to the brain by signals in the optic nerve, and the brain must rely solely on these signals to make inferences about the visual world. Previous work has probed the content of these signals by directly reconstructing images from retinal activity using linear regression or nonlinear regression with neural networks. Maximum a posteriori (MAP) reconstruction using retinal encoding models and separately-trained natural image priors offers a more general and principled approach. We develop a novel method for approximate MAP reconstruction that combines a generalized linear model for retinal responses to light, including their dependence on spike history and spikes of neighboring cells, with the image prior implicitly embedded in a deep convolutional neural network trained for image denoising. We use this method to reconstruct natural images from ex vivo simultaneously-recorded spikes of hundreds of retinal ganglion cells uniformly sampling a region of the retina. The method produces reconstructions that match or exceed the state-of-the-art in perceptual similarity and exhibit additional fine detail, while using substantially fewer model parameters than previous approaches. The use of more rudimentary encoding models (a linear-nonlinear-Poisson cascade) or image priors (a 1/f spectral model) significantly reduces reconstruction performance, …
[ Hall J ]

Since out-of-distribution generalization is a generally ill-posed problem, various proxy targets (e.g., calibration, adversarial robustness, algorithmic corruptions, invariance across shifts) were studied across different research programs resulting in different recommendations. While sharing the same aspirational goal, these approaches have never been tested under the same experimental conditions on real data. In this paper, we take a unified view of previous work, highlighting message discrepancies that we address empirically, and providing recommendations on how to measure the robustness of a model and how to improve it. To this end, we collect 172 publicly available dataset pairs for training and out-of-distribution evaluation of accuracy, calibration error, adversarial attacks, environment invariance, and synthetic corruptions. We fine-tune over 31k networks, from nine different architectures in the many- and few-shot setting. Our findings confirm that in- and out-of-distribution accuracies tend to increase jointly, but show that their relation is largely dataset-dependent, and in general more nuanced and more complex than posited by previous, smaller scale studies.
[ Hall J ]

We analyze graph smoothing with mean aggregation, where each node successively receives the average of the features of its neighbors. Indeed, it has quickly been observed that Graph Neural Networks (GNNs), which generally follow some variant of Message-Passing (MP) with repeated aggregation, may be subject to the oversmoothing phenomenon: by performing too many rounds of MP, the node features tend to converge to a non-informative limit. In the case of mean aggregation, for connected graphs, the node features become constant across the whole graph. At the other end of the spectrum, it is intuitively obvious that some MP rounds are necessary, but existing analyses do not exhibit both phenomena at once: beneficial ``finite'' smoothing and oversmoothing in the limit. In this paper, we consider simplified linear GNNs, and rigorously analyze two examples for which a finite number of mean aggregation steps provably improves the learning performance, before oversmoothing kicks in. We consider a latent space random graph model, where node features are partial observations of the latent variables and the graph contains pairwise relationships between them. We show that graph smoothing restores some of the lost information, up to a certain point, by two phenomena: graph smoothing shrinks non-principal directions …
[ Hall J ]

Recent works have demonstrated great success in pre-training large-scale autoregressive language models (e.g., GPT-3) on massive GPUs. To reduce the wall-clock training time, a common practice is to increase the batch size and learning rate. However, such practice is often brittle and leads to a so-called stability-efficiency dilemma: increasing the batch sizes and learning rates leads to better training efficiency but can also result in training instability, leading to poor generalization accuracy or failed runs. To better understand this phenomenon, we conduct an in-depth analysis on large-scale pre-training experiments replicating the GPT-2 model with public dataset. We find that there is a strong correlation between training instability and extreme values of gradient variance. We further identify that samples with long sequence lengths contribute to these extreme gradient variance values, especially at the beginning of the training, indicating that long sequence length can be a main source of training instability.Based on the analysis, we present a simple yet effective Sequence Length Warmup method that aims to solve the training stability-efficiency dilemma by avoiding extreme gradient variance values. Moreover, we present a lightweight tuning strategy that allows us to tune our method with just a small portion of the expensive full training. …
[ Hall J ]

The recently proposed Conformer model has become the de facto backbone model for various downstream speech tasks based on its hybrid attention-convolution architecture that captures both local and global features. However, through a series of systematic studies, we find that the Conformer architecture’s design choices are not optimal. After re-examining the design choices for both the macro and micro-architecture of Conformer, we propose Squeezeformer which consistently outperforms the state-of-the-art ASR models under the same training schemes. In particular, for the macro-architecture, Squeezeformer incorporates (i) the Temporal U-Net structure which reduces the cost of the multi-head attention modules on long sequences, and (ii) a simpler block structure of multi-head attention or convolution modules followed up by feed-forward module instead of the Macaron structure proposed in Conformer. Furthermore, for the micro-architecture, Squeezeformer (i) simplifies the activations in the convolutional block, (ii) removes redundant Layer Normalization operations, and (iii) incorporates an efficient depthwise down-sampling layer to efficiently sub-sample the input signal. Squeezeformer achieves state-of-the-art results of 7.5%, 6.5%, and 6.0% word-error-rate (WER) on LibriSpeech test-other without external language models, which are 3.1%, 1.4%, and 0.6% better than Conformer-CTC with the same number of FLOPs. Our code is open-sourced and available online.
[ Hall J ]

[ Hall J ]

[ Hall J ]

[ Hall J ]

[ Hall J ]
Reinforcement learning (RL) algorithms are often categorized as either on-policy or off-policy depending on whether they use data from a target policy of interest or from a different behavior policy. In this paper, we study a subtle distinction between on-policy data and on-policy sampling in the context of the RL sub-problem of policy evaluation. We observe that on-policy sampling may fail to match the expected distribution of on-policy data after observing only a finite number of trajectories and this failure hinders data-efficient policy evaluation. Towards improved data-efficiency, we show how non-i.i.d., off-policy sampling can produce data that more closely matches the expected on-policy data distribution and consequently increases the accuracy of the Monte Carlo estimator for policy evaluation. We introduce a method called Robust On-Policy Sampling and demonstrate theoretically and empirically that it produces data that converges faster to the expected on-policy distribution compared to on-policy sampling. Empirically, we show that this faster convergence leads to lower mean squared error policy value estimates.
[ Hall J ]

Deep neural networks (DNNs) defy the classical bias-variance trade-off: adding parameters to a DNN that interpolates its training data will typically improve its generalization performance. Explaining the mechanism behind this ``benign overfitting'' in deep networks remains an outstanding challenge. Here, we study the last hidden layer representations of various state-of-the-art convolutional neural networks and find that if the last hidden representation is wide enough, its neurons tend to split into groups that carry identical information and differ from each other only by statistically independent noise. The number of such groups increases linearly with the width of the layer, but only if the width is above a critical value. We show that redundant neurons appear only when the training is regularized and the training error is zero.
[ Hall J ]
Explaining the behavior of AI systems is an important problem that, in practice, is generally avoided. While the XAI community has been developing an abundance of techniques, most incur a set of costs that the wider deep learning community has been unwilling to pay in most situations. We take a pragmatic view of the issue, and define a set of desiderata that capture both the ambitions of XAI and the practical constraints of deep learning. We describe an effective way to satisfy all the desiderata: train the AI system to build a causal model of itself. We develop an instance of this solution for Deep RL agents: Causal Self-Talk. CST operates by training the agent to communicate with itself across time. We implement this method in a simulated 3D environment, and show how it enables agents to generate faithful and semantically-meaningful explanations of their own behavior. Beyond explanations, we also demonstrate that these learned models provide new ways of building semantic control interfaces to AI systems.
[ Hall J ]
We study how an autonomous agent learns to perform a task from demonstrations in a different domain, such as a different environment or different agent. Such cross-domain imitation learning is required to, for example, train an artificial agent from demonstrations of a human expert. We propose a scalable framework that enables cross-domain imitation learning without access to additional demonstrations or further domain knowledge. We jointly train the learner agent's policy and learn a mapping between the learner and expert domains with adversarial training. We effect this by using a mutual information criterion to find an embedding of the expert's state space that contains task-relevant information and is invariant to domain specifics. This step significantly simplifies estimating the mapping between the learner and expert domains and hence facilitates end-to-end learning. We demonstrate successful transfer of policies between considerably different domains, without extra supervision such as additional demonstrations, and in situations where other methods fail.
[ Hall J ]

Branch-and-bound approaches in integer programming require ordering portions of the space to explore next, a problem known as node comparison. We propose a new siamese graph neural network model to tackle this problem, where the nodes are represented as bipartite graphs with attributes. Similar to prior work, we train our model to imitate a diving oracle that plunges towards the optimal solution. We evaluate our method by solving the instances in a plain framework where the nodes are explored according to their rank. On three NP-hard benchmarks chosen to be particularly primal-difficult, our approach leads to faster solving and smaller branch- and-bound trees than the default ranking function of the open-source solver SCIP, as well as competing machine learning methods. Moreover, these results generalize to instances larger than used for training. Code for reproducing the experiments can be found at https://github.com/ds4dm/learn2comparenodes.
[ Hall J ]

The number of states in a dynamic process is exponential in the number of objects, making reinforcement learning (RL) difficult in complex, multi-object domains. For agents to scale to the real world, they will need to react to and reason about unseen combinations of objects. We argue that the ability to recognize and use local factorization in transition dynamics is a key element in unlocking the power of multi-object reasoning. To this end, we show that (1) known local structure in the environment transitions is sufficient for an exponential reduction in the sample complexity of training a dynamics model, and (2) a locally factored dynamics model provably generalizes out-of-distribution to unseen states and actions. Knowing the local structure also allows us to predict which unseen states and actions this dynamics model will generalize to. We propose to leverage these observations in a novel Model-based Counterfactual Data Augmentation (MoCoDA) framework. MoCoDA applies a learned locally factored dynamics model to an augmented distribution of states and actions to generate counterfactual transitions for RL. MoCoDA works with a broader set of local structures than prior work and allows for direct control over the augmented training distribution. We show that MoCoDA enables RL agents …
[ Hall J ]
Universal Domain Adaptation (UniDA) deals with the problem of knowledge transfer between two datasets with domain-shift as well as category-shift. The goal is to categorize unlabeled target samples, either into one of the "known" categories or into a single "unknown" category. A major problem in UniDA is negative transfer, i.e. misalignment of "known" and "unknown" classes. To this end, we first uncover an intriguing tradeoff between negative-transfer-risk and domain-invariance exhibited at different layers of a deep network. It turns out we can strike a balance between these two metrics at a mid-level layer. Towards designing an effective framework based on this insight, we draw motivation from Bag-of-visual-Words (BoW). Word-prototypes in a BoW-like representation of a mid-level layer would represent lower-level visual primitives that are likely to be unaffected by the category-shift in the high-level features. We develop modifications that encourage learning of word-prototypes followed by word-histogram based classification. Following this, subsidiary prototype-space alignment (SPA) can be seen as a closed-set alignment problem, thereby avoiding negative transfer. We realize this with a novel word-histogram-related pretext task to enable closed-set SPA, operating in conjunction with goal task UniDA. We demonstrate the efficacy of our approach on top of existing UniDA techniques, yielding …
[ Hall J ]
Pruning is an effective way to reduce the huge inference cost of Transformer models. However, prior work on pruning Transformers requires retraining the models. This can add high training cost and high complexity to model deployment, making it difficult to use in many practical situations. To address this, we propose a fast post-training pruning framework for Transformers that does not require any retraining. Given a resource constraint and a sample dataset, our framework automatically prunes the Transformer model using structured sparsity methods. To retain high accuracy without retraining, we introduce three novel techniques: (i) a lightweight mask search algorithm that finds which heads and filters to prune based on the Fisher information; (ii) mask rearrangement that complements the search algorithm; and (iii) mask tuning that reconstructs the output activations for each layer. We apply our method to BERT-base and DistilBERT, and we evaluate its effectiveness on GLUE and SQuAD benchmarks. Our framework achieves up to 2.0x reduction in FLOPs and 1.56x speedup in inference latency, while maintaining < 1% loss in accuracy. Importantly, our framework prunes Transformers in less than 3 minutes on a single GPU, which is over two orders of magnitude faster than existing pruning approaches that retrain …
[ Hall J ]

Understanding decision-making is a core goal in both neuroscience and psychology, and computational models have often been helpful in the pursuit of this goal. While many models have been developed for characterizing behavior in binary decision-making and bandit tasks, comparatively little work has focused on animal decision-making in more complex tasks, such as navigation through a maze. Inverse reinforcement learning (IRL) is a promising approach for understanding such behavior, as it aims to infer the unknown reward function of an agent from its observed trajectories through state space. However, IRL has yet to be widely applied in neuroscience. One potential reason for this is that existing IRL frameworks assume that an agent's reward function is fixed over time. To address this shortcoming, we introduce dynamic inverse reinforcement learning (DIRL), a novel IRL framework that allows for time-varying intrinsic rewards. Our method parametrizes the unknown reward function as a time-varying linear combination of spatial reward maps (which we refer to as "goal maps"). We develop an efficient inference method for recovering this dynamic reward function from behavioral data. We demonstrate DIRL in simulated experiments and then apply it to a dataset of mice exploring a labyrinth. Our method returns interpretable reward …
[ Hall J ]
We present a method for learning 3D geometry and physics parameters of a dynamic scene from only a monocular RGB video input. To decouple the learning of underlying scene geometry from dynamic motion, we represent the scene as a time-invariant signed distance function (SDF) which serves as a reference frame, along with a time-conditioned deformation field. We further bridge this neural geometry representation with a differentiable physics simulator by designing a two-way conversion between the neural field and its corresponding hexahedral mesh, enabling us to estimate physics parameters from the source video by minimizing a cycle consistency loss. Our method also allows a user to interactively edit 3D objects from the source video by modifying the recovered hexahedral mesh, and propagating the operation back to the neural field representation. Experiments show that our method achieves superior mesh and video reconstruction of dynamic scenes compared to competing Neural Field approaches, and we provide extensive examples which demonstrate its ability to extract useful 3D representations from videos captured with consumer-grade cameras.
[ Hall J ]

Learning representations of neural network weights given a model zoo is an emerg- ing and challenging area with many potential applications from model inspection, to neural architecture search or knowledge distillation. Recently, an autoencoder trained on a model zoo was able to learn a hyper-representation, which captures intrinsic and extrinsic properties of the models in the zoo. In this work, we ex- tend hyper-representations for generative use to sample new model weights. We propose layer-wise loss normalization which we demonstrate is key to generate high-performing models and several sampling methods based on the topology of hyper-representations. The models generated using our methods are diverse, per- formant and capable to outperform strong baselines as evaluated on several down- stream tasks: initialization, ensemble sampling and transfer learning. Our results indicate the potential of knowledge aggregation from model zoos to new models via hyper-representations thereby paving the avenue for novel research directions.
[ Hall J ]
Causal mediation analysis can unpack the black box of causality and is therefore a powerful tool for disentangling causal pathways in biomedical and social sciences, and also for evaluating machine learning fairness. To reduce bias for estimating Natural Direct and Indirect Effects in mediation analysis, we propose a new method called DeepMed that uses deep neural networks (DNNs) to cross-fit the infinite-dimensional nuisance functions in the efficient influence functions. We obtain novel theoretical results that our DeepMed method (1) can achieve semiparametric efficiency bound without imposing sparsity constraints on the DNN architecture and (2) can adapt to certain low dimensional structures of the nuisance functions, significantly advancing the existing literature on DNN-based semiparametric causal inference. Extensive synthetic experiments are conducted to support our findings and also expose the gap between theory and practice. As a proof of concept, we apply DeepMed to analyze two real datasets on machine learning fairness and reach conclusions consistent with previous findings.
[ Hall J ]

Quantum neural networks (QNNs) have emerged as a leading strategy to establish applications in machine learning, chemistry, and optimization. While the applications of QNN have been widely investigated, its theoretical foundation remains less understood. In this paper, we formulate a theoretical framework for the expressive ability of data re-uploading quantum neural networks that consist of interleaved encoding circuit blocks and trainable circuit blocks. First, we prove that single-qubit quantum neural networks can approximate any univariate function by mapping the model to a partial Fourier series. We in particular establish the exact correlations between the parameters of the trainable gates and the Fourier coefficients, resolving an open problem on the universal approximation property of QNN. Second, we discuss the limitations of single-qubit native QNNs on approximating multivariate functions by analyzing the frequency spectrum and the flexibility of Fourier coefficients. We further demonstrate the expressivity and limitations of single-qubit native QNNs via numerical experiments. We believe these results would improve our understanding of QNNs and provide a helpful guideline for designing powerful QNNs for machine learning tasks.
[ Hall J ]

Value factorisation is a useful technique for multi-agent reinforcement learning (MARL) in global reward game, however, its underlying mechanism is not yet fully understood. This paper studies a theoretical framework for value factorisation with interpretability via Shapley value theory. We generalise Shapley value to Markov convex game called Markov Shapley value (MSV) and apply it as a value factorisation method in global reward game, which is obtained by the equivalence between the two games. Based on the properties of MSV, we derive Shapley-Bellman optimality equation (SBOE) to evaluate the optimal MSV, which corresponds to an optimal joint deterministic policy. Furthermore, we propose Shapley-Bellman operator (SBO) that is proved to solve SBOE. With a stochastic approximation and some transformations, a new MARL algorithm called Shapley Q-learning (SHAQ) is established, the implementation of which is guided by the theoretical results of SBO and MSV. We also discuss the relationship between SHAQ and relevant value factorisation methods. In the experiments, SHAQ exhibits not only superior performances on all tasks but also the interpretability that agrees with the theoretical analysis. The implementation of this paper is placed on https://github.com/hsvgbkhgbv/shapley-q-learning.
[ Hall J ]

For tackling the task of 2D human pose estimation, the great majority of the recent methods regard this task as a heatmap estimation problem, and optimize the heatmap prediction using the Gaussian-smoothed heatmap as the optimization objective and using the pixel-wise loss (e.g. MSE) as the loss function. In this paper, we show that optimizing the heatmap prediction in such a way, the model performance of body joint localization, which is the intrinsic objective of this task, may not be consistently improved during the optimization process of the heatmap prediction. To address this problem, from a novel perspective, we propose to formulate the optimization of the heatmap prediction as a distribution matching problem between the predicted heatmap and the dot annotation of the body joint directly. By doing so, our proposed method does not need to construct the Gaussian-smoothed heatmap and can achieve a more consistent model performance improvement during the optimization of the heatmap prediction. We show the effectiveness of our proposed method through extensive experiments on the COCO dataset and the MPII dataset.
[ Hall J ]

Automatic optimization for tensor programs becomes increasingly important as we deploy deep learning in various environments, and efficient optimization relies on a rich search space and effective search. Most existing efforts adopt a search space which lacks the ability to efficiently enable domain experts to grow the search space. This paper introduces MetaSchedule, a domain-specific probabilistic programming language abstraction to construct a rich search space of tensor programs. Our abstraction allows domain experts to analyze the program, and easily propose stochastic choices in a modular way to compose program transformation accordingly. We also build an end-to-end learning-driven framework to find an optimized program for a given search space. Experimental results show that MetaSchedule can cover the search space used in the state-of-the-art tensor program optimization frameworks in a modular way. Additionally, it empowers domain experts to conveniently grow the search space and modularly enhance the system, which brings 48% speedup on end-to-end deep learning workloads.
[ Hall J ]

Reinforcement learning (RL) with diverse offline datasets can have the advantage of leveraging the relation of multiple tasks and the common skills learned across those tasks, hence allowing us to deal with real-world complex problems efficiently in a data-driven way. In offline RL where only offline data is used and online interaction with the environment is restricted, it is yet difficult to achieve the optimal policy for multiple tasks, especially when the data quality varies for the tasks. In this paper, we present a skill-based multi-task RL technique on heterogeneous datasets that are generated by behavior policies of different quality. To learn the shareable knowledge across those datasets effectively, we employ a task decomposition method for which common skills are jointly learned and used as guidance to reformulate a task in shared and achievable subtasks. In this joint learning, we use Wasserstein Auto-Encoder (WAE) to represent both skills and tasks on the same latent space and use the quality-weighted loss as a regularization term to induce tasks to be decomposed into subtasks that are more consistent with high-quality skills than others. To improve the performance of offline RL agents learned on the latent space, we also augment datasets with imaginary …
[ Hall J ]

Modern neural networks often have great expressive power and can be trained to overfit the training data, while still achieving a good test performance. This phenomenon is referred to as “benign overfitting”. Recently, there emerges a line of works studying “benign overfitting” from the theoretical perspective. However, they are limited to linear models or kernel/random feature models, and there is still a lack of theoretical understanding about when and how benign overfitting occurs in neural networks. In this paper, we study the benign overfitting phenomenon in training a two-layer convolutional neural network (CNN). We show that when the signal-to-noise ratio satisfies a certain condition, a two-layer CNN trained by gradient descent can achieve arbitrarily small training and test loss. On the other hand, when this condition does not hold, overfitting becomes harmful and the obtained CNN can only achieve a constant level test loss. These together demonstrate a sharp phase transition between benign overfitting and harmful overfitting, driven by the signal-to-noise ratio. To the best of our knowledge, this is the first work that precisely characterizes the conditions under which benign overfitting can occur in training convolutional neural networks.
[ Hall J ]

When developing deep learning models, we usually decide what task we want to solve then search for a model that generalizes well on the task. An intriguing question would be: what if, instead of fixing the task and searching in the model space, we fix the model and search in the task space? Can we find tasks that the model generalizes on? How do they look, or do they indicate anything? These are the questions we address in this paper. We propose a task discovery framework that automatically finds examples of such tasks via optimizing a generalization-based quantity called agreement score. We demonstrate that one set of images can give rise to many tasks on which neural networks generalize well. These tasks are a reflection of the inductive biases of the learning framework and the statistical patterns present in the data, thus they can make a useful tool for analyzing the neural networks and their biases. As an example, we show that the discovered tasks can be used to automatically create ''adversarial train-test splits'' which make a model fail at test time, without changing the pixels or labels, but by only selecting how the datapoints should be split between the …
[ Hall J ]

[ Hall J ]
[ Hall J ]
[ Hall J ]
Diffusion Probabilistic Models (DPMs) have shown a powerful capacity of generating high-quality image samples. Recently, diffusion autoencoders (Diff-AE) have been proposed to explore DPMs for representation learning via autoencoding. Their key idea is to jointly train an encoder for discovering meaningful representations from images and a conditional DPM as the decoder for reconstructing images. Considering that training DPMs from scratch will take a long time and there have existed numerous pre-trained DPMs, we propose \textbf{P}re-trained \textbf{D}PM \textbf{A}uto\textbf{E}ncoding (\textbf{PDAE}), a general method to adapt existing pre-trained DPMs to the decoders for image reconstruction, with better training efficiency and performance than Diff-AE. Specifically, we find that the reason that pre-trained DPMs fail to reconstruct an image from its latent variables is due to the information loss of forward process, which causes a gap between their predicted posterior mean and the true one. From this perspective, the classifier-guided sampling method can be explained as computing an extra mean shift to fill the gap, reconstructing the lost class information in samples. These imply that the gap corresponds to the lost information of the image, and we can reconstruct the image by filling the gap. Drawing inspiration from this, we employ a trainable model to …
[ Hall J ]

State-of-the-art causal discovery methods usually assume that the observational data is complete. However, the missing data problem is pervasive in many practical scenarios such as clinical trials, economics, and biology. One straightforward way to address the missing data problem is first to impute the data using off-the-shelf imputation methods and then apply existing causal discovery methods. However, such a two-step method may suffer from suboptimality, as the imputation algorithm may introduce bias for modeling the underlying data distribution. In this paper, we develop a general method, which we call MissDAG, to perform causal discovery from data with incomplete observations. Focusing mainly on the assumptions of ignorable missingness and the identifiable additive noise models (ANMs), MissDAG maximizes the expected likelihood of the visible part of observations under the expectation-maximization (EM) framework. In the E-step, in cases where computing the posterior distributions of parameters in closed-form is not feasible, Monte Carlo EM is leveraged to approximate the likelihood. In the M-step, MissDAG leverages the density transformation to model the noise distributions with simpler and specific formulations by virtue of the ANMs and uses a likelihood-based causal discovery algorithm with directed acyclic graph constraint. We demonstrate the flexibility of MissDAG for incorporating various …
[ Hall J ]

[ Hall J ]

[ Hall J ]

Lewis signaling games are a class of simple communication games for simulating the emergence of language. In these games, two agents must agree on a communication protocol in order to solve a cooperative task. Previous work has shown that agents trained to play this game with reinforcement learning tend to develop languages that display undesirable properties from a linguistic point of view (lack of generalization, lack of compositionality, etc). In this paper, we aim to provide better understanding of this phenomenon by analytically studying the learning problem in Lewis games. As a core contribution, we demonstrate that the standard objective in Lewis games can be decomposed in two components: a co-adaptation loss and an information loss. This decomposition enables us to surface two potential sources of overfitting, which we show may undermine the emergence of a structured communication protocol. In particular, when we control for overfitting on the co-adaptation loss, we recover desired properties in the emergent languages: they are more compositional and generalize better.
[ Hall J ]

Neural networks have shown great predictive power when applied to unstructured data such as images and natural languages. The Bayesian neural network captures the uncertainty of prediction by computing the posterior distribution of the model parameters. In this paper, we show that the Bayesian neural network with spikeand-slab prior has posterior consistency with a near minimax optimal convergence rate when the true regression function belongs to the Besov space. The spikeand-slab prior is adaptive to the smoothness of the regression function and the posterior convergence rate does not change even when the smoothness of the regression function is unknown. We also consider the shrinkage prior, which is computationally more feasible than the spike-and-slab prior, and show that it has the same posterior convergence rate as the spike-and-slab prior.
[ Hall J ]

Aleatoric uncertainty captures the inherent randomness of the data, such as measurement noise. In Bayesian regression, we often use a Gaussian observation model, where we control the level of aleatoric uncertainty with a noise variance parameter. By contrast, for Bayesian classification we use a categorical distribution with no mechanism to represent our beliefs about aleatoric uncertainty. Our work shows that explicitly accounting for aleatoric uncertainty significantly improves the performance of Bayesian neural networks. We note that many standard benchmarks, such as CIFAR-10, have essentially no aleatoric uncertainty. Moreover, we show that data augmentation in approximate inference softens the likelihood, leading to underconfidence and misrepresenting our beliefs about aleatoric uncertainty. Accordingly, we find that a cold posterior, tempered by a power greater than one, often more honestly reflects our beliefs about aleatoric uncertainty than no tempering --- providing an explicit link between data augmentation and cold posteriors. We further show that we can match or exceed the performance of posterior tempering by using a Dirichlet observation model, where we explicitly control the level of aleatoric uncertainty, without any need for tempering.
[ Hall J ]
Despite their wide adoption, the underlying training and memorization dynamics of very large language models is not well understood. We empirically study exact memorization in causal and masked language modeling, across model sizes and throughout the training process. We measure the effects of dataset size, learning rate, and model size on memorization, finding that larger language models memorize training data faster across all settings. Surprisingly, we show that larger models can memorize a larger portion of the data before over-fitting and tend to forget less throughout the training process. We also analyze the memorization dynamics of different parts of speech and find that models memorize nouns and numbers first; we hypothesize and provide empirical evidence that nouns and numbers act as a unique identifier for memorizing individual training examples. Together, these findings present another piece of the broader puzzle of trying to understand what actually improves as models get bigger.
[ Hall J ]
Markov chain Monte Carlo (MCMC) is an established approach for uncertainty quantification and propagation in scientific applications. A key challenge in applying MCMC to scientific domains is computation: the target density of interest is often a function of expensive computations, such as a high-fidelity physical simulation, an intractable integral, or a slowly-converging iterative algorithm. Thus, using an MCMC algorithms with an expensive target density becomes impractical, as these expensive computations need to be evaluated at each iteration of the algorithm. In practice, these computations often approximated via a cheaper, low-fidelity computation, leading to bias in the resulting target density. Multi-fidelity MCMC algorithms combine models of varying fidelities in order to obtain an approximate target density with lower computational cost. In this paper, we describe a class of asymptotically exact multi-fidelity MCMC algorithms for the setting where a sequence of models of increasing fidelity can be computed that approximates the expensive target density of interest. We take a pseudo-marginal MCMC approach for multi-fidelity inference that utilizes a cheaper, randomized-fidelity unbiased estimator of the target fidelity constructed via random truncation of a telescoping series of the low-fidelity sequence of models. Finally, we discuss and evaluate the proposed multi-fidelity MCMC approach on several …
[ Hall J ]
Correlation clustering is a central problem in unsupervised learning, with applications spanning community detection, duplicate detection, automated labeling and many more. In the correlation clustering problem one receives as input a set of nodes and for each node a list of co-clustering preferences, and the goal is to output a clustering that minimizes the disagreement with the specified nodes' preferences. In this paper, we introduce a simple and computationally efficient algorithm for the correlation clustering problem with provable privacy guarantees. Our additive error is stronger than those obtained in prior work and is optimal up to polylogarithmic factors for fixed privacy parameters.
[ Hall J ]
We introduce Support Decomposition Variational Inference (SDVI), a new variational inference (VI) approach for probabilistic programs with stochastic support. Existing approaches to this problem rely on designing a single global variational guide on a variable-by-variable basis, while maintaining the stochastic control flow of the original program. SDVI instead breaks the program down into sub-programs with static support, before automatically building separate sub-guides for each. This decomposition significantly aids in the construction of suitable variational families, enabling, in turn, substantial improvements in inference performance.
[ Hall J ]
Motivated by recent applications requiring differential privacy in the setting of adaptive streams, we investigate the question of optimal instantiations of the matrix mechanism in this setting. We prove fundamental theoretical results on the applicability of matrix factorizations to the adaptive streaming setting, and provide a new parameter-free fixed-point algorithm for computing optimal factorizations. We instantiate this framework with respect to concrete matrices which arise naturally in the machine learning setting, and train user-level differentially private models with the resulting optimal mechanisms, yielding significant improvements on a notable problem in federated learning with user-level differential privacy.
[ Hall J ]
We study kernel quadrature rules with convex weights. Our approach combines the spectral properties of the kernel with recombination results about point measures. This results in effective algorithms that construct convex quadrature rules using only access to i.i.d. samples from the underlying measure and evaluation of the kernel and that result in a small worst-case error. In addition to our theoretical results and the benefits resulting from convex weights, our experiments indicate that this construction can compete with the optimal bounds in well-known examples.
[ Hall J ]
We prove limitations on what neural networks trained by noisy gradient descent (GD) can efficiently learn. Our results apply whenever GD training is equivariant, which holds for many standard architectures and initializations. As applications, (i) we characterize the functions that fully-connected networks can weak-learn on the binary hypercube and unit sphere, demonstrating that depth-2 is as powerful as any other depth for this task; (ii) we extend the merged-staircase necessity result for learning with latent low-dimensional structure [ABM22] to beyond the mean-field regime. Under cryptographic assumptions, we also show hardness results for learning with fully-connected networks trained by stochastic gradient descent (SGD).
[ Hall J ]

[ Hall J ]

The optimization of combinatorial black-box functions is pervasive in computer science and engineering. However, the combinatorial explosion of the search space and lack of natural ordering pose significant challenges for current techniques from a theoretical and practical perspective, and require new algorithmic ideas. In this paper, we propose to adapt the recent advances in tree searches and partitioning techniques to design and analyze novel black-box combinatorial solvers. A first contribution is the analysis of a first tree-search algorithm called Optimistic Lipschitz Tree Search (OLTS) which assumes the Lipschitz constant of the function to be known. Linear convergence rates are provided for this algorithm under specific conditions, improving upon the logarithmic rates of baselines. An adaptive version, called Optimistic Combinatorial Tree Search (OCTS), is then introduced for the more realistic setup where we do not have any information on the Lipschitz constant of the function. Similar theoretical guarantees are shown to hold for OCTS and a numerical assessment is provided to illustrate the potential of tree searches with respect to state-of-the-art methods over typical benchmarks.
[ Hall J ]

Distributionally robust optimization (DRO) has been shown to offer a principled way to regularize learning models. In this paper, we find that Tikhonov regularization is distributionally robust in an optimal transport sense (i.e. if an adversary chooses distributions in a suitable optimal transport neighborhood of the empirical measure), provided that suitable martingale constraints are also imposed. Further, we introduce a relaxation of the martingale constraints which not only provide a unified viewpoint to a class of existing robust methods but also lead to new regularization tools. To realize these novel tools, provably efficient computational algorithms are proposed. As a byproduct, the strong duality theorem proved in this paper can be potentially applied to other problems of independent interest.
[ Hall J ]

We consider reinforcement learning in a discrete, undiscounted, infinite-horizon Markov decision problem (MDP) under the average reward criterion, and focus on the minimization of the regret with respect to an optimal policy, when the learner does not know the rewards nor transitions of the MDP. In light of their success at regret minimization in multi-armed bandits, popular bandit strategies, such as the optimistic \texttt{UCB}, \texttt{KL-UCB} or the Bayesian Thompson sampling strategy, have been extended to the MDP setup. Despite some key successes, existing strategies for solving this problem either fail to be provably asymptotically optimal, or suffer from prohibitive burn-in phase and computational complexity when implemented in practice. In this work, we shed a novel light on regret minimization strategies, by extending to reinforcement learning the computationally appealing Indexed Minimum Empirical Divergence (\texttt{IMED}) bandit algorithm. Traditional asymptotic problem-dependent lower bounds on the regret are known under the assumption that the MDP is \emph{ergodic}. Under this assumption, we introduce \texttt{IMED-RL} and prove that its regret upper bound asymptotically matches the regret lower bound. We discuss both the case when the supports of transitions are unknown, and the more informative but a priori harder-to-exploit-optimally case when they are known. Rewards are assumed …
[ Hall J ]

[ Hall J ]

We investigate properties of goodness-of-fit tests based on the Kernel Stein Discrepancy (KSD). We introduce a strategy to construct a test, called KSDAgg, which aggregates multiple tests with different kernels. KSDAgg avoids splitting the data to perform kernel selection (which leads to a loss in test power), and rather maximises the test power over a collection of kernels. We provide theoretical guarantees on the power of KSDAgg: we show it achieves the smallest uniform separation rate of the collection, up to a logarithmic term. For compactly supported densities with bounded score function for the model, we derive the rate for KSDAgg over restricted Sobolev balls; this rate corresponds to the minimax optimal rate over unrestricted Sobolev balls, up to an iterated logarithmic term. KSDAgg can be computed exactly in practice as it relies either on a parametric bootstrap or on a wild bootstrap to estimate the quantiles and the level corrections. In particular, for the crucial choice of bandwidth of a fixed kernel, it avoids resorting to arbitrary heuristics (such as median or standard deviation) or to data splitting. We find on both synthetic and real-world data that KSDAgg outperforms other state-of-the-art quadratic-time adaptive KSD-based goodness-of-fit testing procedures.
[ Hall J ]

Most causal discovery procedures assume that there are no latent confounders in the system, which is often violated in real-world problems. In this paper, we consider a challenging scenario for causal structure identification, where some variables are latent and they may form a hierarchical graph structure to generate the measured variables; the children of latent variables may still be latent and only leaf nodes are measured, and moreover, there can be multiple paths between every pair of variables (i.e., it is beyond tree structure). We propose an estimation procedure that can efficiently locate latent variables, determine their cardinalities, and identify the latent hierarchical structure, by leveraging rank deficiency constraints over the measured variables. We show that the proposed algorithm can find the correct Markov equivalence class of the whole graph asymptotically under proper restrictions on the graph structure and with linear causal relations.
[ Hall J ]

[ Hall J ]

[ Hall J ]

Reinforcement learning (RL) has gained increasing popularity for resource management in cloud services such as serverless computing. As self-interested users compete for shared resources in a cluster, the multi-tenancy nature of serverless platforms necessitates multi-agent reinforcement learning (MARL) solutions, which often suffer from severe scalability issues. In this paper, we propose a mean-field game (MFG) approach to cloud resource management that is scalable to a large number of users and applications and incorporates function approximation to deal with the large state-action spaces in real-world serverless platforms. Specifically, we present an online natural actor-critic algorithm for learning in MFGs compatible with various forms of function approximation. We theoretically establish its finite-time convergence to the regularized Nash equilibrium under linear function approximation and softmax parameterization. We further implement our algorithm using both linear and neural-network function approximations, and evaluate our solution on an open-source serverless platform, OpenWhisk, with real-world workloads from production traces. Experimental results demonstrate that our approach is scalable to a large number of users and significantly outperforms various baselines in terms of function latency and resource utilization efficiency.
[ Hall J ]

While the application of differential privacy (DP) has been well-studied in cross-device federated learning (FL), there is a lack of work considering DP and its implications for cross-silo FL, a setting characterized by a limited number of clients each containing many data subjects. In cross-silo FL, usual notions of client-level DP are less suitable as real-world privacy regulations typically concern the in-silo data subjects rather than the silos themselves. In this work, we instead consider an alternative notion of silo-specific sample-level DP, where silos set their own privacy targets for their local examples. Under this setting, we reconsider the roles of personalization in federated learning. In particular, we show that mean-regularized multi-task learning (MR-MTL), a simple personalization framework, is a strong baseline for cross-silo FL: under stronger privacy requirements, silos are incentivized to federate more with each other to mitigate DP noise, resulting in consistent improvements relative to standard baseline methods. We provide an empirical study of competing methods as well as a theoretical characterization of MR-MTL for mean estimation, highlighting the interplay between privacy and cross-silo data heterogeneity. Our work serves to establish baselines for private cross-silo FL as well as identify key directions of future work in this …
[ Hall J ]

We study the problem of rank aggregation where the goal is to obtain a global ranking by aggregating pair-wise comparisons of voters over a set of items. We consider an adversarial setting where the voters are partitioned into two sets. The first set votes in a stochastic manner according to the popular score-based Bradley-Terry-Luce (BTL) model for pairwise comparisons. The second set comprises malicious Byzantine voters trying to deteriorate the ranking. We consider a strongly-adversarial scenario where the Byzantine voters know the BTL scores, the votes of the good voters, the algorithm, and can collude with each other. We first show that the popular spectral ranking based Rank-Centrality algorithm, though optimal for the BTL model, does not perform well even when a small constant fraction of the voters are Byzantine.We introduce the Byzantine Spectral Ranking Algorithm (and a faster variant of it), which produces a reliable ranking when the number of good voters exceeds the number of Byzantine voters. We show that no algorithm can produce a satisfactory ranking with probability > 1/2 for all BTL weights when there are more Byzantine voters than good voters, showing that our algorithm works for all possible population fractions. We support our theoretical …
[ Hall J ]

Text-based games present a unique class of sequential decision making problem in which agents interact with a partially observable, simulated environment via actions and observations conveyed through natural language. Such observations typically include instructions that, in a reinforcement learning (RL) setting, can directly or indirectly guide a player towards completing reward-worthy tasks. In this work, we study the ability of RL agents to follow such instructions. We conduct experiments that show that the performance of state-of-the-art text-based game agents is largely unaffected by the presence or absence of such instructions, and that these agents are typically unable to execute tasks to completion. To further study and address the task of instruction following, we equip RL agents with an internal structured representation of natural language instructions in the form of Linear Temporal Logic (LTL), a formal language that is increasingly used for temporally extended reward specification in RL. Our framework both supports and highlights the benefit of understanding the temporal semantics of instructions and in measuring progress towards achievement of such a temporally extended behaviour. Experiments with 500+ games in TextWorld demonstrate the superior performance of our approach.
[ Hall J ]

What aspects of computer programs are represented by the human brain during comprehension? We leverage brain recordings derived from functional magnetic resonance imaging (fMRI) studies of programmers comprehending Python code to evaluate the properties and code-related information encoded in the neural signal. We first evaluate a selection of static and dynamic code properties, such as abstract syntax tree (AST)-related and runtime-related metrics. Then, to learn whether brain representations encode fine-grained information about computer programs, we train a probe to align brain recordings with representations learned by a suite of ML models. We find that both the Multiple Demand and Language systems--brain systems which are responsible for very different cognitive tasks, encode specific code properties and uniquely align with machine learned representations of code. These findings suggest at least two distinct neural mechanisms mediating computer program comprehension and evaluation, prompting the design of code model objectives that go beyond static language modeling.We make all the corresponding code, data, and analysis publicly available at https://github.com/ALFA-group/code-representations-ml-brain
[ Hall J ]
Traditionally convolutional neural network architectures have been designed by stacking layers on top of each other to form deeper hierarchical networks. The cortex in the brain however does not just stack layers as done in standard convolution neural networks, instead different regions are organized next to each other in a large single sheet of neurons. Biological neurons self organize to form topographic maps, where neurons encoding similar stimuli group together to form logical clusters. Here we propose new self-organization principles that allow for the formation of hierarchical cortical regions (i.e. layers) in a completely unsupervised manner without requiring any predefined architecture. Synaptic connections are dynamically grown and pruned, which allows us to actively constrain the number of incoming and outgoing connections. This way we can minimize the wiring cost by taking into account both the synaptic strength and the connection length. The proposed method uses purely local learning rules in the form of spike-timing-dependent plasticity (STDP) with lateral excitation and inhibition. We show experimentally that these self-organization rules are sufficient for topographic maps and hierarchical layers to emerge. Our proposed Self-Organizing Neural Sheet (SONS) model can thus form traditional neural network layers in a completely unsupervised manner from just a …
[ Hall J ]

Recent advances in quantum computing and in particular, the introduction of quantum GANs, have led to increased interest in quantum zero-sum game theory, extending the scope of learning algorithms for classical games into the quantum realm. In this paper, we focus on learning in quantum zero-sum games under Matrix Multiplicative Weights Update (a generalization of the multiplicative weights update method) and its continuous analogue, Quantum Replicator Dynamics. When each player selects their state according to quantum replicator dynamics, we show that the system exhibits conservation laws in a quantum-information theoretic sense. Moreover, we show that the system exhibits Poincare recurrence, meaning that almost all orbits return arbitrarily close to their initial conditions infinitely often. Our analysis generalizes previous results in the case of classical games.
[ Hall J ]
The incorporation of cutting planes within the branch-and-bound algorithm, known as branch-and-cut, forms the backbone of modern integer programming solvers. These solvers are the foremost method for solving discrete optimization problems and thus have a vast array of applications in machine learning, operations research, and many other fields. Choosing cutting planes effectively is a major research topic in the theory and practice of integer programming. We conduct a novel structural analysis of branch-and-cut that pins down how every step of the algorithm is affected by changes in the parameters defining the cutting planes added to the input integer program. Our main application of this analysis is to derive sample complexity guarantees for using machine learning to determine which cutting planes to apply during branch-and-cut. These guarantees apply to infinite families of cutting planes, such as the family of Gomory mixed integer cuts, which are responsible for the main breakthrough speedups of integer programming solvers. We exploit geometric and combinatorial structure of branch-and-cut in our analysis, which provides a key missing piece for the recent generalization theory of branch-and-cut.
[ Hall J ]

In any given machine learning problem, there may be many models that could explain the data almost equally well. However, most learning algorithms return only one of these models, leaving practitioners with no practical way to explore alternative models that might have desirable properties beyond what could be expressed within a loss function. The Rashomon set is the set of these all almost-optimal models. Rashomon sets can be extremely complicated, particularly for highly nonlinear function classes that allow complex interaction terms, such as decision trees. We provide the first technique for completely enumerating the Rashomon set for sparse decision trees; in fact, our work provides the first complete enumeration of any Rashomon set for a non-trivial problem with a highly nonlinear discrete function class. This allows the user an unprecedented level of control over model choice among all models that are approximately equally good. We represent the Rashomon set in a specialized data structure that supports efficient querying and sampling. We show three applications of the Rashomon set: 1) it can be used to study variable importance for the set of almost-optimal trees (as opposed to a single tree), 2) the Rashomon set for accuracy enables enumeration of the Rashomon …
[ Hall J ]
In fair rent division, the problem is to assign rooms to roommates and fairly split the rent based on roommates' reported valuations for the rooms. Envy-free rent division is the most popular application on the fair division website Spliddit. The standard model assumes that agents can correctly report their valuations for each room. In practice, agents may be unsure about their valuations, for example because they have had only limited time to inspect the rooms. Our goal is to find a robust rent division that remains fair even if agent valuations are slightly different from the reported ones. We introduce the lexislack solution, which selects a rent division that remains envy-free for valuations within as large a radius as possible of the reported valuations. We also consider robustness notions for valuations that come from a probability distribution, and use results from learning theory to show how we can find rent divisions that (almost) maximize the probability of being envy-free, or that minimize the expected envy. We show that an almost optimal allocation can be identified based on polynomially many samples from the valuation distribution. Finding the best allocation given these samples is NP-hard, but in practice such an allocation can …
[ Hall J ]
[ Hall J ]
[ Hall J ]

[ Hall J ]
[ Hall J ]

[ Hall J ]

[ Hall J ]

[ Hall J ]
[ Hall J ]
We study the average robustness notion in deep neural networks in (selected) wide and narrow, deep and shallow, as well as lazy and non-lazy training settings. We prove that in the under-parameterized setting, width has a negative effect while it improves robustness in the over-parameterized setting. The effect of depth closely depends on the initialization and the training mode. In particular, when initialized with LeCun initialization, depth helps robustness with the lazy training regime. In contrast, when initialized with Neural Tangent Kernel (NTK) and He-initialization, depth hurts the robustness. Moreover, under the non-lazy training regime, we demonstrate how the width of a two-layer ReLU network benefits robustness. Our theoretical developments improve the results by [Huang et al. NeurIPS21; Wu et al. NeurIPS21] and are consistent with [Bubeck and Sellke NeurIPS21; Bubeck et al. COLT21].
[ Hall J ]

We introduce the notion of performative power, which measures the ability of a firm operating an algorithmic system, such as a digital content recommendation platform, to cause change in a population of participants. We relate performative power to the economic study of competition in digital economies. Traditional economic concepts struggle with identifying anti-competitive patterns in digital platforms not least due to the complexity of market definition. In contrast, performative power is a causal notion that is identifiable with minimal knowledge of the market, its internals, participants, products, or prices.Low performative power implies that a firm can do no better than to optimize their objective on current data. In contrast, firms of high performative power stand to benefit from steering the population towards more profitable behavior. We confirm in a simple theoretical model that monopolies maximize performative power. A firm's ability to personalize increases performative power, while competition and outside options decrease performative power. On the empirical side, we propose an observational causal design to identify performative power from discontinuities in how digital platforms display content. This allows to repurpose causal effects from various studies about digital platforms as lower bounds on performative power. Finally, we speculate about the role that …
[ Hall J ]

[ Hall J ]

A deep neural network using rectified linear units represents a continuous piecewise linear (CPWL) function and vice versa. Recent results in the literature estimated that the number of neurons needed to exactly represent any CPWL function grows exponentially with the number of pieces or exponentially in terms of the factorial of the number of distinct linear components. Moreover, such growth is amplified linearly with the input dimension. These existing results seem to indicate that the cost of representing a CPWL function is expensive. In this paper, we propose much tighter bounds and establish a polynomial time algorithm to find a network satisfying these bounds for any given CPWL function. We prove that the number of hidden neurons required to exactly represent any CPWL function is at most a quadratic function of the number of pieces. In contrast to all previous results, this upper bound is invariant to the input dimension. Besides the number of pieces, we also study the number of distinct linear components in CPWL functions. When such a number is also given, we prove that the quadratic complexity turns into bilinear, which implies a lower neural complexity because the number of distinct linear components is always not greater …
[ Hall J ]
[ Hall J ]
[ Hall J ]

[ Hall J ]

[ Hall J ]

[ Hall J ]

[ Hall J ]
[ Hall J ]
[ Hall J ]

[ Hall J ]
[ Hall J ]

[ Hall J ]

[ Hall J ]

[ Hall J ]
[ Hall J ]
[ Hall J ]

One of the most effective continuous deep reinforcement learning algorithms is normalized advantage functions (NAF). The main idea of NAF consists in the approximation of the Q-function by functions quadratic with respect to the action variable. This idea allows to apply the algorithm to continuous reinforcement learning problems, but on the other hand, it brings up the question of classes of problems in which this approximation is acceptable. The presented paper describes one such class. We consider reinforcement learning problems obtained by the discretization of certain optimal control problems. Based on the idea of NAF, we present a new family of quadratic functions and prove its suitable approximation properties. Taking these properties into account, we provide several ways to improve NAF. The experimental results confirm the efficiency of our improvements.
[ Hall J ]

Randomized Controlled Trials (RCTs) represent a gold standard when developing policy guidelines. However, RCTs are often narrow, and lack data on broader populations of interest. Causal effects in these populations are often estimated using observational datasets, which may suffer from unobserved confounding and selection bias. Given a set of observational estimates (e.g., from multiple studies), we propose a meta-algorithm that attempts to reject observational estimates that are biased. We do so using validation effects, causal effects that can be inferred from both RCT and observational data. After rejecting estimators that do not pass this test, we generate conservative confidence intervals on the extrapolated causal effects for subgroups not observed in the RCT. Under the assumption that at least one observational estimator is asymptotically normal and consistent for both the validation and extrapolated effects, we provide guarantees on the coverage probability of the intervals output by our algorithm. To facilitate hypothesis testing in settings where causal effect transportation across datasets is necessary, we give conditions under which a doubly-robust estimator of group average treatment effects is asymptotically normal, even when flexible machine learning methods are used for estimation of nuisance parameters. We illustrate the properties of our approach on semi-synthetic experiments …
[ Hall J ]

Bandits with knapsacks (BwK) is an influential model of sequential decision-making under uncertainty that incorporates resource consumption constraints. In each round, the decision-maker observes an outcome consisting of a reward and a vector of nonnegative resource consumptions, and the budget of each resource is decremented by its consumption. In this paper we introduce a natural generalization of the stochastic BwK problem that allows non-monotonic resource utilization. In each round, the decision-maker observes an outcome consisting of a reward and a vector of resource drifts that can be positive, negative or zero, and the budget of each resource is incremented by its drift. Our main result is a Markov decision process (MDP) policy that has constant regret against a linear programming (LP) relaxation when the decision-maker knows the true outcome distributions. We build upon this to develop a learning algorithm that has logarithmic regret against the same LP relaxation when the decision-maker does not know the true outcome distributions. We also present a reduction from BwK to our model that shows our regret bound matches existing results.
[ Hall J ]

Modern approximations to Gaussian processes are suitable for tall data'', with a cost that scales well in the number of observations, but under-performs on
wide data'', scaling poorly in the number of input features. That is, as the number of input features grows, good predictive performance requires the number of summarising variables, and their associated cost, to grow rapidly. We introduce a kernel that allows the number of summarising variables to grow exponentially with the number of input features, but requires only linear cost in both number of observations and input features. This scaling is achieved through our introduction of the ``Bezier buttress'', which allows approximate inference without computing matrix inverses or determinants. We show that our kernel has close similarities to some of the most used kernels in Gaussian process regression, and empirically demonstrate the kernel's ability to scale to both tall and wide datasets.
[ Hall J ]
We study the problem of learning an adversarially robust predictor to test time attacks in the semi-supervised PAC model.We address the question of how many labeled and unlabeled examples are required to ensure learning.We show that having enough unlabeled data (the size of a labeled sample that a fully-supervised method would require),the labeled sample complexity can be arbitrarily smaller compared to previous works, and is sharply characterized by a different complexity measure. We prove nearly matching upper and lower bounds on this sample complexity.This shows that there is a significant benefit in semi-supervised robust learning even in the worst-case distribution-free model, and establishes a gap between supervised and semi-supervised label complexities which is known not to hold in standard non-robust PAC learning.
[ Hall J ]
[ Hall J ]

[ Hall J ]
[ Hall J ]
[ Hall J ]

Under a standard binary classification setting with possible model misspecification, we study the problem of estimating general Receiver Operating Characteristic (ROC) curve, which is an arbitrary set of false positive rate (FPR) and true positive rate (TPR) pairs. We formally introduce the notion of \textit{optimal ROC curve} over a general model space. It is argued that any ROC curve estimation methods implemented over the given model space should target the optimal ROC curve over that space. Three popular ROC curve estimation methods are then analyzed at the population level (i.e., when there are infinite number of samples) under both correct and incorrect model specification. Based on our analysis, they are all consistent when the surrogate loss function satisfies certain conditions and the given model space includes all measurable classifiers. Interestingly, some of these conditions are similar to those that are required to ensure classification consistency. When the model space is incorrectly specified, however, we show that only one method leads to consistent estimation of the ROC curve over the chosen model space. We present some numerical results to demonstrate the effects of model misspecification on the performance of various methods in terms of their ROC curve estimates.
[ Hall J ]

[ Hall J ]

[ Hall J ]

We study the problem of online learning in competitive settings in the context of two-sided matching markets. In particular, one side of the market, the agents, must learn about their preferences over the other side, the firms, through repeated interaction while competing with other agents for successful matches. We propose a class of decentralized, communication- and coordination-free algorithms that agents can use to reach to their stable match in structured matching markets. In contrast to prior works, the proposed algorithms make decisions based solely on an agent's own history of play and requires no foreknowledge of the firms' preferences. Our algorithms are constructed by splitting up the statistical problem of learning one's preferences, from noisy observations, from the problem of competing for firms. We show that under realistic structural assumptions on the underlying preferences of the agents and firms, the proposed algorithms incur a regret which grows at most logarithmically in the time horizon. However, we note that in the worst case, it may grow exponentially in the size of the market.
[ Hall J ]

This paper introduces an interpretable contextual bandit algorithm using Tsetlin Machines, which solves complex pattern recognition tasks using propositional (Boolean) logic. The proposed bandit learning algorithm relies on straightforward bit manipulation, thus simplifying computation and interpretation. We then present a mechanism for performing Thompson sampling with Tsetlin Machine, given its non-parametric nature. Our empirical analysis shows that Tsetlin Machine as a base contextual bandit learner outperforms other popular base learners on eight out of nine datasets. We further analyze the interpretability of our learner, investigating how arms are selected based on propositional expressions that model the context.
[ Hall J ]

Learning-based methods have shown promising performance for accelerating motion planning, but mostly in the setting of static environments. For the more challenging problem of planning in dynamic environments, such as multi-arm assembly tasks and human-robot interaction, motion planners need to consider the trajectories of the dynamic obstacles and reason about temporal-spatial interactions in very large state spaces. We propose a GNN-based approach that uses temporal encoding and imitation learning with data aggregation for learning both the embeddings and the edge prioritization policies. Experiments show that the proposed methods can significantly accelerate online planning over state-of-the-art complete dynamic planning algorithms. The learned models can often reduce costly collision checking operations by more than 1000x, and thus accelerating planning by up to 95%, while achieving high success rates on hard instances as well.
[ Hall J ]

Text-to-image generation and image captioning are recently emerged as a new experimental paradigm to assess machine intelligence. They predict continuous quantity accompanied by their sampling techniques in the generation, making evaluation complicated and intractable to get marginal distributions. Based on a recent trend that multimodal generative evaluations exploit a vison-and-language pre-trained model, we propose the negative Gaussian cross-mutual information using the CLIP features as a unified metric, coined by Mutual Information Divergence (MID). To validate, we extensively compare it with competing metrics using carefully-generated or human-annotated judgments in text-to-image generation and image captioning tasks. The proposed MID significantly outperforms the competitive methods by having consistency across benchmarks, sample parsimony, and robustness toward the exploited CLIP model. We look forward to seeing the underrepresented implications of the Gaussian cross-mutual information in multimodal representation learning and future works based on this novel proposition.
[ Hall J ]

LiDAR-produced point clouds are the major source for most state-of-the-art 3D object detectors. Yet, small, distant, and incomplete objects with sparse or few points are often hard to detect. We present Sparse2Dense, a new framework to efficiently boost 3D detection performance by learning to densify point clouds in latent space. Specifically, we first train a dense point 3D detector (DDet) with a dense point cloud as input and design a sparse point 3D detector (SDet) with a regular point cloud as input. Importantly, we formulate the lightweight plug-in S2D module and the point cloud reconstruction module in SDet to densify 3D features and train SDet to produce 3D features, following the dense 3D features in DDet. So, in inference, SDet can simulate dense 3D features from regular (sparse) point cloud inputs without requiring dense inputs. We evaluate our method on the large-scale Waymo Open Dataset and the Waymo Domain Adaptation Dataset, showing its high performance and efficiency over the state of the arts.
[ Hall J ]

Fine-tuning large pre-trained language models on downstream tasks is apt to suffer from overfitting when limited training data is available. While dropout proves to be an effective antidote by randomly dropping a proportion of units, existing research has not examined its effect on the self-attention mechanism. In this paper, we investigate this problem through self-attention attribution and find that dropping attention positions with low attribution scores can accelerate training and increase the risk of overfitting. Motivated by this observation, we propose Attribution-Driven Dropout (AD-DROP), which randomly discards some high-attribution positions to encourage the model to make predictions by relying more on low-attribution positions to reduce overfitting. We also develop a cross-tuning strategy to alternate fine-tuning and AD-DROP to avoid dropping high-attribution positions excessively. Extensive experiments on various benchmarks show that AD-DROP yields consistent improvements over baselines. Analysis further confirms that AD-DROP serves as a strategic regularizer to prevent overfitting during fine-tuning.
[ Hall J ]

The susceptibility of Variational Autoencoders (VAEs) to adversarial attacks indicates the necessity to evaluate the robustness of the learned representations along with the generation performance. The vulnerability of VAEs has been attributed to the limitations associated with their variational formulation. Deterministic autoencoders could overcome the practical limitations associated with VAEs and offer a promising alternative for image generation applications. In this work, we propose an adversarially robust deterministic autoencoder with superior performance in terms of both generation and robustness of the learned representations. We introduce a regularization scheme to incorporate adversarially perturbed data points to the training pipeline without increasing the computational complexity or compromising the generation fidelity by leveraging a loss based on the two-point Kolmogorov–Smirnov test between representations. We conduct extensive experimental studies on popular image benchmark datasets to quantify the robustness of the proposed approach based on the adversarial attacks targeted at VAEs. Our empirical findings show that the proposed method achieves significant performance in both robustness and fidelity when compared to the robust VAE models.
[ Hall J ]

There continues to be a trade-off between the biological realism and performance of neural networks. Contemporary deep learning techniques allow neural networks to be trained to perform challenging computations at (near) human-level, but these networks typically violate key biological constraints. More detailed models of biological neural networks can incorporate many of these constraints but typically suffer from subpar performance and trainability. Here, we narrow this gap by developing an effective method for training a canonical model of cortical neural circuits, the stabilized supralinear network (SSN), that in previous work had to be constructed manually or trained with undue constraints. SSNs are particularly challenging to train for the same reasons that make them biologically realistic: they are characterized by strongly-connected excitatory cells and expansive firing rate non-linearities that together make them prone to dynamical instabilities unless stabilized by appropriately tuned recurrent inhibition. Our method avoids such instabilities by initializing a small network and gradually increasing network size via the dynamics-neutral addition of neurons during training. We first show how SSNs can be trained to perform typical machine learning tasks by training an SSN on MNIST classification. We then demonstrate the effectiveness of our method by training an SSN on the challenging …
[ Hall J ]
We show that the effectiveness of the well celebrated Mixup can be further improved if instead of using it as the sole learning objective, it is utilized as an additional regularizer to the standard cross-entropy loss. This simple change not only improves accuracy but also significantly improves the quality of the predictive uncertainty estimation of Mixup in most cases under various forms of covariate shifts and out-of-distribution detection experiments. In fact, we observe that Mixup otherwise yields much degraded performance on detecting out-of-distribution samples possibly, as we show empirically, due to its tendency to learn models exhibiting high-entropy throughout; making it difficult to differentiate in-distribution samples from out-of-distribution ones. To show the efficacy of our approach (RegMixup), we provide thorough analyses and experiments on vision datasets (ImageNet & CIFAR-10/100) and compare it with a suite of recent approaches for reliable uncertainty estimation.
[ Hall J ]

Predictive multiplicity occurs when classification models with statistically indistinguishable performances assign conflicting predictions to individual samples. When used for decision-making in applications of consequence (e.g., lending, education, criminal justice), models developed without regard for predictive multiplicity may result in unjustified and arbitrary decisions for specific individuals. We introduce a new metric, called Rashomon Capacity, to measure predictive multiplicity in probabilistic classification. Prior metrics for predictive multiplicity focus on classifiers that output thresholded (i.e., 0-1) predicted classes. In contrast, Rashomon Capacity applies to probabilistic classifiers, capturing more nuanced score variations for individual samples. We provide a rigorous derivation for Rashomon Capacity, argue its intuitive appeal, and demonstrate how to estimate it in practice. We show that Rashomon Capacity yields principled strategies for disclosing conflicting models to stakeholders. Our numerical experiments illustrate how Rashomon Capacity captures predictive multiplicity in various datasets and learning models, including neural networks. The tools introduced in this paper can help data scientists measure and report predictive multiplicity prior to model deployment.
[ Hall J ]
If capable AI agents are generally incentivized to seek power in service of the objectives we specify for them, then these systems will pose enormous risks, in addition to enormous benefits. In fully observable environments, most reward functions have an optimal policy which seeks power by keeping options open and staying alive. However, the real world is neither fully observable, nor must trained agents be even approximately reward-optimal. We consider a range of models of AI decision-making, from optimal, to random, to choices informed by learning and interacting with an environment. We discover that many decision-making functions are retargetable, and that retargetability is sufficient to cause power-seeking tendencies. Our functional criterion is simple and broad. We show that a range of qualitatively dissimilar decision-making procedures incentivize agents to seek power. We demonstrate the flexibility of our results by reasoning about learned policy incentives in Montezuma's Revenge. These results suggest a safety risk: Eventually, retargetable training procedures may train real-world agents which seek power over humans.
[ Hall J ]

A key goal of unsupervised learning is to go beyond density estimation and sample generation to reveal the structure inherent within observed data. Such structure can be expressed in the pattern of interactions between explanatory latent variables captured through a probabilistic graphical model. Although the learning of structured graphical models has a long history, much recent work in unsupervised modelling has instead emphasised flexible deep-network-based generation, either transforming independent latent generators to model complex data or assuming that distinct observed variables are derived from different latent nodes. Here, we extend amortised variational inference to incorporate structured factors over multiple variables, able to capture the observation-induced posterior dependence between latents that results from “explaining away” and thus allow complex observations to depend on multiple nodes of a structured graph. We show that appropriately parametrised factors can be combined efficiently with variational message passing in rich graphical structures. We instantiate the framework in nonlinear Gaussian Process Factor Analysis, evaluating the structured recognition framework using synthetic data from known generative processes. We fit the GPFA model to high-dimensional neural spike data from the hippocampus of freely moving rodents, where the model successfully identifies latent signals that correlate with behavioural covariates.
[ Hall J ]

We provide the first complete continuous time framework for denoising diffusion models of discrete data. This is achieved by formulating the forward noising process and corresponding reverse time generative process as Continuous Time Markov Chains (CTMCs). The model can be efficiently trained using a continuous time version of the ELBO. We simulate the high dimensional CTMC using techniques developed in chemical physics and exploit our continuous time framework to derive high performance samplers that we show can outperform discrete time methods for discrete data. The continuous time treatment also enables us to derive a novel theoretical result bounding the error between the generated sample distribution and the true data distribution.
[ Hall J ]

This paper presents a novel nearest neighbor search algorithm achieving TPU (Google Tensor Processing Unit) peak performance, outperforming state-of-the-art GPU algorithms with similar level of recall. The design of the proposed algorithm is motivated by an accurate accelerator performance model that takes into account both the memory and instruction bottlenecks. Our algorithm comes with an analytical guarantee of recall in expectation and does not require maintaining sophisticated index data structure or tuning, making it suitable for applications with frequent updates. Our work is available in the open-source package of Jax and Tensorflow on TPU.
[ Hall J ]

Learning from demonstration methods usually leverage close to optimal demonstrations to accelerate training. By contrast, when demonstrating a task, human teachers deviate from optimal demonstrations and pedagogically modify their behavior by giving demonstrations that best disambiguate the goal they want to demonstrate. Analogously, human learners excel at pragmatically inferring the intent of the teacher, facilitating communication between the two agents. These mechanisms are critical in the few demonstrations regime, where inferring the goal is more difficult. In this paper, we implement pedagogy and pragmatism mechanisms by leveraging a Bayesian model of Goal Inference from demonstrations. We highlight the benefits of this model in multi-goal teacher-learner setups with two artificial agents that learn with goal-conditioned Reinforcement Learning. We show that combining BGI-agents (a pedagogical teacher and a pragmatic learner) results in faster learning and reduced goal ambiguity over standard learning from demonstrations, especially in the few demonstrations regime.
[ Hall J ]
We present Imagen, a text-to-image diffusion model with an unprecedented degree of photorealism and a deep level of language understanding. Imagen builds on the power of large transformer language models in understanding text and hinges on the strength of diffusion models in high-fidelity image generation. Our key discovery is that generic large language models (e.g., T5), pretrained on text-only corpora, are surprisingly effective at encoding text for image synthesis: increasing the size of the language model in Imagen boosts both sample fidelity and image-text alignment much more than increasing the size of the image diffusion model. Imagen achieves a new state-of-the-art FID score of 7.27 on the COCO dataset, without ever training on COCO, and human raters find Imagen samples to be on par with the COCO data itself in image-text alignment. To assess text-to-image models in greater depth, we introduce DrawBench, a comprehensive and challenging benchmark for text-to-image models. With DrawBench, we compare Imagen with recent methods including VQ-GAN+CLIP, Latent Diffusion Models, and DALL-E 2, and find that human raters prefer Imagen over other models in side-by-side comparisons, both in terms of sample quality and image-text alignment.
[ Hall J ]

Semi-supervised few-shot learning consists in training a classifier to adapt to new tasks with limited labeled data and a fixed quantity of unlabeled data. Many sophisticated methods have been developed to address the challenges this problem comprises. In this paper, we propose a simple but quite effective approach to predict accurate negative pseudo-labels of unlabeled data from an indirect learning perspective, and then augment the extremely label-constrained support set in few-shot classification tasks. Our approach can be implemented in just few lines of code by only using off-the-shelf operations, yet it is able to outperform state-of-the-art methods on four benchmark datasets.
[ Hall J ]

Humans communicate with graphical sketches apart from symbolic languages. Primarily focusing on the latter, recent studies of emergent communication overlook the sketches; they do not account for the evolution process through which symbolic sign systems emerge in the trade-off between iconicity and symbolicity. In this work, we take the very first step to model and simulate this process via two neural agents playing a visual communication game; the sender communicates with the receiver by sketching on a canvas. We devise a novel reinforcement learning method such that agents are evolved jointly towards successful communication and abstract graphical conventions. To inspect the emerged conventions, we define three key properties -- iconicity, symbolicity, and semanticity -- and design evaluation methods accordingly. Our experimental results under different controls are consistent with the observation in studies of human graphical conventions. Of note, we find that evolved sketches can preserve the continuum of semantics under proper environmental pressures. More interestingly, co-evolved agents can switch between conventionalized and iconic communication based on their familiarity with referents. We hope the present research can pave the path for studying emergent communication with the modality of sketches.
[ Hall J ]

This paper introduces a new interpretation of the Variational Autoencoder framework by taking a fully geometric point of view. We argue that vanilla VAE models unveil naturally a Riemannian structure in their latent space and that taking into consideration those geometrical aspects can lead to better interpolations and an improved generation procedure. This new proposed sampling method consists in sampling from the uniform distribution deriving intrinsically from the learned Riemannian latent space and we show that using this scheme can make a vanilla VAE competitive and even better than more advanced versions on several benchmark datasets. Since generative models are known to be sensitive to the number of training samples we also stress the method's robustness in the low data regime.
[ Hall J ]

We design a predictive layer for structured-output prediction (SOP) that can be plugged into any neural network guaranteeing its predictions are consistent with a set of predefined symbolic constraints. Our Semantic Probabilistic Layer (SPL) can model intricate correlations, and hard constraints, over a structured output space all while being amenable to end-to-end learning via maximum likelihood.SPLs combine exact probabilistic inference with logical reasoning in a clean and modular way, learning complex distributions and restricting their support to solutions of the constraint. As such, they can faithfully, and efficiently, model complex SOP tasks beyond the reach of alternative neuro-symbolic approaches. We empirically demonstrate that SPLs outperform these competitors in terms of accuracy on challenging SOP tasks such as hierarchical multi-label classification, pathfinding and preference learning, while retaining perfect constraint satisfaction.
[ Hall J ]
Neural circuits undergo developmental processes which can be influenced by experience. Here we explore a bio-inspired development process to form the connections in a network used for locality sensitive hashing. The network is a simplified model of the insect mushroom body, which has sparse connections from the input layer to a second layer of higher dimension, forming a sparse code. In previous versions of this model, connectivity between the layers is random. We investigate whether the performance of the hash, evaluated in nearest neighbour query tasks, can be improved by process of developing the connections, in which the strongest input dimensions in successive samples are wired to each successive coding dimension. Experiments show that the accuracy of searching for nearest neighbours is improved, although performance is dependent on the parameter values and datasets used. Our approach is also much faster than alternative methods that have been proposed for training the connections in this model. Importantly, the development process does not impact connections built at an earlier stage, which should provide stable coding results for simultaneous learning in a downstream network.
[ Hall J ]
[ Hall J ]

Test-time adaptation (TTA) is an emerging paradigm that addresses distributional shifts between training and testing phases without additional data acquisition or labeling cost; only unlabeled test data streams are used for continual model adaptation. Previous TTA schemes assume that the test samples are independent and identically distributed (i.i.d.), even though they are often temporally correlated (non-i.i.d.) in application scenarios, e.g., autonomous driving. We discover that most existing TTA methods fail dramatically under such scenarios. Motivated by this, we present a new test-time adaptation scheme that is robust against non-i.i.d. test data streams. Our novelty is mainly two-fold: (a) Instance-Aware Batch Normalization (IABN) that corrects normalization for out-of-distribution samples, and (b) Prediction-balanced Reservoir Sampling (PBRS) that simulates i.i.d. data stream from non-i.i.d. stream in a class-balanced manner. Our evaluation with various datasets, including real-world non-i.i.d. streams, demonstrates that the proposed robust TTA not only outperforms state-of-the-art TTA algorithms in the non-i.i.d. setting, but also achieves comparable performance to those algorithms under the i.i.d. assumption. Code is available at https://github.com/TaesikGong/NOTE.
[ Hall J ]
We consider representation learning on periodic graphs encoding crystal materials. Different from regular graphs, periodic graphs consist of a minimum unit cell repeating itself on a regular lattice in 3D space. How to effectively encode these periodic structures poses unique challenges not present in regular graph representation learning. In addition to being E(3) invariant, periodic graph representations need to be periodic invariant. That is, the learned representations should be invariant to shifts of cell boundaries as they are artificially imposed. Furthermore, the periodic repeating patterns need to be captured explicitly as lattices of different sizes and orientations may correspond to different materials. In this work, we propose a transformer architecture, known as Matformer, for periodic graph representation learning. Our Matformer is designed to be invariant to periodicity and can capture repeating patterns explicitly. In particular, Matformer encodes periodic patterns by efficient use of geometric distances between the same atoms in neighboring cells. Experimental results on multiple common benchmark datasets show that our Matformer outperforms baseline methods consistently. In addition, our results demonstrate the importance of periodic invariance and explicit repeating pattern encoding for crystal representation learning. Our code is publicly available at https://github.com/YKQ98/Matformer.
[ Hall J ]

[ Hall J ]

We derive a novel approximation error bound with explicit prefactor for Sobolev-regular functions using deep convolutional neural networks (CNNs). The bound is non-asymptotic in terms of the network depth and filter lengths, in a rather flexible way. For Sobolev-regular functions which can be embedded into the H\"older space, the prefactor of our error bound depends on the ambient dimension polynomially instead of exponentially as in most existing results, which is of independent interest. We also establish a new approximation result when the target function is supported on an approximate lower-dimensional manifold. We apply our results to establish non-asymptotic excess risk bounds for classification using CNNs with convex surrogate losses, including the cross-entropy loss, the hinge loss (SVM), the logistic loss, the exponential loss and the least squares loss. We show that the classification methods with CNNs can circumvent the curse of dimensionality if input data is supported on a neighborhood of a low-dimensional manifold.
[ Hall J ]
[ Hall J ]
Spiking neural networks have attracted increasing attention in recent years due to their potential of handling time-dependent data. Many algorithms and techniques have been developed; however, theoretical understandings of many aspects of spiking neural networks are far from clear. A recent work [Zhang and Zhou, 2021] disclosed that typical spiking neural networks could hardly work on spatio-temporal data due to their bifurcation dynamics and suggested that the self-connection structure has to be added. In this paper, we theoretically investigate the approximation ability and computational efficiency of spiking neural networks with self connections, and show that the self-connection structure enables spiking neural networks to approximate discrete dynamical systems using a polynomial number of parameters within polynomial time complexities. Our theoretical results may shed some insight for the future studies of spiking neural networks.
[ Hall J ]

Development of transformer-based text-to-image models is impeded by its slow generation and complexity, for high-resolution images. In this work, we put forward a solution based on hierarchical transformers and local parallel autoregressive generation. We pretrain a 6B-parameter transformer with a simple and flexible self-supervised task, a cross-modal general language model (CogLM), and fine-tune it for fast super-resolution. The new text-to-image system, CogView2, shows very competitive generation compared to concurrent state-of-the-art DALL-E-2, and naturally supports interactive text-guided editing on images.
[ Hall J ]

Semantic segmentation has a broad range of applications, but its real-world impact has been significantly limited by the prohibitive annotation costs necessary to enable deployment. Segmentation methods that forgo supervision can side-step these costs, but exhibit the inconvenient requirement to provide labelled examples from the target distribution to assign concept names to predictions. An alternative line of work in language-image pre-training has recently demonstrated the potential to produce models that can both assign names across large vocabularies of concepts and enable zero-shot transfer for classification, but do not demonstrate commensurate segmentation abilities.We leverage the retrieval abilities of one such language-image pre-trained model, CLIP, to dynamically curate training sets from unlabelled images for arbitrary collections of concept names, and leverage the robust correspondences offered by modern image representations to co-segment entities among the resulting collections. The synthetic segment collections are then employed to construct a segmentation model (without requiring pixel labels) whose knowledge of concepts is inherited from the scalable pre-training process of CLIP. We demonstrate that our approach, termed Retrieve and Co-segment (ReCo) performs favourably to conventional unsupervised segmentation approaches while inheriting the convenience of nameable predictions and zero-shot transfer. We also demonstrate ReCo’s ability to generate specialist segmenters for …
[ Hall J ]
Consider learning a decision support assistant to serve as an intermediary between (oracle) expert behavior and (imperfect) human behavior: At each time, the algorithm observes an action chosen by a fallible agent, and decides whether to accept that agent's decision, intervene with an alternative, or request the expert's opinion. For instance, in clinical diagnosis, fully-autonomous machine behavior is often beyond ethical affordances, thus real-world decision support is often limited to monitoring and forecasting. Instead, such an intermediary would strike a prudent balance between the former (purely prescriptive) and latter (purely descriptive) approaches, while providing an efficient interface between human mistakes and expert feedback. In this work, we first formalize the sequential problem of online decision mediation---that is, of simultaneously learning and evaluating mediator policies from scratch with abstentive feedback: In each round, deferring to the oracle obviates the risk of error, but incurs an upfront penalty, and reveals the otherwise hidden expert action as a new training data point. Second, we motivate and propose a solution that seeks to trade off (immediate) loss terms against (future) improvements in generalization error; in doing so, we identify why conventional bandit algorithms may fail. Finally, through experiments and sensitivities on a …
[ Hall J ]

The level of autonomy is increasing in systems spanning multiple domains, but these systems still experience failures. One way to mitigate the risk of failures is to integrate human oversight of the autonomous systems and rely on the human to take control when the autonomy fails. In this work, we formulate a method of collaborative decision making through action suggestions that improves action selection without taking control of the system. Our approach uses each suggestion efficiently by incorporating the implicit information shared through suggestions to modify the agent's belief and achieves better performance with fewer suggestions than naively following the suggested actions. We assume collaborative agents share the same objective and communicate through valid actions. By assuming the suggested action is dependent only on the state, we can incorporate the suggested action as an independent observation of the environment. The assumption of a collaborative environment enables us to use the agent's policy to estimate the distribution over action suggestions. We propose two methods that use suggested actions and demonstrate the approach through simulated experiments. The proposed methodology results in increased performance while also being robust to suboptimal suggestions.
[ Hall J ]
Image classification accuracy on the ImageNet dataset has been a barometer for progress in computer vision over the last decade. Several recent papers have questioned the degree to which the benchmark remains useful to the community, yet innovations continue to contribute gains to performance, with today's largest models achieving 90%+ top-1 accuracy. To help contextualize progress on ImageNet and provide a more meaningful evaluation for today's state-of-the-art models, we manually review and categorize every remaining mistake that a few top models make in order to provide insight into the long-tail of errors on one of the most benchmarked datasets in computer vision. We focus on the multi-label subset evaluation of ImageNet, where today's best models achieve upwards of 97% top-1 accuracy. Our analysis reveals that nearly half of the supposed mistakes are not mistakes at all, and we uncover new valid multi-labels, demonstrating that, without careful review, we are significantly underestimating the performance of these models. On the other hand, we also find that today's best models still make a significant number of mistakes (40%) that are obviously wrong to human reviewers. To calibrate future progress on ImageNet, we provide an updated multi-label evaluation set, and we curate ImageNet-Major: a …
[ Hall J ]

We derive and solve an ``Equation of Motion'' (EoM) for deep neural networks (DNNs), a differential equation that precisely describes the discrete learning dynamics of DNNs. Differential equations are continuous but have played a prominent role even in the study of discrete optimization (gradient descent (GD) algorithms). However, there still exist gaps between differential equations and the actual learning dynamics of DNNs due to discretization error. In this paper, we start from gradient flow (GF) and derive a counter term that cancels the discretization error between GF and GD. As a result, we obtain EoM, a continuous differential equation that precisely describes the discrete learning dynamics of GD. We also derive discretization error to show to what extent EoM is precise. In addition, we apply EoM to two specific cases: scale- and translation-invariant layers. EoM highlights differences between continuous and discrete GD, indicating the importance of the counter term for a better description of the discrete learning dynamics of GD. Our experimental results support our theoretical findings.
[ Hall J ]

While numerous effective decentralized algorithms have been proposed with theoretical guarantees and empirical successes, the performance limits in decentralized optimization, especially the influence of network topology and its associated weight matrix on the optimal convergence rate, have not been fully understood. While Lu and Sa have recently provided an optimal rate for non-convex stochastic decentralized optimization using weight matrices associated with linear graphs, the optimal rate with general weight matrices remains unclear. This paper revisits non-convex stochastic decentralized optimization and establishes an optimal convergence rate with general weight matrices. In addition, we also establish the first optimal rate when non-convex loss functions further satisfy the Polyak-Lojasiewicz (PL) condition. Following existing lines of analysis in literature cannot achieve these results. Instead, we leverage the Ring-Lattice graph to admit general weight matrices while maintaining the optimal relation between the graph diameter and weight matrix connectivity. Lastly, we develop a new decentralized algorithm to attain the above two optimal rates up to logarithm factors.
[ Hall J ]
Linear sketches have been widely adopted to process fast data streams, and they can be used to accurately answer frequency estimation, approximate top K items, and summarize data distributions. When data are sensitive, it is desirable to provide privacy guarantees for linear sketches to preserve private information while delivering useful results with theoretical bounds. We show that linear sketches can ensure privacy and maintain their unique properties with a small amount of noise added at initialization. From the differentially private linear sketches, we showcase that the state-of-the-art quantile sketch in the turnstile model can also be private and maintain high performance. Experiments further demonstrate that our proposed differentially private sketches are quantitatively and qualitatively similar to noise-free sketches with high utilization on synthetic and real datasets.
[ Hall J ]

Network pruning is a widely-used compression technique that is able to significantly scale down overparameterized models with minimal loss of accuracy. This paper shows that pruning may create or exacerbate disparate impacts. The paper sheds light on the factors to cause such disparities, suggesting differences in gradient norms and distance to decision boundary across groups to be responsible for this critical issue. It analyzes these factors in detail, providing both theoretical and empirical support, and proposes a simple, yet effective, solution that mitigates the disparate impacts caused by pruning.
[ Hall J ]
We formulate the first differentiable analog quantum computing framework with specific parameterization design at the analog signal (pulse) level to better exploit near-term quantum devices via variational methods. We further propose a scalable approach to estimate the gradients of quantum dynamics using a forward pass with Monte Carlo sampling, which leads to a quantum stochastic gradient descent algorithm for scalable gradient-based training in our framework. Applying our framework to quantum optimization and control, we observe a significant advantage of differentiable analog quantum computing against SOTAs based on parameterized digital quantum circuits by {\em orders of magnitude}.
[ Hall J ]

This paper uncovers a simple but rather surprising connection: it shows that the well-known convex-concave procedure (CCCP) and its generalization to constrained problems are both special cases of the Frank-Wolfe (FW) method. This connection not only provides insight of deep (in our opinion) pedagogical value, but also transfers the recently discovered convergence theory of nonconvex Frank-Wolfe methods immediately to CCCP, closing a long-standing gap in its non-asymptotic convergence theory. We hope the viewpoint uncovered by this paper spurs the transfer of other advances made for FW to both CCCP and its generalizations.
[ Hall J ]

[ Hall J ]

[ Hall J ]

Structured pruning is an effective approach for compressing large pre-trained neural networks without significantly affecting their performance. However, most current structured pruning methods do not provide any performance guarantees, and often require fine-tuning, which makes them inapplicable in the limited-data regime. We propose a principled data-efficient structured pruning method based on submodular optimization. In particular, for a given layer, we select neurons/channels to prune and corresponding new weights for the next layer, that minimize the change in the next layer's input induced by pruning. We show that this selection problem is a weakly submodular maximization problem, thus it can be provably approximated using an efficient greedy algorithm. Our method is guaranteed to have an exponentially decreasing error between the original model and the pruned model outputs w.r.t the pruned size, under reasonable assumptions. It is also one of the few methods in the literature that uses only a limited-number of training data and no labels. Our experimental results demonstrate that our method outperforms state-of-the-art methods in the limited-data regime.
[ Hall J ]

In zero-sum games, an NE strategy tends to be overly conservative confronted with opponents of limited rationality, because it does not actively exploit their weaknesses. From another perspective, best responding to an estimated opponent model is vulnerable to estimation errors and lacks safety guarantees. Inspired by the recent success of real-time search algorithms in developing superhuman AI, we investigate the dilemma of safety and opponent exploitation and present a novel real-time search framework, called Safe Exploitation Search (SES), which continuously interpolates between the two extremes of online strategy refinement. We provide SES with a theoretically upper-bounded exploitability and a lower-bounded evaluation performance. Additionally, SES enables computationally efficient online adaptation to a possibly updating opponent model, while previous safe exploitation methods have to recompute for the whole game. Empirical results show that SES significantly outperforms NE baselines and previous algorithms while keeping exploitability low at the same time.
[ Hall J ]
[ Hall J ]

[ Hall J ]
[ Hall J ]

Learning medical visual representations directly from paired radiology reports has become an emerging topic in representation learning. However, existing medical image-text joint learning methods are limited by instance or local supervision analysis, ignoring disease-level semantic correspondences. In this paper, we present a novel Multi-Granularity Cross-modal Alignment (MGCA) framework for generalized medical visual representation learning by harnessing the naturally exhibited semantic correspondences between medical image and radiology reports at three different levels, i.e., pathological region-level, instance-level, and disease-level. Specifically, we first incorporate the instance-wise alignment module by maximizing the agreement between image-report pairs. Further, for token-wise alignment, we introduce a bidirectional cross-attention strategy to explicitly learn the matching between fine-grained visual tokens and text tokens, followed by contrastive learning to align them. More important, to leverage the high-level inter-subject relationship semantic (e.g., disease) correspondences, we design a novel cross-modal disease-level alignment paradigm to enforce the cross-modal cluster assignment consistency. Extensive experimental results on seven downstream medical image datasets covering image classification, object detection, and semantic segmentation tasks demonstrate the stable and superior performance of our framework.
[ Hall J ]

3D Garment modeling is a critical and challenging topic in the area of computer vision and graphics, with increasing attention focused on garment representation learning, garment reconstruction, and controllable garment manipulation, whereas existing methods were constrained to model garments under specific categories or with relatively simple topologies. In this paper, we propose a novel Neural Sewing Machine (NSM), a learning-based framework for structure-preserving 3D garment modeling, which is capable of learning representations for garments with diverse shapes and topologies and is successfully applied to 3D garment reconstruction and controllable manipulation. To model generic garments, we first obtain sewing pattern embedding via a unified sewing pattern encoding module, as the sewing pattern can accurately describe the intrinsic structure and the topology of the 3D garment. Then we use a 3D garment decoder to decode the sewing pattern embedding into a 3D garment using the UV-position maps with masks. To preserve the intrinsic structure of the predicted 3D garment, we introduce an inner-panel structure-preserving loss, an inter-panel structure-preserving loss, and a surface-normal loss in the learning process of our framework. We evaluate NSM on the public 3D garment dataset with sewing patterns with diverse garment shapes and categories. Extensive experiments demonstrate that …
[ Hall J ]

Most existing benchmarks for grounding language in interactive environments either lack realistic linguistic elements, or prove difficult to scale up due to substantial human involvement in the collection of data or feedback signals. We develop WebShop – a simulated e-commerce website environment with 1.18 million real-world products and 12,087 crowd-sourced text instructions. In this environment, an agent needs to navigate multiple types of webpages and issue diverse actions to find, customize, and purchase a product given an instruction. WebShop provides several challenges including understanding compositional instructions, query (re-)formulation, dealing with noisy text in webpages, and performing strategic exploration. We collect over 1,600 human trajectories to first validate the benchmark, then train and evaluate a diverse range of agents using reinforcement learning, imitation learning, and pre-trained image and language models. Our best model achieves a task success rate of 29%, which significantly outperforms rule heuristics but is far lower than expert human performance (59%). We also analyze agent and human trajectories and ablate various model components to provide insights for developing future agents with stronger language understanding and decision making abilities. Finally, we show our agent trained on WebShop exhibits non-trivial sim-to-real transfer when evaluated on amazon.com and ebay.com, indicating the …
[ Hall J ]

We propose a few-shot learning method for feature selection that can select relevant features given a small number of labeled instances. Existing methods require many labeled instances for accurate feature selection. However, sufficient instances are often unavailable. We use labeled instances in multiple related tasks to alleviate the lack of labeled instances in a target task. To measure the dependency between each feature and label, we use the Hilbert-Schmidt Independence Criterion, which is a kernel-based independence measure. By modeling the kernel functions with neural networks that take a few labeled instances in a task as input, we can encode the task-specific information to the kernels such that the kernels are appropriate for the task. Feature selection with such kernels is performed by using iterative optimization methods, in which each update step is obtained as a closed-form. This formulation enables us to directly and efficiently minimize the expected test error on features selected by a small number of labeled instances. We experimentally demonstrate that the proposed method outperforms existing feature selection methods.
[ Hall J ]

Conditional inference on arbitrary subsets of variables is a core problem in probabilistic inference with important applications such as masked language modeling and image inpainting. In recent years, the family of Any-Order Autoregressive Models (AO-ARMs) -- closely related to popular models such as BERT and XLNet -- has shown breakthrough performance in arbitrary conditional tasks across a sweeping range of domains. But, in spite of their success, in this paper we identify significant improvements to be made to previous formulations of AO-ARMs. First, we show that AO-ARMs suffer from redundancy in their probabilistic model, i.e., they define the same distribution in multiple different ways. We alleviate this redundancy by training on a smaller set of univariate conditionals that still maintains support for efficient arbitrary conditional inference. Second, we upweight the training loss for univariate conditionals that are evaluated more frequently during inference. Our method leads to improved performance with no compromises on tractability, giving state-of-the-art likelihoods in arbitrary conditional modeling on text (Text8), image (CIFAR10, ImageNet32), and continuous tabular data domains.
[ Hall J ]

Machine learning models are vulnerable to data-poisoning attacks, in which an attacker maliciously modifies the training set to change the prediction of a learned model. In a trigger-less attack, the attacker can modify the training set but not the test inputs, while in a backdoor attack the attacker can also modify test inputs. Existing model-agnostic defense approaches either cannot handle backdoor attacks or do not provide effective certificates (i.e., a proof of a defense). We present BagFlip, a model-agnostic certified approach that can effectively defend against both trigger-less and backdoor attacks. We evaluate BagFlip on image classification and malware detection datasets. BagFlip is equal to or more effective than the state-of-the-art approaches for trigger-less attacks and more effective than the state-of-the-art approaches for backdoor attacks.
[ Hall J ]
We study a sequential matching problem faced by "large" centralized platforms where "jobs" must be matched to "workers" subject to uncertainty about worker skill proficiencies. Jobs arrive at discrete times with "job-types" observable upon arrival. To capture the "choice overload" phenomenon, we posit an unlimited supply of workers where each worker is characterized by a vector of attributes (aka "worker-types") drawn from an underlying population-level distribution. The distribution as well as mean payoffs for possible worker-job type-pairs are unobservables and the platform's goal is to sequentially match incoming jobs to workers in a way that maximizes its cumulative payoffs over the planning horizon. We establish lower bounds on the "regret" of any matching algorithm in this setting and propose a novel rate-optimal learning algorithm that adapts to aforementioned primitives "online." Our learning guarantees highlight a distinctive characteristic of the problem: achievable performance only has a "second-order" dependence on worker-type distributions; we believe this finding may be of interest more broadly.
[ Hall J ]

[ Hall J ]

[ Hall J ]

Unsupervised Domain Adaptation demonstrates great potential to mitigate domain shifts by transferring models from labeled source domains to unlabeled target domains. While Unsupervised Domain Adaptation has been applied to a wide variety of complex vision tasks, only few works focus on lane detection for autonomous driving. This can be attributed to the lack of publicly available datasets. To facilitate research in these directions, we propose CARLANE, a 3-way sim-to-real domain adaptation benchmark for 2D lane detection. CARLANE encompasses the single-target datasets MoLane and TuLane and the multi-target dataset MuLane. These datasets are built from three different domains, which cover diverse scenes and contain a total of 163K unique images, 118K of which are annotated. In addition we evaluate and report systematic baselines, including our own method, which builds upon Prototypical Cross-domain Self-supervised Learning. We find that false positive and false negative rates of the evaluated domain adaptation methods are high compared to those of fully supervised baselines. This affirms the need for benchmarks such as CARLANE to further strengthen research in Unsupervised Domain Adaptation for lane detection. CARLANE, all evaluated models and the corresponding implementations are publicly available at https://carlanebenchmark.github.io.
[ Hall J ]

We are now witnessing significant progress of deep learning methods in a variety of tasks (or datasets) of proteins. However, there is a lack of a standard benchmark to evaluate the performance of different methods, which hinders the progress of deep learning in this field. In this paper, we propose such a benchmark called PEER, a comprehensive and multi-task benchmark for Protein sEquence undERstanding. PEER provides a set of diverse protein understanding tasks including protein function prediction, protein localization prediction, protein structure prediction, protein-protein interaction prediction, and protein-ligand interaction prediction. We evaluate different types of sequence-based methods for each task including traditional feature engineering approaches, different sequence encoding methods as well as large-scale pre-trained protein language models. In addition, we also investigate the performance of these methods under the multi-task learning setting. Experimental results show that large-scale pre-trained protein language models achieve the best performance for most individual tasks, and jointly training multiple tasks further boosts the performance. The datasets and source codes of this benchmark will be open-sourced soon.
[ Hall J ]
[ Hall J ]

Machine learning-based modeling of physical systems has experienced increased interest in recent years. Despite some impressive progress, there is still a lack of benchmarks for Scientific ML that are easy to use but still challenging and repre- sentative of a wide range of problems. We introduce PDEBENCH, a benchmark suite of time-dependent simulation tasks based on Partial Differential Equations (PDEs). PDEBENCH comprises both code and data to benchmark the performance of novel machine learning models against both classical numerical simulations and machine learning baselines. Our proposed set of benchmark problems con- tribute the following unique features: (1) A much wider range of PDEs compared to existing benchmarks, ranging from relatively common examples to more real- istic and difficult problems; (2) much larger ready-to-use datasets compared to prior work, comprising multiple simulation runs across a larger number of ini- tial and boundary conditions and PDE parameters; (3) more extensible source codes with user-friendly APIs for data generation and baseline results with popular machine learning models (FNO, U-Net, PINN, Gradient-Based Inverse Method). PDEBENCH allows researchers to extend the benchmark freely for their own pur- poses using a standardized API and to compare the performance of new models to existing baseline methods. We …
[ Hall J ]
Weak supervision (WS) is a powerful method to build labeled datasets for training supervised models in the face of little-to-no labeled data. It replaces hand-labeling data with aggregating multiple noisy-but-cheap label estimates expressed by labeling functions (LFs). While it has been used successfully in many domains, weak supervision's application scope is limited by the difficulty of constructing labeling functions for domains with complex or high-dimensional features. To address this, a handful of methods have proposed automating the LF design process using a small set of ground truth labels. In this work, we introduce AutoWS-Bench-101: a framework for evaluating automated WS (AutoWS) techniques in challenging WS settings---a set of diverse application domains on which it has been previously difficult or impossible to apply traditional WS techniques. While AutoWS is a promising direction toward expanding the application-scope of WS, the emergence of powerful methods such as zero-shot foundation models reveal the need to understand how AutoWS techniques compare or cooperate with modern zero-shot or few-shot learners. This informs the central question of AutoWS-Bench-101: given an initial set of 100 labels for each task, we ask whether a practitioner should use an AutoWS method to generate additional labels or use some simpler baseline, …
[ Hall J ]

[ Hall J ]
A fundamental component of human vision is our ability to parse complex visual scenes and judge the relations between their constituent objects. AI benchmarks for visual reasoning have driven rapid progress in recent years with state-of-the-art systems now reaching human accuracy on some of these benchmarks. Yet, there remains a major gap between humans and AI systems in terms of the sample efficiency with which they learn new visual reasoning tasks. Humans' remarkable efficiency at learning has been at least partially attributed to their ability to harness compositionality -- allowing them to efficiently take advantage of previously gained knowledge when learning new tasks. Here, we introduce a novel visual reasoning benchmark, Compositional Visual Relations (CVR), to drive progress towards the development of more data-efficient learning algorithms. We take inspiration from fluidic intelligence and non-verbal reasoning tests and describe a novel method for creating compositions of abstract rules and generating image datasets corresponding to these rules at scale. Our proposed benchmark includes measures of sample efficiency, generalization, compositionality, and transfer across task rules. We systematically evaluate modern neural architectures and find that convolutional architectures surpass transformer-based architectures across all performance measures in most data regimes. However, all computational models are much …
[ Hall J ]

We introduce SoundSpaces 2.0, a platform for on-the-fly geometry-based audio rendering for 3D environments. Given a 3D mesh of a real-world environment, SoundSpaces can generate highly realistic acoustics for arbitrary sounds captured from arbitrary microphone locations. Together with existing 3D visual assets, it supports an array of audio-visual research tasks, such as audio-visual navigation, mapping, source localization and separation, and acoustic matching. Compared to existing resources, SoundSpaces 2.0 has the advantages of allowing continuous spatial sampling, generalization to novel environments, and configurable microphone and material properties. To our knowledge, this is the first geometry-based acoustic simulation that offers high fidelity and realism while also being fast enough to use for embodied learning. We showcase the simulator's properties and benchmark its performance against real-world audio measurements. In addition, we demonstrate two downstream tasks---embodied navigation and far-field automatic speech recognition---and highlight sim2real performance for the latter. SoundSpaces 2.0 is publicly available to facilitate wider research for perceptual systems that can both see and hear.
[ Hall J ]

The recent progress in implicit 3D representation, i.e., Neural Radiance Fields (NeRFs), has made accurate and photorealistic 3D reconstruction possible in a differentiable manner. This new representation can effectively convey the information of hundreds of high-resolution images in one compact format and allows photorealistic synthesis of novel views. In this work, using the variant of NeRF called Plenoxels, we create the first large-scale radiance fields datasets for perception tasks, called the PeRFception, which consists of two parts that incorporate both object-centric and scene-centric scans for classification and segmentation. It shows a significant memory compression rate (96.4\%) from the original dataset, while containing both 2D and 3D information in a unified form. We construct the classification and segmentation models that directly take this radiance fields format as input and also propose a novel augmentation technique to avoid overfitting on backgrounds of images. The code and data are publicly available in "https://postech-cvlab.github.io/PeRFception/".
[ Hall J ]

[ Hall J ]

The Dark Web represents a hotbed for illicit activity, where users communicate on different market forums in order to exchange goods and services. Law enforcement agencies benefit from forensic tools that perform authorship analysis, in order to identify and profile users based on their textual content. However, authorship analysis has been traditionally studied using corpora featuring literary texts such as fragments from novels or fan fiction, which may not be suitable in a cybercrime context. Moreover, the few works that employ authorship analysis tools for cybercrime prevention usually employ ad-hoc experimental setups and datasets. To address these issues, we release VeriDark: a benchmark comprised of three large scale authorship verification datasets and one authorship identification dataset obtained from user activity from either Dark Web related Reddit communities or popular illicit Dark Web market forums. We evaluate competitive NLP baselines on the three datasets and perform an analysis of the predictions to better understand the limitations of such approaches. We make the datasets and baselines publicly available at https://github.com/bit-ml/VeriDark .
[ Hall J ]

Integer sequences are of central importance to the modeling of concepts admitting complete finitary descriptions. We introduce a novel view on the learning of such concepts and lay down a set of benchmarking tasks aimed at conceptual understanding by machine learning models. These tasks indirectly assess model ability to abstract, and challenge them to reason both interpolatively and extrapolatively from the knowledge gained by observing representative examples. To further aid research in knowledge representation and reasoning, we present FACT, the Finitary Abstraction Comprehension Toolkit. The toolkit surrounds a large dataset of integer sequences comprising both organic and synthetic entries, a library for data pre-processing and generation, a set of model performance evaluation tools, and a collection of baseline model implementations, enabling the making of the future advancements with ease.
[ Hall J ]

Euclidean geometry is among the earliest forms of mathematical thinking. While the geometric primitives underlying its constructions, such as perfect lines and circles, do not often occur in the natural world, humans rarely struggle to perceive and reason with them. Will computer vision models trained on natural images show the same sensitivity to Euclidean geometry? Here we explore these questions by studying few-shot generalization in the universe of Euclidean geometry constructions. We introduce Geoclidean, a domain-specific language for Euclidean geometry, and use it to generate two datasets of geometric concept learning tasks for benchmarking generalization judgements of humans and machines. We find that humans are indeed sensitive to Euclidean geometry and generalize strongly from a few visual examples of a geometric concept. In contrast, low-level and high-level visual features from standard computer vision models pretrained on natural images do not support correct generalization. Thus Geoclidean represents a novel few-shot generalization benchmark for geometric concept learning, where the performance of humans and of AI models diverge. The Geoclidean framework and dataset are publicly available for download.
[ Hall J ]

[ Hall J ]
Commercial ML APIs offered by providers such as Google, Amazon and Microsoft have dramatically simplified ML adoptions in many applications. Numerous companies and academics pay to use ML APIs for tasks such as object detection, OCR and sentiment analysis. Different ML APIs tackling the same task can have very heterogeneous performances. Moreover, the ML models underlying the APIs also evolve over time. As ML APIs rapidly become a valuable marketplace and an integral part of analytics, it is critical to systematically study and compare different APIs with each other and to characterize how individual APIs change over time. However, this practically important topic is currently underexplored due to the lack of data. In this paper, we present HAPI (History of APIs), a longitudinal dataset of 1,761,417 instances of commercial ML API applications (involving APIs from Amazon, Google, IBM, Microsoft and other providers) across diverse tasks including image tagging, speech recognition, and text mining from 2020 to 2022. Each instance consists of a query input for an API (e.g., an image or text) along with the API’s output prediction/annotation and confidence scores. HAPI is the first large-scale dataset of ML API usages and is a unique resource for studying ML as-a-service …
[ Hall J ]

Satellite imagery is increasingly available, high resolution, and temporally detailed. Changes in spatio-temporal datasets such as satellite images are particularly interesting as they reveal the many events and forces that shape our world. However, finding such interesting and meaningful change events from the vast data is challenging. In this paper, we present new datasets for such change events that include semantically meaningful events like road construction. Instead of manually annotating the very large corpus of satellite images, we introduce a novel unsupervised approach that takes a large spatio-temporal dataset from satellite images and finds interesting change events. To evaluate the meaningfulness on these datasets we create 2 benchmarks namely CaiRoad and CalFire which capture the events of road construction and forest fires. These new benchmarks can be used to evaluate semantic retrieval/classification performance. We explore these benchmarks qualitatively and quantitatively by using several methods and show that these new datasets are indeed challenging for many existing methods.
[ Hall J ]
In recent years there has been significant progress in the field of 3D learning on classification, detection and segmentation problems. The vast majority of the existing studies focus on canonical closed-set conditions, neglecting the intrinsic open nature of the real-world. This limits the abilities of robots and autonomous systems involved in safety-critical applications that require managing novel and unknown signals. In this context exploiting 3D data can be a valuable asset since it provides rich information about the geometry of perceived objects and scenes. With this paper we provide the first broad study on 3D Open Set learning. We introduce 3DOS: a novel testbed for semantic novelty detection that considers several settings with increasing difficulties in terms of semantic (category) shift, and covers both in-domain (synthetic-to-synthetic, real-to-real) and cross-domain (synthetic-to-real) scenarios. Moreover, we investigate the related 2D Open Set literature to understand if and how its recent improvements are effective on 3D data. Our extensive benchmark positions several algorithms in the same coherent picture, revealing their strengths and limitations. The results of our analysis may serve as a reliable foothold for future tailored 3D Open Set methods.
[ Hall J ]
Unlike RGB cameras that use visible light bands (384∼769 THz) and Lidars that use infrared bands (361∼331 THz), Radars use relatively longer wavelength radio bands (77∼81 GHz), resulting in robust measurements in adverse weathers. Unfortunately, existing Radar datasets only contain a relatively small number of samples compared to the existing camera and Lidar datasets. This may hinder the development of sophisticated data-driven deep learning techniques for Radar-based perception. Moreover, most of the existing Radar datasets only provide 3D Radar tensor (3DRT) data that contain power measurements along the Doppler, range, and azimuth dimensions. As there is no elevation information, it is challenging to estimate the 3D bounding box of an object from 3DRT. In this work, we introduce KAIST-Radar (K-Radar), a novel large-scale object detection dataset and benchmark that contains 35K frames of 4D Radar tensor (4DRT) data with power measurements along the Doppler, range, azimuth, and elevation dimensions, together with carefully annotated 3D bounding box labels of objects on the roads. K-Radar includes challenging driving conditions such as adverse weathers (fog, rain, and snow) on various road structures (urban, suburban roads, alleyways, and highways). In addition to the 4DRT, we provide auxiliary measurements from carefully calibrated high-resolution Lidars, surround …
[ Hall J ]

In our continuously evolving world, entities change over time and new, previously non-existing or unknown, entities appear. We study how this evolutionary scenario impacts the performance on a well established entity linking (EL) task. For that study, we introduce TempEL, an entity linking dataset that consists of time-stratified English Wikipedia snapshots from 2013 to 2022, from which we collect both anchor mentions of entities, and these target entities’ descriptions. By capturing such temporal aspects, our newly introduced TempEL resource contrasts with currently existing entity linking datasets, which are composed of fixed mentions linked to a single static version of a target Knowledge Base (e.g., Wikipedia 2010 for CoNLL-AIDA). Indeed, for each of our collected temporal snapshots, TempEL contains links to entities that are continual, i.e., occur in all of the years, as well as completely new entities that appear for the first time at some point. Thus, we enable to quantify the performance of current state-of-the-art EL models for: (i) entities that are subject to changes over time in their Knowledge Base descriptions as well as their mentions’ contexts, and (ii) newly created entities that were previously non-existing (e.g., at the time the EL model was trained). Our experimental results …
[ Hall J ]

Estimating personalized effects of treatments is a complex, yet pervasive problem. To tackle it, recent developments in the machine learning (ML) literature on heterogeneous treatment effect estimation gave rise to many sophisticated, but opaque, tools: due to their flexibility, modularity and ability to learn constrained representations, neural networks in particular have become central to this literature. Unfortunately, the assets of such black boxes come at a cost: models typically involve countless nontrivial operations, making it difficult to understand what they have learned. Yet, understanding these models can be crucial -- in a medical context, for example, discovered knowledge on treatment effect heterogeneity could inform treatment prescription in clinical practice. In this work, we therefore use post-hoc feature importance methods to identify features that influence the model's predictions. This allows us to evaluate treatment effect estimators along a new and important dimension that has been overlooked in previous work: We construct a benchmarking environment to empirically investigate the ability of personalized treatment effect models to identify predictive covariates -- covariates that determine differential responses to treatment. Our benchmarking environment then enables us to provide new insight into the strengths and weaknesses of different types of treatment effects models as we modulate …
[ Hall J ]

[ Hall J ]

Physical simulations are at the core of many critical industrial systems. However, today's physical simulators have some limitations such as computation time, dealing with missing or uncertain data, or even non-convergence for some feasible cases. Recently, the use of data-driven approaches to learn complex physical simulations has been considered as a promising approach to address those issues. However, this comes often at the cost of some accuracy which may hinder the industrial use. To drive this new research topic towards a better real-world applicability, we propose a new benchmark suite "Learning Industrial Physical Simulations"(LIPS) to meet the need of developing efficient, industrial application-oriented, augmented simulators. To define how to assess such benchmark performance, we propose a set of four generic categories of criteria. The proposed benchmark suite is a modular and configurable framework that can deal with different physical problems. To demonstrate this ability, we propose in this paper to investigate two distinct use-cases with different physical simulations, namely: the power grid and the pneumatic. For each use case, several benchmarks are described and assessed with existing models. None of the models perform well under all expected criteria, inviting the community to develop new industry-applicable solutions and possibly showcase their …
[ Hall J ]
Neighbor embeddings are a family of methods for visualizing complex high-dimensional data sets using kNN graphs. To find the low-dimensional embedding, these algorithms combine an attractive force between neighboring pairs of points with a repulsive force between all points. One of the most popular examples of such algorithms is t-SNE. Here we empirically show that changing the balance between the attractive and the repulsive forces in t-SNE using the exaggeration parameter yields a spectrum of embeddings, which is characterized by a simple trade-off: stronger attraction can better represent continuous manifold structures, while stronger repulsion can better represent discrete cluster structures and yields higher kNN recall. We find that UMAP embeddings correspond to t-SNE with increased attraction; mathematical analysis shows that this is because the negative sampling optimization strategy employed by UMAP strongly lowers the effective repulsion. Likewise, ForceAtlas2, commonly used for visualizing developmental single-cell transcriptomic data, yields embeddings corresponding to t-SNE with the attraction increased even more. At the extreme of this spectrum lie Laplacian eigenmaps. Our results demonstrate that many prominent neighbor embedding algorithms can be placed onto the attraction-repulsion spectrum, and highlight the inherent trade-offs between them.
[ Hall J ]

Graph representation learning has many real-world applications, from self-driving LiDAR, 3D computer vision to drug repurposing, protein classification, social networks analysis. An adequate representation of graph data is vital to the learning performance of a statistical or machine learning model for graph-structured data. This paper proposes a novel multiscale representation system for graph data, called decimated framelets, which form a localized tight frame on the graph. The decimated framelet system allows storage of the graph data representation on a coarse-grained chain and processes the graph data at multi scales where at each scale, the data is stored on a subgraph. Based on this, we establish decimated G-framelet transforms for the decomposition and reconstruction of the graph data at multi resolutions via a constructive data-driven filter bank. The graph framelets are built on a chain-based orthonormal basis that supports fast graph Fourier transforms. From this, we give a fast algorithm for the decimated G-framelet transforms, or FGT, that has linear computational complexity O(N) for a graph of size N. The effectiveness for constructing the decimated framelet system and the FGT is demonstrated by a simulated example of random graphs and real-world applications, including multiresolution analysis for traffic network and representation learning …
[ Hall J ]

[ Hall J ]
[ Hall J ]

Instrumental variables (IV) are widely used in the social and health sciences in situations where a researcher would like to measure a causal effect but cannot perform an experiment. For valid causal inference in an IV model, there must be external (exogenous) variation that (i) has a sufficiently large impact on the variable of interest (called the relevance assumption) and where (ii) the only pathway through which the external variation impacts the outcome is via the variable of interest (called the exclusion restriction). For statistical inference, researchers must also make assumptions about the functional form of the relationship between the three variables. Current practice assumes (i) and (ii) are met, then postulates a functional form with limited input from the data. In this paper, we describe a framework that leverages machine learning to validate these typically unchecked but consequential assumptions in the IV framework, providing the researcher empirical evidence about the quality of the instrument given the data at hand. Central to the proposed approach is the idea of prediction validity. Prediction validity checks that error terms -- which should be independent from the instrument -- cannot be modeled with machine learning any better than a model that is identically …
[ Hall J ]
Most data sets comprise of measurements on continuous and categorical variables. Yet, modeling high-dimensional mixed predictors has received limited attention in the regression and classification statistical literature. We study the general regression problem of inferring on a variable of interest based on high dimensional mixed continuous and binary predictors. The aim is to find a lower dimensional function of the mixed predictor vector that contains all the modeling information in the mixed predictors for the response, which can be either continuous or categorical. The approach we propose identifies sufficient reductions by reversing the regression and modeling the mixed predictors conditional on the response. We derive the maximum likelihood estimator of the sufficient reductions, asymptotic tests for dimension, and a regularized estimator, which simultaneously achieves variable (feature) selection and dimension reduction (feature extraction). We study the performance of the proposed method and compare it with other approaches through simulations and real data examples.
[ Hall J ]

Reproducibility Summary Scope of Reproducibility This work attempts to reproduce the results of the 2021 ICML paper 'To be Robust or to be Fair: Towards Fairness in Adversarial Training.' I first reproduce classwise accuracy and robustness discrepancies resulting from adversarial training, and then implement the authors' proposed Fair Robust Learning (FRL) algorithms for correcting this bias. Methodology In the spirit of education and public accessibility, this work attempts to replicate the results of the paper from first principles using Google Colab resources. To account for the limitations imposed by Colab, a much smaller model and dataset are used. All results can be replicated in approximately 10 GPU hours, within the usual timeout window of an active Colab session. Serialization is also built into the example notebooks in the case of crashes to prevent too much loss, and serialized models are also included in the repository to allow others to explore the results without having to run hours of code. Results This work finds that (1) adversarial training does in fact lead to classwise performance discrepancies not only in standard error (accuracy) but also in attack robustness, (2) these discrepancies exacerbate existing biases in the model, (3) upweighting the standard and …
[ Hall J ]

The presented study evaluates ''Exacerbating Algorithmic Bias through Fairness Attacks'' by Mehrabi et al. (2021) within the scope of the ML Reproducibility Challenge 2021. We find it not possible to reproduce the original results from sole use of the paper, and difficult even in possession of the provided codebase. Yet, we managed to obtain similar findings that supported three out of the five main claims of the publication, albeit using partial re-implementations and numerous assumptions. On top of the reproducibility study, we also extend the work of the authors by implementing a different stopping method, which changes the effectiveness of the proposed attacks.
[ Hall J ]

Scope of Reproducibility In the article, the authors of the Transparent Object Tracking Benchmark compare the performance of 25 state-of-the-art tracking algorithms, evaluated on the TOTB dataset, with a new proposed algorithm for tracking transparent objects called TransATOM. Authors claim that it outperforms all other state-of-the-art algorithms. They highlight the effectiveness and advantage of transparency feature for transparent object tracking. They also do a qualitative evaluation of each tracking algorithm on various typical challenges such as rotation, scale variation etc. Methodology In addition to the TransAtom tracker, we chose ten, best performing on TOTB dataset, state-of-the-art tracking algorithms to evaluate on the TOTB dataset using a set of standard evaluation tools. On different sequences, we performed a qualitative evaluation of each tracking algorithm and thoroughly compared the ATOM tracker to the TransATOM tracker. We did not implement the trackers from scratch, but instead used GitHub implementations. TOTB dataset had to be integrated into some of the standard evaluation tools. We used an internal server with an Ubuntu 18.04 operating system and a TITAN X graphics card to reproduce the results. Results The tracking performance was reproduced in terms of success, precision, and normalized precision, and the reported value is in …
Invited Talk: Geoffrey Hinton
The Forward-Forward Algorithm for Training Deep Neural Networks
I will describe a training algorithm for deep neural networks that does not require the neurons to propagate derivatives or remember neural activities. The algorithm can learn multi-level representations of streaming sensory data on the fly without interrupting the processing of the input stream. The algorithm scales much better than reinforcement learning and would be much easier to implement in cortex than backpropagation.
Bio :Poster Session 6 Thu 1 Dec 04:00 p.m.
[ Hall J ]

Learning visual representations from natural language supervision has recently shown great promise in a number of pioneering works. In general, these language-augmented visual models demonstrate strong transferability to a variety of datasets/tasks. However, it remains challenging to evaluate the transferablity of these foundation models due to the lack of easy-to-use toolkits for fair benchmarking. To tackle this, we build ELEVATER (Evaluation of Language-augmented Visual Task-level Transfer), the first benchmark to compare and evaluate pre-trained language-augmented visual models. Several highlights include: (i) Datasets. As downstream evaluation suites, it consists of 20 image classification datasets and 35 object detection datasets, each of which is augmented with external knowledge. (ii) Toolkit. An automatic hyper-parameter tuning toolkit is developed to ensure the fairness in model adaption. To leverage the full power of language-augmented visual models, novel language-aware initialization methods are proposed to significantly improve the adaption performance. (iii) Metrics. A variety of evaluation metrics are used, including sample-efficiency (zero-shot and few-shot) and parameter-efficiency (linear probing and full model fine-tuning). We will publicly release ELEVATER.
[ Hall J ]

Contemporary vision benchmarks predominantly consider tasks on which humans can achieve near-perfect performance. However, humans are frequently presented with visual data that they cannot classify with 100% certainty, and models trained on standard vision benchmarks achieve low performance when evaluated on this data. To address this issue, we introduce a procedure for creating datasets of ambiguous images and use it to produce SQUID-E ("Squidy"), a collection of noisy images extracted from videos. All images are annotated with ground truth values and a test set is annotated with human uncertainty judgments. We use this dataset to characterize human uncertainty in vision tasks and evaluate existing visual event classification models. Experimental results suggest that existing vision models are not sufficiently equipped to provide meaningful outputs for ambiguous images and that datasets of this nature can be used to assess and improve such models through model training and direct evaluation of model calibration. These findings motivate large-scale ambiguous dataset creation and further research focusing on noisy visual data.
[ Hall J ]

In over two decades of research, the field of dictionary learning has gathered a large collection of successful applications, and theoretical guarantees for model recovery are known only whenever optimization is carried out in the same model class as that of the underlying dictionary. This work characterizes the surprising phenomenon that dictionary recovery can be facilitated by searching over the space of larger over-realized models. This observation is general and independent of the specific dictionary learning algorithm used. We thoroughly demonstrate this observation in practice and provide an analysis of this phenomenon by tying recovery measures to generalization bounds. In particular, we show that model recovery can be upper-bounded by the empirical risk, a model-dependent quantity and the generalization gap, reflecting our empirical findings. We further show that an efficient and provably correct distillation approach can be employed to recover the correct atoms from the over-realized model. As a result, our meta-algorithm provides dictionary estimates with consistently better recovery of the ground-truth model.
[ Hall J ]

Self-supervised learning allows AI systems to learn effective representations from large amounts of data using tasks that do not require costly labeling. Mode collapse, i.e., the model producing identical representations for all inputs, is a central problem to many self-supervised learning approaches, making self-supervised tasks, such as matching distorted variants of the inputs, ineffective. In this article, we argue that a straightforward application of information maximization among alternative latent representations of the same input naturally solves the collapse problem and achieves competitive empirical results. We propose a self-supervised learning method, CorInfoMax, that uses a second-order statistics-based mutual information measure that reflects the level of correlation among its arguments. Maximizing this correlative information measure between alternative representations of the same input serves two purposes: (1) it avoids the collapse problem by generating feature vectors with non-degenerate covariances; (2) it establishes relevance among alternative representations by increasing the linear dependence among them. An approximation of the proposed information maximization objective simplifies to a Euclidean distance-based objective function regularized by the log-determinant of the feature covariance matrix. The regularization term acts as a natural barrier against feature space degeneracy. Consequently, beyond avoiding complete output collapse to a single point, the proposed approach also …
[ Hall J ]

Uncertainty quantification is a key component of machine learning models targeted at safety-critical systems such as in healthcare or autonomous vehicles. We study this problem in the context of meta learning, where the goal is to quickly adapt a predictor to new tasks. In particular, we propose a novel algorithm to construct \emph{PAC prediction sets}, which capture uncertainty via sets of labels, that can be adapted to new tasks with only a few training examples. These prediction sets satisfy an extension of the typical PAC guarantee to the meta learning setting; in particular, the PAC guarantee holds with high probability over future tasks. We demonstrate the efficacy of our approach on four datasets across three application domains: mini-ImageNet and CIFAR10-C in the visual domain, FewRel in the language domain, and the CDC Heart Dataset in the medical domain. In particular, our prediction sets satisfy the PAC guarantee while having smaller size compared to other baselines that also satisfy this guarantee.
[ Hall J ]

Modern pre-trained transformers have rapidly advanced the state-of-the-art in machine learning, but have also grown in parameters and computational complexity, making them increasingly difficult to deploy in resource-constrained environments. Binarization of the weights and activations of the network can significantly alleviate these issues, however, is technically challenging from an optimization perspective. In this work, we identify a series of improvements that enables binary transformers at a much higher accuracy than what was possible previously. These include a two-set binarization scheme, a novel elastic binary activation function with learned parameters, and a method to quantize a network to its limit by successively distilling higher precision models into lower precision students. These approaches allow for the first time, fully binarized transformer models that are at a practical level of accuracy, approaching a full-precision BERT baseline on the GLUE language understanding benchmark within as little as 5.9%. Code and models are available at:https://github.com/facebookresearch/bit.
[ Hall J ]

The increasing size and complexity of modern ML systems has improved their predictive capabilities but made their behavior harder to explain. Many techniques for model explanation have been developed in response, but we lack clear criteria for assessing these techniques. In this paper, we cast model explanation as the causal inference problem of estimating causal effects of real-world concepts on the output behavior of ML models given actual input data. We introduce CEBaB, a new benchmark dataset for assessing concept-based explanation methods in Natural Language Processing (NLP). CEBaB consists of short restaurant reviews with human-generated counterfactual reviews in which an aspect (food, noise, ambiance, service) of the dining experience was modified. Original and counterfactual reviews are annotated with multiply-validated sentiment ratings at the aspect-level and review-level. The rich structure of CEBaB allows us to go beyond input features to study the effects of abstract, real-world concepts on model behavior. We use CEBaB to compare the quality of a range of concept-based explanation methods covering different assumptions and conceptions of the problem, and we seek to establish natural metrics for comparative assessments of these methods.
[ Hall J ]

Most recent self-supervised methods for learning image representations focus on either producing a global feature with invariance properties, or producing a set of local features. The former works best for classification tasks while the latter is best for detection and segmentation tasks. This paper explores the fundamental trade-off between learning local and global features. A new method called VICRegL is proposed that learns good global and local features simultaneously, yielding excellent performance on detection and segmentation tasks while maintaining good performance on classification tasks. Concretely, two identical branches of a standard convolutional net architecture are fed two differently distorted versions of the same image. The VICReg criterion is applied to pairs of global feature vectors. Simultaneously, the VICReg criterion is applied to pairs of local feature vectors occurring before the last pooling layer. Two local feature vectors are attracted to each other if their l2-distance is below a threshold or if their relative locations are consistent with a known geometric transformation between the two input images. We demonstrate strong performance on linear classification and segmentation transfer tasks. Code and pretrained models are publicly available at: https://github.com/facebookresearch/VICRegL
[ Hall J ]

We investigate the generalization capabilities of neural signed distance functions (SDFs) for learning 3D object representations for unseen and unlabeled point clouds. Existing methods can fit SDFs to a handful of object classes and boast fine detail or fast inference speeds, but do not generalize well to unseen shapes. We introduce a two-stage semi-supervised meta-learning approach that transfers shape priors from labeled to unlabeled data to reconstruct unseen object categories. The first stage uses an episodic training scheme to simulate training on unlabeled data and meta-learns initial shape priors. The second stage then introduces unlabeled data with disjoint classes in a semi-supervised scheme to diversify these priors and achieve generalization. We assess our method on both synthetic data and real collected point clouds. Experimental results and analysis validate that our approach outperforms existing neural SDF methods and is capable of robust zero-shot inference on 100+ unseen classes. Code can be found at https://github.com/princeton-computational-imaging/gensdf
[ Hall J ]
The ability of continual learning systems to transfer knowledge from previously seen tasks in order to maximize performance on new tasks is a significant challenge for the field, limiting the applicability of continual learning solutions to realistic scenarios. Consequently, this study aims to broaden our understanding of transfer and its driving forces in the specific case of continual reinforcement learning. We adopt SAC as the underlying RL algorithm and Continual World as a suite of continuous control tasks. We systematically study how different components of SAC (the actor and the critic, exploration, and data) affect transfer efficacy, and we provide recommendations regarding various modeling options. The best set of choices, dubbed ClonEx-SAC, is evaluated on the recent Continual World benchmark. ClonEx-SAC achieves 87% final success rate compared to 80% of PackNet, the best method in the benchmark. Moreover, the transfer grows from 0.18 to 0.54 according to the metric provided by Continual World.
[ Hall J ]

Inverse reinforcement learning (IRL) aims to recover the reward function and the associated optimal policy that best fits observed sequences of states and actions implemented by an expert. Many algorithms for IRL have an inherent nested structure: the inner loop finds the optimal policy given parametrized rewards while the outer loop updates the estimates towards optimizing a measure of fit. For high dimensional environments such nested-loop structure entails a significant computational burden. To reduce the computational burden of a nested loop, novel methods such as SQIL \cite{reddy2019sqil} and IQ-Learn \cite{garg2021iq} emphasize policy estimation at the expense of reward estimation accuracy. However, without accurate estimated rewards, it is not possible to do counterfactual analysis such as predicting the optimal policy under different environment dynamics and/or learning new tasks. In this paper we develop a novel {\em single-loop} algorithm for IRL that does not compromise reward estimation accuracy. In the proposed algorithm, each policy improvement step is followed by a stochastic gradient step for likelihood maximization. We show that the proposed algorithm provably converges to a stationary solution with a finite-time guarantee. If the reward is parameterized linearly we show the identified solution corresponds to the solution of the maximum entropy IRL …
[ Hall J ]

Existing unsupervised methods for keypoint learning rely heavily on the assumption that a specific keypoint type (e.g. elbow, digit, abstract geometric shape) appears only once in an image. This greatly limits their applicability, as each instance must be isolated before applying the method—an issue that is never discussed or evaluated. We thus propose a novel method to learn Task-agnostic, UnSupervised Keypoints (TUSK) which can deal with multiple instances. To achieve this, instead of the commonly-used strategy of detecting multiple heatmaps, each dedicated to a specific keypoint type, we use a single heatmap for detection, and enable unsupervised learning of keypoint types through clustering. Specifically, we encode semantics into the keypoints by teaching them to reconstruct images from a sparse set of keypoints and their descriptors, where the descriptors are forced to form distinct clusters in feature space around learned prototypes. This makes our approach amenable to a wider range of tasks than any previous unsupervised keypoint method: we show experiments on multiple-instance detection and classification, object discovery, and landmark detection—all unsupervised—with performance on par with the state of the art, while also being able to deal with multiple instances.
[ Hall J ]

The ability of likelihood-based probabilistic models to generalize to unseen data is central to many machine learning applications such as lossless compression. In this work, we study the generalization of a popular class of probabilistic model - the Variational Auto-Encoder (VAE). We discuss the two generalization gaps that affect VAEs and show that overfitting is usually dominated by amortized inference. Based on this observation, we propose a new training objective that improves the generalization of amortized inference. We demonstrate how our method can improve performance in the context of image modeling and lossless compression.
[ Hall J ]
Plug-and-Play Priors (PnP) and Regularization by Denoising (RED) are widely-used frameworks for solving imaging inverse problems by computing fixed-points of operators combining physical measurement models and learned image priors. While traditional PnP/RED formulations have focused on priors specified using image denoisers, there is a growing interest in learning PnP/RED priors that are end-to-end optimal. The recent Deep Equilibrium Models (DEQ) framework has enabled memory-efficient end-to-end learning of PnP/RED priors by implicitly differentiating through the fixed-point equations without storing intermediate activation values. However, the dependence of the computational/memory complexity of the measurement models in PnP/RED on the total number of measurements leaves DEQ impractical for many imaging applications. We propose ODER as a new strategy for improving the efficiency of DEQ through stochastic approximations of the measurement models. We theoretically analyze ODER giving insights into its convergence and ability to approximate the traditional DEQ approach. Our numerical results suggest the potential improvements in training/testing complexity due to ODER on three distinct imaging applications.
[ Hall J ]

Designing learning systems which are invariant to certain data transformations is critical in machine learning. Practitioners can typically enforce a desired invariance on the trained model through the choice of a network architecture, e.g. using convolutions for translations, or using data augmentation. Yet, enforcing true invariance in the network can be difficult, and data invariances are not always known a piori. State-of-the-art methods for learning data augmentation policies require held-out data and are based on bilevel optimization problems, which are complex to solve and often computationally demanding. In this work we investigate new ways of learning invariances only from the training data. Using learnable augmentation layers built directly in the network, we demonstrate that our method is very versatile. It can incorporate any type of differentiable augmentation and be applied to a broad class of learning problems beyond computer vision. We provide empirical evidence showing that our approach is easier and faster to train than modern automatic data augmentation techniques based on bilevel optimization, while achieving comparable results. Experiments show that while the invariances transferred to a model through automatic data augmentation are limited by the model expressivity, the invariance yielded by our approach is insensitive to it by design.
[ Hall J ]
A central goal in the cognitive sciences is the development of numerical models for mental representations of object concepts. This paper introduces Variational Interpretable Concept Embeddings (VICE), an approximate Bayesian method for embedding object concepts in a vector space using data collected from humans in a triplet odd-one-out task. VICE uses variational inference to obtain sparse, non-negative representations of object concepts with uncertainty estimates for the embedding values. These estimates are used to automatically select the dimensions that best explain the data. We derive a PAC learning bound for VICE that can be used to estimate generalization performance or determine a sufficient sample size for experimental design. VICE rivals or outperforms its predecessor, SPoSE, at predicting human behavior in the triplet odd-one-out task. Furthermore, VICE's object representations are more reproducible and consistent across random initializations, highlighting the unique advantage of using VICE for deriving interpretable embeddings from human behavior.
[ Hall J ]

Humans and other animals are capable of improving their learning performance as they solve related tasks from a given problem domain, to the point of being able to learn from extremely limited data. While synaptic plasticity is generically thought to underlie learning in the brain, the precise neural and synaptic mechanisms by which learning processes improve through experience are not well understood. Here, we present a general-purpose, biologically-plausible meta-learning rule which estimates gradients with respect to the parameters of an underlying learning algorithm by simply running it twice. Our rule may be understood as a generalization of contrastive Hebbian learning to meta-learning and notably, it neither requires computing second derivatives nor going backwards in time, two characteristic features of previous gradient-based methods that are hard to conceive in physical neural circuits. We demonstrate the generality of our rule by applying it to two distinct models: a complex synapse with internal states which consolidate task-shared information, and a dual-system architecture in which a primary network is rapidly modulated by another one to learn the specifics of each task. For both models, our meta-learning rule matches or outperforms reference algorithms on a wide range of benchmark problems, while only using information presumed …
[ Hall J ]

Diagnosing and mitigating changes in model fairness under distribution shift is an important component of the safe deployment of machine learning in healthcare settings. Importantly, the success of any mitigation strategy strongly depends on the \textit{structure} of the shift. Despite this, there has been little discussion of how to empirically assess the structure of a distribution shift that one is encountering in practice. In this work, we adopt a causal framing to motivate conditional independence tests as a key tool for characterizing distribution shifts. Using our approach in two medical applications, we show that this knowledge can help diagnose failures of fairness transfer, including cases where real-world shifts are more complex than is often assumed in the literature. Based on these results, we discuss potential remedies at each step of the machine learning pipeline.
[ Hall J ]

Text generation is of great importance to many natural language processing applications. However, maximization-based decoding methods (e.g., beam search) of neural language models often lead to degenerate solutions---the generated text is unnatural and contains undesirable repetitions. Existing approaches introduce stochasticity via sampling or modify training objectives to decrease the probabilities of certain tokens (e.g., unlikelihood training). However, they often lead to solutions that lack coherence. In this work, we show that an underlying reason for model degeneration is the anisotropic distribution of token representations. We present a contrastive solution: (i) SimCTG, a contrastive training objective to calibrate the model's representation space, and (ii) a decoding method---contrastive search---to encourage diversity while maintaining coherence in the generated text. Extensive experiments and analyses on three benchmarks from two languages demonstrate that our proposed approach outperforms state-of-the-art text generation methods as evaluated by both human and automatic metrics.
[ Hall J ]
[ Hall J ]

Graph neural networks have been extensively studied for learning with inter-connected data. Despite this, recent evidence has revealed GNNs' deficiencies related to over-squashing, heterophily, handling long-range dependencies, edge incompleteness and particularly, the absence of graphs altogether. While a plausible solution is to learn new adaptive topology for message passing, issues concerning quadratic complexity hinder simultaneous guarantees for scalability and precision in large networks. In this paper, we introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes, as an important building block for a new class of Transformer networks for node classification on large graphs, dubbed as NodeFormer. Specifically, the efficient computation is enabled by a kernerlized Gumbel-Softmax operator that reduces the algorithmic complexity to linearity w.r.t. node numbers for learning latent graph structures from large, potentially fully-connected graphs in a differentiable manner. We also provide accompanying theory as justification for our design. Extensive experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs (with up to 2M nodes) and graph-enhanced applications (e.g., image classification) where input graphs are missing. The codes are available at https://github.com/qitianwu/NodeFormer.
[ Hall J ]

After training complex deep learning models, a common task is to compress the model to reduce compute and storage demands. When compressing, it is desirable to preserve the original model's per-example decisions (e.g., to go beyond top-1 accuracy or preserve robustness), maintain the network's structure, automatically determine per-layer compression levels, and eliminate the need for fine tuning. No existing compression methods simultaneously satisfy these criteria---we introduce a principled approach that does by leveraging interpolative decompositions. Our approach simultaneously selects and eliminates channels (analogously, neurons), then constructs an interpolation matrix that propagates a correction into the next layer, preserving the network's structure. Consequently, our method achieves good performance even without fine tuning and admits theoretical analysis. Our theoretical generalization bound for a one layer network lends itself naturally to a heuristic that allows our method to automatically choose per-layer sizes for deep networks. We demonstrate the efficacy of our approach with strong empirical performance on a variety of tasks, models, and datasets---from simple one-hidden-layer networks to deep networks on ImageNet.
[ Hall J ]

The performance of trained neural networks is robust to harsh levels of pruning. Coupled with the ever-growing size of deep learning models, this observation has motivated extensive research on learning sparse models. In this work, we focus on the task of controlling the level of sparsity when performing sparse learning. Existing methods based on sparsity-inducing penalties involve expensive trial-and-error tuning of the penalty factor, thus lacking direct control of the resulting model sparsity. In response, we adopt a constrained formulation: using the gate mechanism proposed by Louizos et al. (2018), we formulate a constrained optimization problem where sparsification is guided by the training objective and the desired sparsity target in an end-to-end fashion. Experiments on CIFAR-{10, 100}, TinyImageNet, and ImageNet using WideResNet and ResNet{18, 50} models validate the effectiveness of our proposal and demonstrate that we can reliably achieve pre-determined sparsity targets without compromising on predictive performance.
[ Hall J ]

Robustness to adversarial attacks was shown to require a larger model capacity, and thus a larger memory footprint. In this paper, we introduce an approach to obtain robust yet compact models by pruning randomly-initialized binary networks. Unlike adversarial training, which learns the model parameters, we initialize the model parameters as either +1 or −1, keep them fixed, and find a subnetwork structure that is robust to attacks. Our method confirms the Strong Lottery Ticket Hypothesis in the presence of adversarial attacks, and extends this to binary networks. Furthermore, it yields more compact networks with competitive performance than existing works by 1) adaptively pruning different network layers; 2) exploiting an effective binary initialization scheme; 3) incorporating a last batch normalization layer to improve training stability. Our experiments demonstrate that our approach not only always outperforms the state-of-the-art robust binary networks, but also can achieve accuracy better than full-precision ones on some datasets. Finally, we show the structured patterns of our pruned binary networks.
[ Hall J ]

Spiking neural networks (SNNs) are shown to be more biologically plausible and energy efficient over their predecessors. However, there is a lack of an efficient and generalized training method for deep SNNs, especially for deployment on analog computing substrates. In this paper, we put forward a generalized learning rule, termed Local Tandem Learning (LTL). The LTL rule follows the teacher-student learning approach by mimicking the intermediate feature representations of a pre-trained ANN. By decoupling the learning of network layers and leveraging highly informative supervisor signals, we demonstrate rapid network convergence within five training epochs on the CIFAR-10 dataset while having low computational complexity. Our experimental results have also shown that the SNNs thus trained can achieve comparable accuracies to their teacher ANNs on CIFAR-10, CIFAR-100, and Tiny ImageNet datasets. Moreover, the proposed LTL rule is hardware friendly. It can be easily implemented on-chip to perform fast parameter calibration and provide robustness against the notorious device non-ideality issues. It, therefore, opens up a myriad of opportunities for training and deployment of SNN on ultra-low-power mixed-signal neuromorphic computing chips.
[ Hall J ]

For zero-shot transfer in reinforcement learning where the reward function varies between different tasks, the successor features framework has been one of the popular approaches. However, in this framework, the transfer to new target tasks with generalized policy improvement (GPI) relies on only the source successor features [5] or additional successor features obtained from the function approximators’ generalization to novel inputs [11]. The goal of this work is to improve the transfer by more tightly bounding the value approximation errors of successor features on the new target tasks. Given a set of source tasks with their successor features, we present lower and upper bounds on the optimal values for novel task vectors that are expressible as linear combinations of source task vectors. Based on the bounds, we propose constrained GPI as a simple test-time approach that can improve transfer by constraining action-value approximation errors on new target tasks. Through experiments in the Scavenger and Reacher environment with state observations as well as the DeepMind Lab environment with visual observations, we show that the proposed constrained GPI significantly outperforms the prior GPI’s transfer performance. Our code and additional information are available at https://jaekyeom.github.io/projects/cgpi/.
[ Hall J ]

Recent years have witnessed the rapid development of meta-learning in improving the meta generalization over tasks in few-shot learning. However, the task-specific level generalization is overlooked in most algorithms. For a novel few-shot learning task where the empirical distribution likely deviates from the true distribution, the model obtained via minimizing the empirical loss can hardly generalize to unseen data. A viable solution to improving the generalization comes as a more accurate approximation of the true distribution; that is, admitting a Gaussian-like vicinal distribution for each of the limited training samples. Thereupon we derive the resulting vicinal loss function over vicinities of all training samples and minimize it instead of the conventional empirical loss over training samples only, favorably free from the exhaustive sampling of all vicinal samples.It remains challenging to obtain the statistical parameters of the vicinal distribution for each sample. To tackle this challenge, we further propose to estimate the statistical parameters as the weighted mean and variance of a set of unlabeled data it passed by a random walk starting from training samples. To verify the performance of the proposed method, we conduct experiments on four standard few-shot learning benchmarks and consolidate the superiority of the proposed method …
[ Hall J ]

Recently, deep reinforcement learning (DRL) models have shown promising results in solving NP-hard Combinatorial Optimization (CO) problems. However, most DRL solvers can only scale to a few hundreds of nodes for combinatorial optimization problems on graphs, such as the Traveling Salesman Problem (TSP). This paper addresses the scalability challenge in large-scale combinatorial optimization by proposing a novel approach, namely, DIMES. Unlike previous DRL methods which suffer from costly autoregressive decoding or iterative refinements of discrete solutions, DIMES introduces a compact continuous space for parameterizing the underlying distribution of candidate solutions. Such a continuous space allows stable REINFORCE-based training and fine-tuning via massively parallel sampling. We further propose a meta-learning framework to enable the effective initialization of model parameters in the fine-tuning stage. Extensive experiments show that DIMES outperforms recent DRL-based methods on large benchmark datasets for Traveling Salesman Problems and Maximal Independent Set problems.
[ Hall J ]

In this paper, we tackle the important yet under-investigated problem of making long-horizon prediction of event sequences. Existing state-of-the-art models do not perform well at this task due to their autoregressive structure. We propose HYPRO, a hybridly normalized probabilistic model that naturally fits this task: its first part is an autoregressive base model that learns to propose predictions; its second part is an energy function that learns to reweight the proposals such that more realistic predictions end up with higher probabilities. We also propose efficient training and inference algorithms for this model. Experiments on multiple real-world datasets demonstrate that our proposed HYPRO model can significantly outperform previous models at making long-horizon predictions of future events. We also conduct a range of ablation studies to investigate the effectiveness of each component of our proposed methods.
[ Hall J ]

Machine learning has been highly successful in data-driven applications but is often hampered when the data contains noise, especially label noise. When trained on noisy labels, deep neural networks tend to fit all noisy labels, resulting in poor generalization. To handle this problem, a common idea is to force the model to fit only clean samples rather than mislabeled ones. In this paper, we propose a simple yet effective method that automatically distinguishes the mislabeled samples and prevents the model from memorizing them, named Noise Attention Learning. In our method, we introduce an attention branch to produce attention weights based on representations of samples. This attention branch is learned to divide the samples according to the predictive power in their representations. We design the corresponding loss function that incorporates the attention weights for training the model without affecting the original learning direction. Empirical results show that most of the mislabeled samples yield significantly lower weights than the clean ones. Furthermore, our theoretical analysis shows that the gradients of training samples are dynamically scaled by the attention weights, implicitly preventing memorization of the mislabeled samples. Experimental results on two benchmarks (CIFAR-10 and CIFAR-100) with simulated label noise and three real-world noisy …
[ Hall J ]

In the context of personalized federated learning (FL), the critical challenge is to balance local model improvement and global model tuning when the personal and global objectives may not be exactly aligned. Inspired by Bayesian hierarchical models, we develop a self-aware personalized FL method where each client can automatically balance the training of its local personal model and the global model that implicitly contributes to other clients' training. Such a balance is derived from the inter-client and intra-client uncertainty quantification. A larger inter-client variation implies more personalization is needed. Correspondingly, our method uses uncertainty-driven local training steps an aggregation rule instead of conventional local fine-tuning and sample size-based aggregation. With experimental studies on synthetic data, Amazon Alexa audio data, and public datasets such as MNIST, FEMNIST, CIFAR10, and Sent140, we show that our proposed method can achieve significantly improved personalization performance compared with the existing counterparts.
[ Hall J ]
Imbalanced data pose challenges for deep learning based classification models. One of the most widely-used approaches for tackling imbalanced data is re-weighting, where training samples are associated with different weights in the loss function. Most of existing re-weighting approaches treat the example weights as the learnable parameter and optimize the weights on the meta set, entailing expensive bilevel optimization. In this paper, we propose a novel re-weighting method based on optimal transport (OT) from a distributional point of view. Specifically, we view the training set as an imbalanced distribution over its samples, which is transported by OT to a balanced distribution obtained from the meta set. The weights of the training samples are the probability mass of the imbalanced distribution andlearned by minimizing the OT distance between the two distributions. Compared with existing methods, our proposed one disengages the dependence of the weight learning on the concerned classifier at each iteration. Experiments on image, text and point cloud datasets demonstrate that our proposed re-weighting method has excellent performance, achieving state-of-the-art results in many cases andproviding a promising tool for addressing the imbalanced classification issue. The code has been made available athttps://github.com/DandanGuo1993/reweight-imbalance-classification-with-OT.
[ Hall J ]

The Mixture-of-Experts (MoE) layer, a sparsely-activated model controlled by a router, has achieved great success in deep learning. However, the understanding of such architecture remains elusive. In this paper, we formally study how the MoE layer improves the performance of neural network learning and why the mixture model will not collapse into a single model. Our empirical results suggest that the cluster structure of the underlying problem and the non-linearity of the expert are pivotal to the success of MoE. This motivates us to consider a challenging classification problem with intrinsic cluster structures. Theoretically, we proved that this problem is hard to solve by a single expert such as a two-layer convolutional neural network (CNN). Yet with the MoE layer with each expert being a two-layer CNN, the problem can be solved successfully. In particular, our theory shows that the router can learn the cluster-center features, which helps divide the input complex problem into simpler classification sub-problems that individual experts can conquer. To our knowledge, this is the first theoretical result toward formally understanding the mechanism of the MoE layer for deep learning.
[ Hall J ]

In knowledge distillation, previous feature distillation methods mainly focus on the design of loss functions and the selection of the distilled layers, while the effect of the feature projector between the student and the teacher remains under-explored. In this paper, we first discuss a plausible mechanism of the projector with empirical evidence and then propose a new feature distillation method based on a projector ensemble for further performance improvement. We observe that the student network benefits from a projector even if the feature dimensions of the student and the teacher are the same. Training a student backbone without a projector can be considered as a multi-task learning process, namely achieving discriminative feature extraction for classification and feature matching between the student and the teacher for distillation at the same time. We hypothesize and empirically verify that without a projector, the student network tends to overfit the teacher's feature distributions despite having different architecture and weights initialization. This leads to degradation on the quality of the student's deep features that are eventually used in classification. Adding a projector, on the other hand, disentangles the two learning tasks and helps the student network to focus better on the main feature extraction task …
[ Hall J ]

Sign languages are visual languages using manual articulations and non-manual elements to convey information. For sign language recognition and translation, the majority of existing approaches directly encode RGB videos into hidden representations. RGB videos, however, are raw signals with substantial visual redundancy, leading the encoder to overlook the key information for sign language understanding. To mitigate this problem and better incorporate domain knowledge, such as handshape and body movement, we introduce a dual visual encoder containing two separate streams to model both the raw videos and the keypoint sequences generated by an off-the-shelf keypoint estimator. To make the two streams interact with each other, we explore a variety of techniques, including bidirectional lateral connection, sign pyramid network with auxiliary supervision, and frame-level self-distillation. The resulting model is called TwoStream-SLR, which is competent for sign language recognition (SLR). TwoStream-SLR is extended to a sign language translation (SLT) model, TwoStream-SLT, by simply attaching an extra translation network. Experimentally, our TwoStream-SLR and TwoStream-SLT achieve state-of-the-art performance on SLR and SLT tasks across a series of datasets including Phoenix-2014, Phoenix-2014T, and CSL-Daily.
[ Hall J ]

Unlike existing knowledge distillation methods focus on the baseline settings, where the teacher models and training strategies are not that strong and competing as state-of-the-art approaches, this paper presents a method dubbed DIST to distill better from a stronger teacher. We empirically find that the discrepancy of predictions between the student and a stronger teacher may tend to be fairly severer. As a result, the exact match of predictions in KL divergence would disturb the training and make existing methods perform poorly. In this paper, we show that simply preserving the relations between the predictions of teacher and student would suffice, and propose a correlation-based loss to capture the intrinsic inter-class relations from the teacher explicitly. Besides, considering that different instances have different semantic similarities to each class, we also extend this relational match to the intra-class level. Our method is simple yet practical, and extensive experiments demonstrate that it adapts well to various architectures, model sizes and training strategies, and can achieve state-of-the-art performance consistently on image classification, object detection, and semantic segmentation tasks. Code is available at: https://github.com/hunto/DIST_KD.
[ Hall J ]

Deep neural networks (DNNs) have been shown to be vulnerable to adversarial examples, which can produce erroneous predictions by injecting imperceptible perturbations. In this work, we study the transferability of adversarial examples, which is significant due to its threat to real-world applications where model architecture or parameters are usually unknown. Many existing works reveal that the adversarial examples are likely to overfit the surrogate model that they are generated from, limiting its transfer attack performance against different target models. To mitigate the overfitting of the surrogate model, we propose a novel attack method, dubbed reverse adversarial perturbation (RAP). Specifically, instead of minimizing the loss of a single adversarial point, we advocate seeking adversarial example located at a region with unified low loss value, by injecting the worst-case perturbation (the reverse adversarial perturbation) for each step of the optimization procedure. The adversarial attack with RAP is formulated as a min-max bi-level optimization problem. By integrating RAP into the iterative process for attacks, our method can find more stable adversarial examples which are less sensitive to the changes of decision boundary, mitigating the overfitting of the surrogate model. Comprehensive experimental comparisons demonstrate that RAP can significantly boost adversarial transferability. Furthermore, RAP can …
[ Hall J ]

[ Hall J ]

[ Hall J ]

[ Hall J ]

Most existing 3D point cloud object detection approaches heavily rely on large amounts of labeled training data. However, the labeling process is costly and time-consuming. This paper considers few-shot 3D point cloud object detection, where only a few annotated samples of novel classes are needed with abundant samples of base classes. To this end, we propose Prototypical VoteNet to recognize and localize novel instances, which incorporates two new modules: Prototypical Vote Module (PVM) and Prototypical Head Module (PHM). Specifically, as the 3D basic geometric structures can be shared among categories, PVM is designed to leverage class-agnostic geometric prototypes, which are learned from base classes, to refine local features of novel categories. Then PHM is proposed to utilize class prototypes to enhance the global feature of each object, facilitating subsequent object localization and classification, which is trained by the episodic training strategy. To evaluate the model in this new setting, we contribute two new benchmark datasets, FS-ScanNet and FS-SUNRGBD. We conduct extensive experiments to demonstrate the effectiveness of Prototypical VoteNet, and our proposed method shows significant and consistent improvements compared to baselines on two benchmark datasets.
[ Hall J ]

Distributional shifts in photometry and texture have been extensively studied for unsupervised domain adaptation, but their counterparts in optical distortion have been largely neglected. In this work, we tackle the task of unsupervised domain adaptation for semantic image segmentation where unknown optical distortion exists between source and target images. To this end, we propose a distortion-aware domain adaptation (DaDA) framework that boosts the unsupervised segmentation performance. We first present a relative distortion learning (RDL) approach that is capable of modeling domain shifts in fine-grained geometric deformation based on diffeomorphic transformation. Then, we demonstrate that applying additional global affine transformations to the diffeomorphically transformed source images can further improve the segmentation adaptation. Besides, we find that our distortion-aware adaptation method helps to enhance self-supervised learning by providing higher-quality initial models and pseudo labels. To evaluate, we propose new distortion adaptation benchmarks, where rectilinear source images and fisheye target images are used for unsupervised domain adaptation. Extensive experimental results highlight the effectiveness of our approach over state-of-the-art methods under unknown relative distortion across domains. Datasets and more information are available at https://sait-fdd.github.io/.
[ Hall J ]

Although 2D generative models have made great progress in face image generation and animation, they often suffer from undesirable artifacts such as 3D inconsistency when rendering images from different camera viewpoints. This prevents them from synthesizing video animations indistinguishable from real ones. Recently, 3D-aware GANs extend 2D GANs for explicit disentanglement of camera pose by leveraging 3D scene representations. These methods can well preserve the 3D consistency of the generated images across different views, yet they cannot achieve fine-grained control over other attributes, among which facial expression control is arguably the most useful and desirable for face animation. In this paper, we propose an animatable 3D-aware GAN for multiview consistent face animation generation. The key idea is to decompose the 3D representation of the 3D-aware GAN into a template field and a deformation field, where the former represents different identities with a canonical expression, and the latter characterizes expression variations of each identity. To achieve meaningful control over facial expressions via deformation, we propose a 3D-level imitative learning scheme between the generator and a parametric 3D face model during adversarial training of the 3D-aware GAN. This helps our method achieve high-quality animatable face image generation with strong visual 3D consistency, …
[ Hall J ]

Recently, many neural network-based image compression methods have shown promising results superior to the existing tool-based conventional codecs. However, most of them are often trained as separate models for different target bit rates, thus increasing the model complexity. Therefore, several studies have been conducted for learned compression that supports variable rates with single models, but they require additional network modules, layers, or inputs that often lead to complexity overhead, or do not provide sufficient coding efficiency. In this paper, we firstly propose a selective compression method that partially encodes the latent representations in a fully generalized manner for deep learning-based variable-rate image compression. The proposed method adaptively determines essential representation elements for compression of different target quality levels. For this, we first generate a 3D importance map as the nature of input content to represent the underlying importance of the representation elements. The 3D importance map is then adjusted for different target quality levels using importance adjustment curves. The adjusted 3D importance map is finally converted into a 3D binary mask to determine the essential representation elements for compression. The proposed method can be easily integrated with the existing compression models with a negligible amount of overhead increase. Our method …
[ Hall J ]

We investigate a practical domain adaptation task, called source-free domain adaptation (SFUDA), where the source pretrained model is adapted to the target domain without access to the source data. Existing techniques mainly leverage self-supervised pseudo-labeling to achieve class-wise global alignment [1] or rely on local structure extraction that encourages the feature consistency among neighborhoods [2]. While impressive progress has been made, both lines of methods have their own drawbacks – the “global” approach is sensitive to noisy labels while the “local” counterpart suffers from the source bias. In this paper, we present Divide and Contrast (DaC), a new paradigm for SFUDA that strives to connect the good ends of both worlds while bypassing their limitations. Based on the prediction confidence of the source model, DaC divides the target data into source-like and target-specific samples, where either group of samples is treated with tailored goals under an adaptive contrastive learning framework. Specifically, the source-like samples are utilized for learning global class clustering thanks to their relatively clean labels. The more noisy target-specific data are harnessed at the instance level for learning the intrinsic local structures. We further align the source-like domain with the target-specific samples using a memory bank-based Maximum Mean …
[ Hall J ]

Extreme Multi-label Text Classification (XMC) involves learning a classifier that can assign an input with a subset of most relevant labels from millions of label choices. Recent approaches, such as XR-Transformer and LightXML, leverage a transformer instance to achieve state-of-the-art performance. However, in this process, these approaches need to make various trade-offs between performance and computational requirements. A major shortcoming, as compared to the Bi-LSTM based AttentionXML, is that they fail to keep separate feature representations for each resolution in a label tree. We thus propose CascadeXML, an end-to-end multi-resolution learning pipeline, which can harness the multi-layered architecture of a transformer model for attending to different label resolutions with separate feature representations. CascadeXML significantly outperforms all existing approaches with non-trivial gains obtained on benchmark datasets consisting of up to three million labels. Code for CascadeXML will be made publicly available at https://github.com/xmc-aalto/cascadexml.
[ Hall J ]

Most real-world problems that machine learning algorithms are expected to solve face the situation with (1) unknown data distribution; (2) little domain-specific knowledge; and (3) datasets with limited annotation. We propose Non-Parametric learning by Compression with Latent Variables (NPC-LV), a learning framework for any dataset with abundant unlabeled data but very few labeled ones. By only training a generative model in an unsupervised way, the framework utilizes the data distribution to build a compressor. Using a compressor-based distance metric derived from Kolmogorov complexity, together with few labeled data, NPC-LV classifies without further training. We show that NPC-LV outperforms supervised methods on all three datasets on image classification in the low data regime and even outperforms semi-supervised learning methods on CIFAR-10. We demonstrate how and when negative evidence lowerbound (nELBO) can be used as an approximate compressed length for classification. By revealing the correlation between compression rate and classification accuracy, we illustrate that under NPC-LV how the improvement of generative models can enhance downstream classification accuracy.
[ Hall J ]

Graph Neural Networks (GNNs) extend basic Neural Networks (NNs) by using graph structures based on the relational inductive bias (homophily assumption). While GNNs have been commonly believed to outperform NNs in real-world tasks, recent work has identified a non-trivial set of datasets where their performance compared to NNs is not satisfactory. Heterophily has been considered the main cause of this empirical observation and numerous works have been put forward to address it. In this paper, we first revisit the widely used homophily metrics and point out that their consideration of only graph-label consistency is a shortcoming. Then, we study heterophily from the perspective of post-aggregation node similarity and define new homophily metrics, which are potentially advantageous compared to existing ones. Based on this investigation, we prove that some harmful cases of heterophily can be effectively addressed by local diversification operation. Then, we propose the Adaptive Channel Mixing (ACM), a framework to adaptively exploit aggregation, diversification and identity channels to extract richer localized information in each baseline GNN layer. ACM is more powerful than the commonly used uni-channel framework for node classification tasks on heterophilic graphs. When evaluated on 10 benchmark node classification tasks, ACM-augmented baselines consistently achieve significant performance gain, …
[ Hall J ]

Learning a robust classifier from a few samples remains a key challenge in machine learning. A major thrust of research has been focused on developing k-nearest neighbor (k-NN) based algorithms combined with metric learning that captures similarities between samples. When the samples are limited, robustness is especially crucial to ensure the generalization capability of the classifier. In this paper, we study a minimax distributionally robust formulation of weighted k-nearest neighbors, which aims to find the optimal weighted k-NN classifiers that hedge against feature uncertainties. We develop an algorithm, Dr.k-NN, that efficiently solves this functional optimization problem and features in assigning minimax optimal weights to training samples when performing classification. These weights are class-dependent, and are determined by the similarities of sample features under the least favorable scenarios. When the size of the uncertainty set is properly tuned, the robust classifier has a smaller Lipschitz norm than the vanilla k-NN, and thus improves the generalization capability. We also couple our framework with neural-network-based feature embedding. We demonstrate the competitive performance of our algorithm compared to the state-of-the-art in the few-training-sample setting with various real-data experiments.
[ Hall J ]
How to efficiently serve ever-larger trained natural language models in practice has become exceptionally challenging even for powerful cloud servers due to their prohibitive memory/computation requirements.In this work, we present an efficient and affordable post-training quantization approach to compress large Transformer-based models, termed as \OURS. \OURS is an end-to-end quantization and inference pipeline with three main components: (1) a fine-grained hardware-friendly quantization scheme for both weight and activations; (2) a novel affordable layer-by-layer knowledge distillation algorithm (\lwd) even without the original training data access;(3) a highly-optimized quantization system backend support to remove the quantization/dequantization overhead.As such, we are able to show that:(1) \OURS can reduce the precision for weight and activations to INT8 in a cost-free way for both \bert and \gpt-style models with minimal accuracy impact, which leads to up to 5.19x/4.16x speedup on \bert/\gpt-style models compared to FP16 inference, separately;(2) \OURS plus \lwd can affordably quantize the weights in the fully-connected module to INT4 along with INT8 weights in the attention module and INT8 activations, resulting in 3x memory footprint reduction compared to the FP16 model;(3) \OURS can be directly applied to two of the largest open-sourced language models, including \gptneox, for which our INT8 model achieves similar …
[ Hall J ]
Protecting the privacy of user data is crucial for text generation models, which can leak sensitive information during generation. Differentially private (DP) learning methods provide guarantees against identifying the existence of a training sample from model outputs. PATE is a recent DP learning algorithm that achieves high utility with strong privacy protection on training samples. However, text generation models output tokens sequentially in a large output space; the classic PATE algorithm is not customized for this setting. Furthermore, PATE works well to protect sample-level privacy, but is not designed to protect phrases in samples. In this paper, we propose SeqPATE, an extension of PATE to text generation that protects the privacy of individual training samples and sensitive phrases in training data. To adapt PATE to text generation, we generate pseudo-contexts and reduce the sequence generation problem to a next-word prediction problem. To handle the large output space, we propose a candidate filtering strategy to dynamically reduce the output space, and refine the teacher aggregation of PATE to avoid low agreement due to voting for a large number of candidates. To further reduce privacy losses, we use knowledge distillation to reduce the number of teacher queries. The experiments verify the effectiveness …
[ Hall J ]

Formulating and answering logical queries is a standard communication interface for knowledge graphs (KGs). Alleviating the notorious incompleteness of real-world KGs, neural methods achieved impressive results in link prediction and complex query answering tasks by learning representations of entities, relations, and queries. Still, most existing query answering methods rely on transductive entity embeddings and cannot generalize to KGs containing new entities without retraining entity embeddings. In this work, we study the inductive query answering task where inference is performed on a graph containing new entities with queries over both seen and unseen entities. To this end, we devise two mechanisms leveraging inductive node and relational structure representations powered by graph neural networks (GNNs).Experimentally, we show that inductive models are able to perform logical reasoning at inference time over unseen nodes generalizing to graphs up to 500% larger than training ones. Exploring the efficiency--effectiveness trade-off, we find the inductive relational structure representation method generally achieves higher performance, while the inductive node representation method is able to answer complex queries in the inference-only regime without any training on queries and scale to graphs of millions of nodes. Code is available at https://github.com/DeepGraphLearning/InductiveQE
[ Hall J ]
We propose an algorithm that compresses the critical information of a large dataset into compact addressable memories. These memories can then be recalled to quickly re-train a neural network and recover the performance (instead of storing and re-training on the full original dataset). Building upon the dataset distillation framework, we make a key observation that a shared common representation allows for more efficient and effective distillation. Concretely, we learn a set of bases (aka ``memories'') which are shared between classes and combined through learned flexible addressing functions to generate a diverse set of training examples. This leads to several benefits: 1) the size of compressed data does not necessarily grow linearly with the number of classes; 2) an overall higher compression rate with more effective distillation is achieved; and 3) more generalized queries are allowed beyond recalling the original classes. We demonstrate state-of-the-art results on the dataset distillation task across five benchmarks, including up to 16.5% and 9.7% accuracy improvement when distilling CIFAR10 and CIFAR100 respectively. We then leverage our framework to perform continual learning, achieving state-of-the-art results on four benchmarks, with 23.2% accuracy improvement on MANY.
[ Hall J ]

The new generation of state-of-the-art computer vision systems are trained from natural language supervision, ranging from simple object category names to descriptive captions. This form of supervision ensures high generality and usability of the learned visual models, based on the broad concept coverage achieved through large-scale data collection process. Alternatively, we argue that learning with external knowledge about images is a promising way which leverages a much more structured source of supervision and offers sample efficiency. In this paper, we propose K-LITE (Knowledge-augmented Language-Image Training and Evaluation), a simple strategy to leverage external knowledge for building transferable visual systems: In training, it enriches entities in natural language with WordNet and Wiktionary knowledge, leading to an efficient and scalable approach to learning image representations that uses knowledge about the visual concepts; In evaluation, the natural language is also augmented with external knowledge and then used to reference learned visual concepts (or describe new ones) to enable zero-shot and few-shot transfer of the pre-trained models. We study the performance of K-LITE on two important computer vision problems, image classification and object detection, benchmarking on 20 and 13 different existing datasets, respectively. The proposed knowledge-augmented models show significant improvement in transfer learning performance …
[ Hall J ]
Visual Counterfactual Explanations (VCEs) are an important tool to understand the decisions of an image classifier. They are “small” but “realistic” semantic changes of the image changing the classifier decision. Current approaches for the generation of VCEs are restricted to adversarially robust models and often contain non-realistic artefacts, or are limited to image classification problems with few classes. In this paper, we overcome this by generating Diffusion Visual Counterfactual Explanations (DVCEs) for arbitrary ImageNet classifiers via a diffusion process. Two modifications to the diffusion process are key for our DVCEs: first, an adaptive parameterization, whose hyperparameters generalize across images and models, together with distance regularization and late start of the diffusion process, allow us to generate images with minimal semantic changes to the original ones but different classification. Second, our cone regularization via an adversarially robust model ensures that the diffusion process does not converge to trivial non-semantic changes, but instead produces realistic images of the target class which achieve high confidence by the classifier.
[ Hall J ]

Recent advances in neural algorithmic reasoning with graph neural networks (GNNs) are propped up by the notion of algorithmic alignment. Broadly, a neural network will be better at learning to execute a reasoning task (in terms of sample complexity) if its individual components align well with the target algorithm. Specifically, GNNs are claimed to align with dynamic programming (DP), a general problem-solving strategy which expresses many polynomial-time algorithms. However, has this alignment truly been demonstrated and theoretically quantified? Here we show, using methods from category theory and abstract algebra, that there exists an intricate connection between GNNs and DP, going well beyond the initial observations over individual algorithms such as Bellman-Ford. Exposing this connection, we easily verify several prior findings in the literature, produce better-grounded GNN architectures for edge-centric tasks, and demonstrate empirical results on the CLRS algorithmic reasoning benchmark. We hope our exposition will serve as a foundation for building stronger algorithmically aligned GNNs.
[ Hall J ]

Recent works on shared autonomy and assistive-AI technologies, such as assistive robotic teleoperation, seek to model and help human users with limited ability in a fixed task. However, these approaches often fail to account for humans' ability to adapt and eventually learn how to execute a control task themselves. Furthermore, in applications where it may be desirable for a human to intervene, these methods may have inhibited their ability to learn how to succeed with full self-control. In this paper, we focus on the problem of assistive teaching of motor control tasks such as parking a car or landing an aircraft. Despite their ubiquitous role in humans' daily activities and occupations, motor tasks are rarely taught in a uniform way due to their high complexity and variance. We propose an AI-assisted teaching algorithm that leverages skill discovery methods from reinforcement learning (RL) literature to (i) break down any motor control task into teachable skills, (ii) construct novel drill sequences, and (iii) individualize curricula to students with different capabilities. Through an extensive mix of synthetic and user studies on two motor control tasks - parking a car with a joystick and writing characters from the Balinese alphabet - we show that …
[ Hall J ]

Deploying AI-powered systems requires trustworthy models supporting effective human interactions, going beyond raw prediction accuracy. Concept bottleneck models promote trustworthiness by conditioning classification tasks on an intermediate level of human-like concepts. This enables human interventions which can correct mispredicted concepts to improve the model's performance. However, existing concept bottleneck models are unable to find optimal compromises between high task accuracy, robust concept-based explanations, and effective interventions on concepts---particularly in real-world conditions where complete and accurate concept supervisions are scarce. To address this, we propose Concept Embedding Models, a novel family of concept bottleneck models which goes beyond the current accuracy-vs-interpretability trade-off by learning interpretable high-dimensional concept representations. Our experiments demonstrate that Concept Embedding Models (1) attain better or competitive task accuracy w.r.t. standard neural models without concepts, (2) provide concept representations capturing meaningful semantics including and beyond their ground truth labels, (3) support test-time concept interventions whose effect in test accuracy surpasses that in standard concept bottleneck models, and (4) scale to real-world conditions where complete concept supervisions are scarce.
[ Hall J ]
Recent advances in coreset methods have shown that a selection of representative datapoints can replace massive volumes of data for Bayesian inference, preserving the relevant statistical information and significantly accelerating subsequent downstream tasks. Existing variational coreset constructions rely on either selecting subsets of the observed datapoints, or jointly performing approximate inference and optimizing pseudodata in the observed space akin to inducing points methods in Gaussian Processes. So far, both approaches are limited by complexities in evaluating their objectives for general purpose models, and require generating samples from a typically intractable posterior over the coreset throughout inference and testing. In this work, we present a black-box variational inference framework for coresets that overcomes these constraints and enables principled application of variational coresets to intractable models, such as Bayesian neural networks. We apply our techniques to supervised learning problems, and compare them with existing approaches in the literature for data summarization and inference.
[ Hall J ]

Multi-fidelity (gray-box) hyperparameter optimization techniques (HPO) have recently emerged as a promising direction for tuning Deep Learning methods. However, existing methods suffer from a sub-optimal allocation of the HPO budget to the hyperparameter configurations. In this work, we introduce DyHPO, a Bayesian Optimization method that learns to decide which hyperparameter configuration to train further in a dynamic race among all feasible configurations. We propose a new deep kernel for Gaussian Processes that embeds the learning curve dynamics, and an acquisition function that incorporates multi-budget information. We demonstrate the significant superiority of DyHPO against state-of-the-art hyperparameter optimization methods through large-scale experiments comprising 50 datasets (Tabular, Image, NLP) and diverse architectures (MLP, CNN/NAS, RNN).
[ Hall J ]

Multi-agent reinforcement learning has drawn increasing attention in practice, e.g., robotics and automatic driving, as it can explore optimal policies using samples generated by interacting with the environment. However, high reward uncertainty still remains a problem when we want to train a satisfactory model, because obtaining high-quality reward feedback is usually expensive and even infeasible. To handle this issue, previous methods mainly focus on passive reward correction. At the same time, recent active reward estimation methods have proven to be a recipe for reducing the effect of reward uncertainty. In this paper, we propose a novel Distributional Reward Estimation framework for effective Multi-Agent Reinforcement Learning (DRE-MARL). Our main idea is to design the multi-action-branch reward estimation and policy-weighted reward aggregation for stabilized training. Specifically, we design the multi-action-branch reward estimation to model reward distributions on all action branches. Then we utilize reward aggregation to obtain stable updating signals during training. Our intuition is that consideration of all possible consequences of actions could be useful for learning policies. The superiority of the DRE-MARL is demonstrated using benchmark multi-agent scenarios, compared with the SOTA baselines in terms of both effectiveness and robustness.
[ Hall J ]

Seeking informative projecting directions has been an important task in utilizing sliced Wasserstein distance in applications. However, finding these directions usually requires an iterative optimization procedure over the space of projecting directions, which is computationally expensive. Moreover, the computational issue is even more severe in deep learning applications, where computing the distance between two mini-batch probability measures is repeated several times. This nested-loop has been one of the main challenges that prevent the usage of sliced Wasserstein distances based on good projections in practice. To address this challenge, we propose to utilize the \textit{learning-to-optimize} technique or \textit{amortized optimization} to predict the informative direction of any given two mini-batch probability measures. To the best of our knowledge, this is the first work that bridges amortized optimization and sliced Wasserstein generative models. In particular, we derive linear amortized models, generalized linear amortized models, and non-linear amortized models which are corresponding to three types of novel mini-batch losses, named \emph{amortized sliced Wasserstein}. We demonstrate the favorable performance of the proposed sliced losses in deep generative modeling on standard benchmark datasets.
[ Hall J ]

Learning the underlying equation from data is a fundamental problem in many disciplines. Recent advances rely on Neural Networks (NNs) but do not provide theoretical guarantees in obtaining the exact equations owing to the non-convexity of NNs. In this paper, we propose Convex Neural Symbolic Learning (CoNSoLe) to seek convexity under mild conditions. The main idea is to decompose the recovering process into two steps and convexify each step. In the first step of searching for right symbols, we convexify the deep Q-learning. The key is to maintain double convexity for both the negative Q-function and the negative reward function in each iteration, leading to provable convexity of the negative optimal Q function to learn the true symbol connections. Conditioned on the exact searching result, we construct a Locally Convex equation Learning (LoCaL) neural network to convexify the estimation of symbol coefficients. With such a design, we quantify a large region with strict convexity in the loss surface of LoCaL for commonly used physical functions. Finally, we demonstrate the superior performance of the CoNSoLe framework over the state-of-the-art on a diverse set of datasets.
[ Hall J ]

Graph Neural Networks (GNNs) are widely applied to graph learning problems such as node classification. When scaling up the underlying graphs of GNNs to a larger size, we are forced to either train on the complete graph and keep the full graph adjacency and node embeddings in memory (which is often infeasible) or mini-batch sample the graph (which results in exponentially growing computational complexities with respect to the number of GNN layers). Various sampling-based and historical-embedding-based methods are proposed to avoid this exponential growth of complexities. However, none of these solutions eliminates the linear dependence on graph size. This paper proposes a sketch-based algorithm whose training time and memory grow sublinearly with respect to graph size by training GNNs atop a few compact sketches of graph adjacency and node embeddings. Based on polynomial tensor-sketch (PTS) theory, our framework provides a novel protocol for sketching non-linear activations and graph convolution matrices in GNNs, as opposed to existing methods that sketch linear weights or gradients in neural networks. In addition, we develop a locality-sensitive hashing (LSH) technique that can be trained to improve the quality of sketches. Experiments on large-graph benchmarks demonstrate the scalability and competitive performance of our Sketch-GNNs versus their …
[ Hall J ]
Time series forecasting has become a critical task due to its high practicality in real-world applications such as traffic, energy consumption, economics and finance, and disease analysis. Recent deep-learning-based approaches have shown remarkable success in time series forecasting. Nonetheless, due to the dynamics of time series data, deep networks still suffer from unstable training and overfitting. Inconsistent patterns appearing in real-world data lead the model to be biased to a particular pattern, thus limiting the generalization. In this work, we introduce the dynamic error bounds on training loss to address the overfitting issue in time series forecasting. Consequently, we propose a regularization method called WaveBound which estimates the adequate error bounds of training loss for each time step and feature at each iteration. By allowing the model to focus less on unpredictable data, WaveBound stabilizes the training process, thus significantly improving generalization. With the extensive experiments, we show that WaveBound consistently improves upon the existing models in large margins, including the state-of-the-art model.
[ Hall J ]

It witnesses that the collaborative learning (CL) systems often face the performance bottleneck of limited bandwidth, where multiple low-end devices continuously generate data and transmit intermediate features to the cloud for incremental training. To this end, improving the communication efficiency by reducing traffic size is one of the most crucial issues for realistic deployment. Existing systems mostly compress features at pixel level and ignore the characteristics of feature structure, which could be further exploited for more efficient compression. In this paper, we take new insights into implementing scalable CL systems through a hierarchical compression on features, termed Stripe-wise Group Quantization (SGQ). Different from previous unstructured quantization methods, SGQ captures both channel and spatial similarity in pixels, and simultaneously encodes features in these two levels to gain a much higher compression ratio. In particular, we refactor feature structure based on inter-channel similarity and bound the gradient deviation caused by quantization, in forward and backward passes, respectively. Such a double-stage pipeline makes SGQ hold a sublinear convergence order as the vanilla SGD-based optimization. Extensive experiments show that SGQ achieves a higher traffic reduction ratio by up to 15.97 times and provides 9.22 times image processing speedup over the uniform quantized training, while …
[ Hall J ]
3D scenes are dominated by a large number of background points, which is redundant for the detection task that mainly needs to focus on foreground objects. In this paper, we analyze major components of existing sparse 3D CNNs and find that 3D CNNs ignores the redundancy of data and further amplifies it in the down-sampling process, which brings a huge amount of extra and unnecessary computational overhead. Inspired by this, we propose a new convolution operator named spatial pruned sparse convolution (SPS-Conv), which includes two variants, spatial pruned submanifold sparse convolution (SPSS-Conv) and spatial pruned regular sparse convolution (SPRS-Conv), both of which are based on the idea of dynamically determine crucial areas for performing computations to reduce redundancy. We empirically find that magnitude of features can serve as an important cues to determine crucial areas which get rid of the heavy computations of learning-based methods. The proposed modules can easily be incorporated into existing sparse 3D CNNs without extra architectural modifications. Extensive experiments on the KITTI and nuScenes datasets demonstrate that our method can achieve more than 50% reduction in GFLOPs without compromising the performance.
[ Hall J ]

Creating high-quality articulated 3D models of animals is challenging either via manual creation or using 3D scanning tools. Therefore, techniques to reconstruct articulated 3D objects from 2D images are crucial and highly useful. In this work, we propose a practical problem setting to estimate 3D pose and shape of animals given only a few (10-30) in-the-wild images of a particular animal species (say, horse). Contrary to existing works that rely on pre-defined template shapes, we do not assume any form of 2D or 3D ground-truth annotations, nor do we leverage any multi-view or temporal information. Moreover, each input image ensemble can contain animal instances with varying poses, backgrounds, illuminations, and textures. Our key insight is that 3D parts have much simpler shape compared to the overall animal and that they are robust w.r.t. animal pose articulations. Following these insights, we propose LASSIE, a novel optimization framework which discovers 3D parts in a self-supervised manner with minimal user intervention. A key driving force behind LASSIE is the enforcing of 2D-3D part consistency using self-supervisory deep features. Experiments on Pascal-Part and self-collected in-the-wild animal datasets demonstrate considerably better 3D reconstructions as well as both 2D and 3D part discovery compared to prior …
[ Hall J ]

Self-supervised learning techniques are celebrating immense success in natural language processing (NLP) by enabling models to learn from broad language data at unprecedented scales. Here, we aim to leverage the success of these techniques for mental state decoding, where researchers aim to identify specific mental states (e.g., the experience of anger or joy) from brain activity. To this end, we devise a set of novel self-supervised learning frameworks for neuroimaging data inspired by prominent learning frameworks in NLP. At their core, these frameworks learn the dynamics of brain activity by modeling sequences of activity akin to how sequences of text are modeled in NLP. We evaluate the frameworks by pre-training models on a broad neuroimaging dataset spanning functional Magnetic Resonance Imaging data from 11,980 experimental runs of 1,726 individuals across 34 datasets, and subsequently adapting the pre-trained models to benchmark mental state decoding datasets. The pre-trained models transfer well, generally outperforming baseline models trained from scratch, while models trained in a learning framework based on causal language modeling clearly outperform the others.
[ Hall J ]

Predicting multimodal future behavior of traffic participants is essential for robotic vehicles to make safe decisions. Existing works explore to directly predict future trajectories based on latent features or utilize dense goal candidates to identify agent's destinations, where the former strategy converges slowly since all motion modes are derived from the same feature while the latter strategy has efficiency issue since its performance highly relies on the density of goal candidates. In this paper, we propose the Motion TRansformer (MTR) framework that models motion prediction as the joint optimization of global intention localization and local movement refinement. Instead of using goal candidates, MTR incorporates spatial intention priors by adopting a small set of learnable motion query pairs. Each motion query pair takes charge of trajectory prediction and refinement for a specific motion mode, which stabilizes the training process and facilitates better multimodal predictions. Experiments show that MTR achieves state-of-the-art performance on both the marginal and joint motion prediction challenges, ranking 1st on the leaderbaords of Waymo Open Motion Dataset. Code will be available at https://github.com/sshaoshuai/MTR.
[ Hall J ]

Deep neural networks (DNNs) have demonstrated their superiority in practice. Arguably, the rapid development of DNNs is largely benefited from high-quality (open-sourced) datasets, based on which researchers and developers can easily evaluate and improve their learning methods. Since the data collection is usually time-consuming or even expensive, how to protect their copyrights is of great significance and worth further exploration. In this paper, we revisit dataset ownership verification. We find that existing verification methods introduced new security risks in DNNs trained on the protected dataset, due to the targeted nature of poison-only backdoor watermarks. To alleviate this problem, in this work, we explore the untargeted backdoor watermarking scheme, where the abnormal model behaviors are not deterministic. Specifically, we introduce two dispersibilities and prove their correlation, based on which we design the untargeted backdoor watermark under both poisoned-label and clean-label settings. We also discuss how to use the proposed untargeted backdoor watermark for dataset ownership verification. Experiments on benchmark datasets verify the effectiveness of our methods and their resistance to existing backdoor defenses.
[ Hall J ]

Recently, significant progress has been made in masked image modeling to catch up to masked language modeling. However, unlike words in NLP, the lack of semantic decomposition of images still makes masked autoencoding (MAE) different between vision and language. In this paper, we explore a potential visual analogue of words, i.e., semantic parts, and we integrate semantic information into the training process of MAE by proposing a Semantic-Guided Masking strategy. Compared to widely adopted random masking, our masking strategy can gradually guide the network to learn various information, i.e., from intra-part patterns to inter-part relations. In particular, we achieve this in two steps. 1) Semantic part learning: we design a self-supervised part learning method to obtain semantic parts by leveraging and refining the multi-head attention of a ViT-based encoder. 2) Semantic-guided MAE (SemMAE) training: we design a masking strategy that varies from masking a portion of patches in each part to masking a portion of (whole) parts in an image. Extensive experiments on various vision tasks show that SemMAE can learn better image representation by integrating semantic information. In particular, SemMAE achieves 84.5% fine-tuning accuracy on ImageNet-1k, which outperforms the vanilla MAE by 1.4%. In the semantic segmentation and fine-grained …
[ Hall J ]

Multi-Task Learning (MTL) is a powerful learning paradigm to improve generalization performance via knowledge sharing. However, existing studies find that MTL could sometimes hurt generalization, especially when two tasks are less correlated. One possible reason that hurts generalization is spurious correlation, i.e., some knowledge is spurious and not causally related to task labels, but the model could mistakenly utilize them and thus fail when such correlation changes. In MTL setup, there exist several unique challenges of spurious correlation. First, the risk of having non-causal knowledge is higher, as the shared MTL model needs to encode all knowledge from different tasks, and causal knowledge for one task could be potentially spurious to the other. Second, the confounder between task labels brings in a different type of spurious correlation to MTL. Given such label-label confounders, we theoretically and empirically show that MTL is prone to taking non-causal knowledge from other tasks. To solve this problem, we propose Multi-Task Causal Representation Learning (MT-CRL) framework. MT-CRL aims to represent multi-task knowledge via disentangled neural modules, and learn which module is causally related to each task via MTL-specific invariant regularization. Experiments show that MT-CRL could enhance MTL model's performance by 5.5% on average over Multi-MNIST, …
[ Hall J ]
In single positive multi-label learning (SPML), only one of multiple positive labels is observed for each instance. The previous work trains the model by simply treating unobserved labels as negative ones, and designs the regularization to constrain the number of expected positive labels. However, in many real-world scenarios, the true number of positive labels is unavailable, making such methods less applicable. In this paper, we propose to solve SPML problems by designing a Label-Aware global Consistency (LAC) regularization, which leverages the manifold structure information to enhance the recovery of potential positive labels. On one hand, we first perform pseudo-labeling for each unobserved label based on its prediction probability. The consistency regularization is then imposed on model outputs to balance the fitting of identified labels and exploring of potential positive labels. On the other hand, by enforcing label-wise embeddings to maintain global consistency, LAC loss encourages the model to learn more distinctive representations, which is beneficial for recovering the information of potential positive labels. Experiments on multiple benchmark datasets validate that the proposed method can achieve state-of-the-art performance for solving SPML tasks.
[ Hall J ]

Free-form text prompts allow users to describe their intentions during image manipulation conveniently. Based on the visual latent space of StyleGAN[21] and text embedding space of CLIP[34], studies focus on how to map these two latent spaces for text-driven attribute manipulations. Currently, the latent mapping between these two spaces is empirically designed and confines that each manipulation model can only handle one fixed text prompt. In this paper, we propose a method named Free-Form CLIP (FFCLIP), aiming to establish an automatic latent mapping so that one manipulation model handles free-form text prompts. Our FFCLIP has a cross-modality semantic modulation module containing semantic alignment and injection. The semantic alignment performs the automatic latent mapping via linear transformations with a cross attention mechanism. After alignment, we inject semantics from text prompt embeddings to the StyleGAN latent space. For one type of image (e.g., human portrait'), one FFCLIP model can be learned to handle free-form text prompts. Meanwhile, we observe that although each training text prompt only contains a single semantic meaning, FFCLIP can leverage text prompts with multiple semantic meanings for image manipulation. In the experiments, we evaluate FFCLIP on three types of images (i.e.,
human portraits', cars', and
churches'). Both visual …
[ Hall J ]

Spatial-wise dynamic convolution has become a promising approach to improving the inference efficiency of deep networks. By allocating more computation to the most informative pixels, such an adaptive inference paradigm reduces the spatial redundancy in image features and saves a considerable amount of unnecessary computation. However, the theoretical efficiency achieved by previous methods can hardly translate into a realistic speedup, especially on the multi-core processors (e.g. GPUs). The key challenge is that the existing literature has only focused on designing algorithms with minimal computation, ignoring the fact that the practical latency can also be influenced by scheduling strategies and hardware properties. To bridge the gap between theoretical computation and practical efficiency, we propose a latency-aware spatial-wise dynamic network (LASNet), which performs coarse-grained spatially adaptive inference under the guidance of a novel latency prediction model. The latency prediction model can efficiently estimate the inference latency of dynamic networks by simultaneously considering algorithms, scheduling strategies, and hardware properties. We use the latency predictor to guide both the algorithm design and the scheduling optimization on various hardware platforms. Experiments on image classification, object detection and instance segmentation demonstrate that the proposed framework significantly improves the practical inference efficiency of deep networks. For example, …
[ Hall J ]

In the adversarial training framework of \cite{carmon2019unlabeled,gowal2021improving}, people use generated/real unlabeled data with pseudolabels to improve adversarial robustness. We provide statistical insights to explain why the artificially generated data improve adversarial training. In particular, we study how the attack strength and the quality of the unlabeled data affect adversarial robustness in this framework. Our results show that with a high-quality unlabeled data generator, adversarial training can benefit greatly from this framework under large attack strength, while a poor generator can still help to some extent. To make adaptions concerning the quality of generated data, we propose an algorithm that performs online adjustment to the weight between the labeled real data and the generated data, aiming to optimize the adversarial risk. Numerical studies are conducted to verify our theories and show the effectiveness of the proposed algorithm.
[ Hall J ]

Convolutional neural networks (CNN) can be manipulated to perform specific behaviors when encountering a particular trigger pattern without affecting the performance on normal samples, which is referred to as backdoor attack. The backdoor attack is usually achieved by injecting a small proportion of poisoned samples into the training set, through which the victim trains a model embedded with the designated backdoor. In this work, we demonstrate that backdoor neurons are exposed by their pre-activation distributions, where populations from benign data and poisoned data show significantly different moments. This property is shown to be attack-invariant and allows us to efficiently locate backdoor neurons. On this basis, we make several proper assumptions on the neuron activation distributions, and propose two backdoor neuron detection strategies based on (1) the differential entropy of the neurons, and (2) the Kullback-Leibler divergence between the benign sample distribution and a poisoned statistics based hypothetical distribution. Experimental results show that our proposed defense strategies are both efficient and effective against various backdoor attacks.
[ Hall J ]
Federated learning allows distributed users to collaboratively train a model while keeping each user’s data private. Recently, a growing body of work has demonstrated that an eavesdropping attacker can effectively recover image data from gradients transmitted during federated learning. However, little progress has been made in recovering text data. In this paper, we present a novel attack method FILM for federated learning of language models (LMs). For the first time, we show the feasibility of recovering text from large batch sizes of up to 128 sentences. Unlike image-recovery methods that are optimized to match gradients, we take a distinct approach that first identifies a set of words from gradients and then directly reconstructs sentences based on beam search and a prior-based reordering strategy. We conduct the FILM attack on several large-scale datasets and show that it can successfully reconstruct single sentences with high fidelity for large batch sizes and even multiple sentences if applied iteratively.We evaluate three defense methods: gradient pruning, DPSGD, and a simple approach to freeze word embeddings that we propose. We show that both gradient pruning and DPSGD lead to a significant drop in utility. However, if we fine-tune a public pre-trained LM on private text without …
[ Hall J ]

Data continuously emitted from industrial ecosystems such as social or e-commerce platforms are commonly represented as heterogeneous graphs (HG) composed of multiple node/edge types. State-of-the-art graph learning methods for HGs known as heterogeneous graph neural networks (HGNNs) are applied to learn deep context-informed node representations. However, many HG datasets from industrial applications suffer from label imbalance between node types. As there is no direct way to learn using labels rooted at different node types, HGNNs have been applied to only a few node types with abundant labels. We propose a zero-shot transfer learning module for HGNNs called a Knowledge Transfer Network (KTN) that transfers knowledge from label-abundant node types to zero-labeled node types through rich relational information given in the HG. KTN is derived from the theoretical relationship, which we introduce in this work, between distinct feature extractors for each node type given in an HGNN model. KTN improves the performance of 6 different types of HGNN models by up to 960% for inference on zero-labeled node types and outperforms state-of-the-art transfer learning baselines by up to 73% across 18 different transfer learning tasks on HGs.
[ Hall J ]

Blind face restoration is a highly ill-posed problem that often requires auxiliary guidance to 1) improve the mapping from degraded inputs to desired outputs, or 2) complement high-quality details lost in the inputs. In this paper, we demonstrate that a learned discrete codebook prior in a small proxy space largely reduces the uncertainty and ambiguity of restoration mapping by casting \textit{blind face restoration} as a \textit{code prediction} task, while providing rich visual atoms for generating high-quality faces. Under this paradigm, we propose a Transformer-based prediction network, named \textit{CodeFormer}, to model the global composition and context of the low-quality faces for code prediction, enabling the discovery of natural faces that closely approximate the target faces even when the inputs are severely degraded. To enhance the adaptiveness for different degradation, we also propose a controllable feature transformation module that allows a flexible trade-off between fidelity and quality. Thanks to the expressive codebook prior and global modeling, \textit{CodeFormer} outperforms the state of the arts in both quality and fidelity, showing superior robustness to degradation. Extensive experimental results on synthetic and real-world datasets verify the effectiveness of our method.
[ Hall J ]

Offline reinforcement learning (Offline RL) suffers from the innate distributional shift as it cannot interact with the physical environment during training. To alleviate such limitation, state-based offline RL leverages a learned dynamics model from the logged experience and augments the predicted state transition to extend the data distribution. For exploiting such benefit also on the image-based RL, we firstly propose a generative model, S2P (State2Pixel), which synthesizes the raw pixel of the agent from its corresponding state. It enables bridging the gap between the state and the image domain in RL algorithms, and virtually exploring unseen image distribution via model-based transition in the state space. Through experiments, we confirm that our S2P-based image synthesis not only improves the image-based offline RL performance but also shows powerful generalization capability on unseen tasks.
[ Hall J ]

Optical computing has become emerging technology in next-generation efficient artificial intelligence (AI) due to its ultra-high speed and efficiency. Electromagnetic field simulation is critical to the design, optimization, and validation of photonic devices and circuits.However, costly numerical simulation significantly hinders the scalability and turn-around time in the photonic circuit design loop. Recently, physics-informed neural networks were proposed to predict the optical field solution of a single instance of a partial differential equation (PDE) with predefined parameters. Their complicated PDE formulation and lack of efficient parametrization mechanism limit their flexibility and generalization in practical simulation scenarios. In this work, for the first time, a physics-agnostic neural operator-based framework, dubbed NeurOLight, is proposed to learn a family of frequency-domain Maxwell PDEs for ultra-fast parametric photonic device simulation. Specifically, we discretize different devices into a unified domain, represent parametric PDEs with a compact wave prior, and encode the incident light via masked source modeling. We design our model to have parameter-efficient cross-shaped NeurOLight blocks and adopt superposition-based augmentation for data-efficient learning. With those synergistic approaches, NeurOLight demonstrates 2-orders-of-magnitude faster simulation speed than numerical solvers and outperforms prior NN-based models by ~54% lower prediction error using ~44% fewer parameters.
[ Hall J ]

Deploying TinyML models on low-cost IoT hardware is very challenging, due to limited device memory capacity. Neural processing unit (NPU) hardware address the memory challenge by using model compression to exploit weight quantization and sparsity to fit more parameters in the same footprint. However, designing compressible neural networks (NNs) is challenging, as it expands the design space across which we must make balanced trade-offs. This paper demonstrates Unified DNAS for Compressible (UDC) NNs, which explores a large search space to generate state-of-the-art compressible NNs for NPU. ImageNet results show UDC networks are up to 3.35x smaller (iso-accuracy) or 6.25% more accurate (iso-model size) than previous work.
[ Hall J ]

We address the problem of using observational data to estimate peer contagion effects, the influence of treatments applied to individuals in a network on the outcomes of their neighbors. A main challenge to such estimation is that homophily - the tendency of connected units to share similar latent traits - acts as an unobserved confounder for contagion effects. Informally, it's hard to tell whether your friends have similar outcomes because they were influenced by your treatment, or whether it's due to some common trait that caused you to be friends in the first place. Because these common causes are not usually directly observed, they cannot be simply adjusted for. We describe an approach to perform the required adjustment using node embeddings learned from the network itself. The main aim is to perform this adjustment nonparametrically, without functional form assumptions on either the process that generated the network or the treatment assignment and outcome processes. The key contributions are to nonparametrically formalize the causal effect in a way that accounts for homophily, and to show how embedding methods can be used to identify and estimate this effect.
[ Hall J ]

We say an algorithm is batch size-invariant if changes to the batch size can largely be compensated for by changes to other hyperparameters. Stochastic gradient descent is well-known to have this property at small batch sizes, via the learning rate. However, some policy optimization algorithms (such as PPO) do not have this property, because of how they control the size of policy updates. In this work we show how to make these algorithms batch size-invariant. Our key insight is to decouple the proximal policy (used for controlling policy updates) from the behavior policy (used for off-policy corrections). Our experiments help explain why these algorithms work, and additionally show how they can make more efficient use of stale data.
[ Hall J ]

Top two algorithms arose as an adaptation of Thompson sampling to best arm identification in multi-armed bandit models for parametric families of arms. They select the next arm to sample from by randomizing among two candidate arms, a leader and a challenger. Despite their good empirical performance, theoretical guarantees for fixed-confidence best arm identification have only been obtained when the arms are Gaussian with known variances. In this paper, we provide a general analysis of top-two methods, which identifies desirable properties of the leader, the challenger, and the (possibly non-parametric) distributions of the arms. As a result, we obtain theoretically supported top-two algorithms for best arm identification with bounded distributions. Our proof method demonstrates in particular that the sampling step used to select the leader inherited from Thompson sampling can be replaced by other choices, like selecting the empirical best arm.
[ Hall J ]
Cellular sheaves equip graphs with a ``geometrical'' structure by assigning vector spaces and linear maps to nodes and edges. Graph Neural Networks (GNNs) implicitly assume a graph with a trivial underlying sheaf. This choice is reflected in the structure of the graph Laplacian operator, the properties of the associated diffusion equation, and the characteristics of the convolutional models that discretise this equation. In this paper, we use cellular sheaf theory to show that the underlying geometry of the graph is deeply linked with the performance of GNNs in heterophilic settings and their oversmoothing behaviour. By considering a hierarchy of increasingly general sheaves, we study how the ability of the sheaf diffusion process to achieve linear separation of the classes in the infinite time limit expands. At the same time, we prove that when the sheaf is non-trivial, discretised parametric diffusion processes have greater control than GNNs over their asymptotic behaviour. On the practical side, we study how sheaves can be learned from data. The resulting sheaf diffusion models have many desirable properties that address the limitations of classical graph diffusion equations (and corresponding GNN models) and obtain competitive results in heterophilic settings. Overall, our work provides new connections between GNNs …
[ Hall J ]

Extraction of latent sources of complex stimuli is critical for making sense of the world. While the brain solves this blind source separation (BSS) problem continuously, its algorithms remain unknown. Previous work on biologically-plausible BSS algorithms assumed that observed signals are linear mixtures of statistically independent or uncorrelated sources, limiting the domain of applicability of these algorithms. To overcome this limitation, we propose novel biologically-plausible neural networks for the blind separation of potentially dependent/correlated sources. Differing from previous work, we assume some general geometric, not statistical, conditions on the source vectors allowing separation of potentially dependent/correlated sources. Concretely, we assume that the source vectors are sufficiently scattered in their domains which can be described by certain polytopes. Then, we consider recovery of these sources by the Det-Max criterion, which maximizes the determinant of the output correlation matrix to enforce a similar spread for the source estimates. Starting from this normative principle, and using a weighted similarity matching approach that enables arbitrary linear transformations adaptable by local learning rules, we derive two-layer biologically-plausible neural network algorithms that can separate mixtures into sources coming from a variety of source domains. We demonstrate that our algorithms outperform other biologically-plausible BSS algorithms on correlated …
[ Hall J ]

Several recent works have proposed a class of algorithms for the offline reinforcement learning (RL) problem that we will refer to as return-conditioned supervised learning (RCSL). RCSL algorithms learn the distribution of actions conditioned on both the state and the return of the trajectory. Then they define a policy by conditioning on achieving high return. In this paper, we provide a rigorous study of the capabilities and limitations of RCSL something which is crucially missing in previous work. We find that RCSL returns the optimal policy under a set of assumptions that are stronger than those needed for the more traditional dynamic programming-based algorithms. We provide specific examples of MDPs and datasets that illustrate the necessity of these assumptions and the limits of RCSL. Finally, we present empirical evidence that these limitations will also cause issues in practice by providing illustrative experiments in simple point-mass environments and on datasets from the D4RL benchmark.
[ Hall J ]

[ Hall J ]

[ Hall J ]

[ Hall J ]

[ Hall J ]
We examine the problem of regret minimization when the learner is involved in a continuous game with other optimizing agents: in this case, if all players follow a no-regret algorithm, it is possible to achieve significantly lower regret relative to fully adversarial environments. We study this problem in the context of variationally stable games (a class of continuous games which includes all convex-concave and monotone games), and when the players only have access to noisy estimates of their individual payoff gradients. If the noise is additive, the game-theoretic and purely adversarial settings enjoy similar regret guarantees; however, if the noise is \emph{multiplicative}, we show that the learners can, in fact, achieve \emph{constant} regret. We achieve this faster rate via an optimistic gradient scheme with \emph{learning rate separation} \textendash\ that is, the method's extrapolation and update steps are tuned to different schedules, depending on the noise profile. Subsequently, to eliminate the need for delicate hyperparameter tuning, we propose a fully adaptive method that smoothly interpolates between worst- and best-case regret guarantees.
[ Hall J ]

We present a PAC-Bayes-style generalization bound which enables the replacement of the KL-divergence with a variety of Integral Probability Metrics (IPM). We provide instances of this bound with the IPM being the total variation metric and the Wasserstein distance. A notable feature of the obtained bounds is that they naturally interpolate between classical uniform convergence bounds in the worst case (when the prior and posterior are far away from each other), and improved bounds in favorable cases (when the posterior and prior are close). This illustrates the possibility of reinforcing classical generalization bounds with algorithm- and data-dependent components, thus making them more suitable to analyze algorithms that use a large hypothesis space.
[ Hall J ]

Nonnegative (linear) least square problems are a fundamental class of problems that is well-studied in statistical learning and for which solvers have been implemented in many of the standard programming languages used within the machine learning community. The existing off-the-shelf solvers view the non-negativity constraint in these problems as an obstacle and, compared to unconstrained least squares, perform additional effort to address it. However, in many of the typical applications, the data itself is nonnegative as well, and we show that the nonnegativity in this case makes the problem easier. In particular, while the worst-case dimension-independent oracle complexity of unconstrained least squares problems necessarily scales with one of the data matrix constants (typically the spectral norm) and these problems are solved to additive error, we show that nonnegative least squares problems with nonnegative data are solvable to multiplicative error and with complexity that is independent of any matrix constants. The algorithm we introduce is accelerated and based on a primal-dual perspective. We further show how to provably obtain linear convergence using adaptive restart coupled with our method and demonstrate its effectiveness on large-scale data via numerical experiments.
[ Hall J ]
We introduce a simple but general online learning framework in which a learner plays against an adversary in a vector-valued game that changes every round. Even though the learner's objective is not convex-concave (and so the minimax theorem does not apply), we give a simple algorithm that can compete with the setting in which the adversary must announce their action first, with optimally diminishing regret. We demonstrate the power of our framework by using it to (re)derive optimal bounds and efficient algorithms across a variety of domains, ranging from multicalibration to a large set of no-regret algorithms, to a variant of Blackwell's approachability theorem for polytopes with fast convergence rates. As a new application, we show how to ``(multi)calibeat'' an arbitrary collection of forecasters --- achieving an exponentially improved dependence on the number of models we are competing against, compared to prior work.
[ Hall J ]
We consider the problem of fairly allocating sequentially arriving items to a set of individuals. For this problem, the recently-introduced PACE algorithm leverages the dual averaging algorithm to approximate competitive equilibria and thus generate online fair allocations. PACE is simple, distributed, and parameter-free, making it appealing for practical use in large-scale systems. However, current performance guarantees for PACE require i.i.d. item arrivals. Since real-world data is rarely i.i.d., or even stationary, we study the performance of PACE on nonstationary data. We start by developing new convergence results for the general dual averaging algorithm under three nonstationary input models: adversarially-corrupted stochastic input, ergodic input, and block-independent (including periodic) input. Our results show convergence of dual averaging up to errors caused by nonstationarity of the data, and recover the classical bounds when the input data is i.i.d. Using these results, we show that the PACE algorithm for online fair allocation simultaneously achieves ``best of many worlds'' guarantees against any of these nonstationary input models as well as against i.i.d. input. Finally, numerical experiments show strong empirical performance of PACE against nonstationary inputs.
[ Hall J ]
[ Hall J ]

[ Hall J ]

[ Hall J ]

[ Hall J ]

Hamiltonian mechanics is a well-established theory for modeling the time evolution of systems with conserved quantities (called Hamiltonian), such as the total energy of the system. Recent works have parameterized the Hamiltonian by machine learning models (e.g., neural networks), allowing Hamiltonian dynamics to be obtained from state trajectories without explicit mathematical modeling. However, the performance of existing models is limited as we can observe only noisy and sparse trajectories in practice. This paper proposes a probabilistic model that can learn the dynamics of conservative or dissipative systems from noisy and sparse data. We introduce a Gaussian process that incorporates the symplectic geometric structure of Hamiltonian systems, which is used as a prior distribution for estimating Hamiltonian systems with additive dissipation. We then present its spectral representation, Symplectic Spectrum Gaussian Processes (SSGPs), for which we newly derive random Fourier features with symplectic structures. This allows us to construct an efficient variational inference algorithm for training the models while simulating the dynamics via ordinary differential equation solvers. Experiments on several physical systems show that SSGP offers excellent performance in predicting dynamics that follow the energy conservation or dissipation law from noisy and sparse data.
[ Hall J ]

Understanding generalization and robustness of machine learning models fundamentally relies on assuming an appropriate metric on the data space. Identifying such a metric is particularly challenging for non-Euclidean data such as graphs. Here, we propose a pseudometric for attributed graphs, the Tree Mover's Distance (TMD), and study its relation to generalization. Via a hierarchical optimal transport problem, TMD reflects the local distribution of node attributes as well as the distribution of local computation trees, which are known to be decisive for the learning behavior of graph neural networks (GNNs). First, we show that TMD captures properties relevant for graph classification: a simple TMD-SVM can perform competitively with standard GNNs. Second, we relate TMD to generalization of GNNs under distribution shifts, and show that it correlates well with performance drop under such shifts.
[ Hall J ]

State space models (SSM) have recently been shown to be very effective as a deep learning layer as a promising alternative to sequence models such as RNNs, CNNs, or Transformers. The first version to show this potential was the S4 model, which is particularly effective on tasks involving long-range dependencies by using a prescribed state matrix called the HiPPO matrix. While this has an interpretable mathematical mechanism for modeling long dependencies, it also requires a custom representation and algorithm that makes the model difficult to understand and implement. On the other hand, a recent variant of S4 called DSS showed that restricting the state matrix to be fully diagonal can still preserve the performance of the original model when using a specific initialization based on approximating S4's matrix. This work seeks to systematically understand how to parameterize and initialize diagonal state space models. While it follows from classical results that almost all SSMs have an equivalent diagonal form, we show that the initialization is critical for performance. First, we explain why DSS works mathematically, as the diagonal approximation to S4 surprisingly recovers the same dynamics in the limit of infinite state dimension. We then systematically describe various design choices in …
[ Hall J ]

In human networks, nodes belonging to a marginalized group often have a disproportionate rate of unknown or missing features. This, in conjunction with graph structure and known feature biases, can cause graph feature imputation algorithms to predict values for unknown features that make the marginalized group's feature values more distinct from the the dominant group's feature values than they are in reality. We call this distinction the discrimination risk. We prove that a higher discrimination risk can amplify the unfairness of a machine learning model applied to the imputed data. We then formalize a general graph feature imputation framework called mean aggregation imputation and theoretically and empirically characterize graphs in which applying this framework can yield feature values with a high discrimination risk. We propose a simple algorithm to ensure mean aggregation-imputed features provably have a low discrimination risk, while minimally sacrificing reconstruction error (with respect to the imputation objective). We evaluate the fairness and accuracy of our solution on synthetic and real-world credit networks.
[ Hall J ]

Randomized experiments are widely used to estimate causal effects across many domains. However, classical causal inference approaches rely on independence assumptions that are violated by network interference, when the treatment of one individual influences the outcomes of others. All existing approaches require at least approximate knowledge of the network, which may be unavailable or costly to collect. We consider the task of estimating the total treatment effect (TTE), the average difference between the outcomes when the whole population is treated versus when the whole population is untreated. By leveraging a staggered rollout design, in which treatment is incrementally given to random subsets of individuals, we derive unbiased estimators for TTE that do not rely on any prior structural knowledge of the network, as long as the network interference effects are constrained to low-degree interactions among neighbors of an individual. We derive bounds on the variance of the estimators, and we show in experiments that our estimator performs well against baselines on simulated data. Central to our theoretical contribution is a connection between staggered rollout observations and polynomial extrapolation.
[ Hall J ]

[ Hall J ]
Referred to as the third rung of the causal inference ladder, counterfactual queries typically ask the "What if ?" question retrospectively. The standard approach to estimate counterfactuals resides in using a structural equation model that accurately reflects the underlying data generating process. However, such models are seldom available in practice and one usually wishes to infer them from observational data alone. Unfortunately, the correct structural equation model is in general not identifiable from the observed factual distribution. Nevertheless, in this work, we show that under the assumption that the main latent contributors to the treatment responses are categorical, the counterfactuals can be still reliably predicted. Building upon this assumption, we introduce CounterFactual Query Prediction (\method), a novel method to infer counterfactuals from continuous observations when the background variables are categorical. We show that our method significantly outperforms previously available deep-learning-based counterfactual methods, both theoretically and empirically on time series and image data. Our code is available at https://github.com/edebrouwer/cfqp.
[ Hall J ]
Over the last two decades, submodular function maximization has been the workhorse of many discrete optimization problems in machine learning applications. Traditionally, the study of submodular functions was based on binary function properties, but recent works began to consider continuous function properties such as the submodularity ratio and the curvature. The monotonicity property of set functions plays a central role in submodular maximization. Nevertheless, no continuous version of this property has been suggested to date (as far as we know), which is unfortunate since submoduar functions that are almost monotone often arise in machine learning applications. In this work we fill this gap by defining the monotonicity ratio, which is a continuous version of the monotonicity property. We then show that for many standard submodular maximization algorithms one can prove new approximation guarantees that depend on the monotonicity ratio; leading to improved approximation ratios for the common machine learning applications of movie recommendation, quadratic programming, image summarization and ride-share optimization.
[ Hall J ]

We present a new family of information-theoretic generalization bounds, in which the training loss and the population loss are compared through a jointly convex function. This function is upper-bounded in terms of the disintegrated, samplewise, evaluated conditional mutual information (CMI), an information measure that depends on the losses incurred by the selected hypothesis, rather than on the hypothesis itself, as is common in probably approximately correct (PAC)-Bayesian results. We demonstrate the generality of this framework by recovering and extending previously known information-theoretic bounds. Furthermore, using the evaluated CMI, we derive a samplewise, average version of Seeger's PAC-Bayesian bound, where the convex function is the binary KL divergence. In some scenarios, this novel bound results in a tighter characterization of the population loss of deep neural networks than previous bounds. Finally, we derive high-probability versions of some of these average bounds. We demonstrate the unifying nature of the evaluated CMI bounds by using them to recover average and high-probability generalization bounds for multiclass classification with finite Natarajan dimension.
[ Hall J ]

We develop a rigorous mathematical analysis of zero-shot learning with attributes. In this setting, the goal is to label novel classes with no training data, only detectors for attributes and a description of how those attributes are correlated with the target classes, called the class-attribute matrix. We develop the first non-trivial lower bound on the worst-case error of the best map from attributes to classes for this setting, even with perfect attribute detectors. The lower bound characterizes the theoretical intrinsic difficulty of the zero-shot problem based on the available information---the class-attribute matrix---and the bound is practically computable from it. Our lower bound is tight, as we show that we can always find a randomized map from attributes to classes whose expected error is upper bounded by the value of the lower bound. We show that our analysis can be predictive of how standard zero-shot methods behave in practice, including which classes will likely be confused with others.
[ Hall J ]

We propose and analyze a reinforcement learning principle thatapproximates the Bellman equations by enforcing their validity onlyalong a user-defined space of test functions. Focusing onapplications to model-free offline RL with function approximation, weexploit this principle to derive confidence intervals for off-policyevaluation, as well as to optimize over policies within a prescribedpolicy class. We prove an oracle inequality on our policyoptimization procedure in terms of a trade-off between the value anduncertainty of an arbitrary comparator policy. Different choices oftest function spaces allow us to tackle different problems within acommon framework. We characterize the loss of efficiency in movingfrom on-policy to off-policy data using our procedures, and establishconnections to concentrability coefficients studied in past work. Weexamine in depth the implementation of our methods with linearfunction approximation, and provide theoretical guarantees withpolynomial-time implementations even when Bellman closure does nothold.
[ Hall J ]
Diffusion models are recent state-of-the-art methods for image generation and likelihood estimation. In this work, we generalize continuous-time diffusion models to arbitrary Riemannian manifolds and derive a variational framework for likelihood estimation. Computationally, we propose new methods for computing the Riemannian divergence which is needed for likelihood estimation. Moreover, in generalizing the Euclidean case, we prove that maximizing this variational lower-bound is equivalent to Riemannian score matching. Empirically, we demonstrate the expressive power of Riemannian diffusion models on a wide spectrum of smooth manifolds, such as spheres, tori, hyperboloids, and orthogonal groups. Our proposed method achieves new state-of-the-art likelihoods on all benchmarks.
[ Hall J ]

[ Hall J ]

Researchers investigating example hardness have increasingly focused on the dynamics by which neural networks learn and forget examples throughout training. Popular metrics derived from these dynamics include (i) the epoch at which examples are first correctly classified; (ii) the number of times their predictions flip during training; and (iii) whether their prediction flips if they are held out. However, these metrics do not distinguish among examples that are hard for distinct reasons, such as membership in a rare subpopulation, being mislabeled, or belonging to a complex subpopulation. In this paper, we propose second-split forgetting time (SSFT), a complementary metric that tracks the epoch (if any) after which an original training example is forgotten as the network is fine-tuned on a randomly held out partition of the data. Across multiple benchmark datasets and modalities, we demonstrate that mislabeled examples are forgotten quickly, and seemingly rare examples are forgotten comparatively slowly. By contrast, metrics only considering the first split learning dynamics struggle to differentiate the two. At large learning rates, SSFT tends to be robust across architectures, optimizers, and random seeds. From a practical standpoint, the SSFT can (i) help to identify mislabeled samples, the removal of which improves generalization; and (ii) …
[ Hall J ]

Given an algorithmic predictor that is "fair"' on some source distribution, will it still be fair on an unknown target distribution that differs from the source within some bound? In this paper, we study the transferability of statistical group fairness for machine learning predictors (i.e., classifiers or regressors subject to bounded distribution shift. Such shifts may be introduced by initial training data uncertainties, user adaptation to a deployed predictor, dynamic environments, or the use of pre-trained models in new settings. Herein, we develop a bound that characterizes such transferability, flagging potentially inappropriate deployments of machine learning for socially consequential tasks. We first develop a framework for bounding violations of statistical fairness subject to distribution shift, formulating a generic upper bound for transferred fairness violations as our primary result. We then develop bounds for specific worked examples, focusing on two commonly used fairness definitions (i.e., demographic parity and equalized odds) and two classes of distribution shift (i.e., covariate shift and label shift). Finally, we compare our theoretical bounds to deterministic models of distribution shift and against real-world data, finding that we are able to estimate fairness violation bounds in practice, even when simplifying assumptions are only approximately satisfied.
[ Hall J ]

In offline reinforcement learning (RL), a learner leverages prior logged data to learn a good policy without interacting with the environment. A major challenge in applying such methods in practice is the lack of both theoretically principled and practical tools for model selection and evaluation. To address this, we study the problem of model selection in offline RL with value function approximation. The learner is given a nested sequence of model classes to minimize squared Bellman error and must select among these to achieve a balance between approximation and estimation error of the classes. We propose the first model selection algorithm for offline RL that achieves minimax rate-optimal oracle inequalities up to logarithmic factors. The algorithm, ModBE, takes as input a collection of candidate model classes and a generic base offline RL algorithm. By successively eliminating model classes using a novel one-sided generalization test, ModBE returns a policy with regret scaling with the complexity of the minimally complete model class. In addition to its theoretical guarantees, it is conceptually simple and computationally efficient, amounting to solving a series of square loss regression problems and then comparing relative square loss between classes. We conclude with several numerical simulations showing it is …
[ Hall J ]

Neural approaches for combinatorial optimization (CO) equip a learning mechanism to discover powerful heuristics for solving complex real-world problems. While neural approaches capable of high-quality solutions in a single shot are emerging, state-of-the-art approaches are often unable to take full advantage of the solving time available to them. In contrast, hand-crafted heuristics perform highly effective search well and exploit the computation time given to them, but contain heuristics that are difficult to adapt to a dataset being solved. With the goal of providing a powerful search procedure to neural CO approaches, we propose simulation-guided beam search (SGBS), which examines candidate solutions within a fixed-width tree search that both a neural net-learned policy and a simulation (rollout) identify as promising. We further hybridize SGBS with efficient active search (EAS), where SGBS enhances the quality of solutions backpropagated in EAS, and EAS improves the quality of the policy used in SGBS. We evaluate our methods on well-known CO benchmarks and show that SGBS significantly improves the quality of the solutions found under reasonable runtime assumptions.
[ Hall J ]

A fundamental procedure in the analysis of massive datasets is the construction of similarity graphs. Such graphs play a key role for many downstream tasks, including clustering, classification, graph learning, and nearest neighbor search. For these tasks, it is critical to build graphs which are sparse yet still representative of the underlying data. The benefits of sparsity are twofold: firstly, constructing dense graphs is infeasible in practice for large datasets, and secondly, the runtime of downstream tasks is directly influenced by the sparsity of the similarity graph. In this work, we present Stars: a highly scalable method for building extremely sparse graphs via two-hop spanners, which are graphs where similar points are connected by a path of length at most two. Stars can construct two-hop spanners with significantly fewer similarity comparisons, which are a major bottleneck for learning based models where comparisons are expensive to evaluate. Theoretically, we demonstrate that Stars builds a graph in nearly-linear time, where approximate nearest neighbors are contained within two-hop neighborhoods. In practice, we have deployed Stars for multiple data sets allowing for graph building at the Tera-Scale, i.e., for graphs with hundreds of billions of nodes and tens of trillions of edges. We evaluate …
[ Hall J ]
Deployed machine learning (ML) models often encounter new user data that differs from their training data. Therefore, estimating how well a given model might perform on the new data is an important step toward reliable ML applications. This is very challenging, however, as the data distribution can change in flexible ways, and we may not have any labels on the new data, which is often the case in monitoring settings. In this paper, we propose a new distribution shift model, Sparse Joint Shift (SJS), which considers the joint shift of both labels and a few features. This unifies and generalizes several existing shift models including label shift and sparse covariate shift, where only marginal feature or label distribution shifts are considered. We describe mathematical conditions under which SJS is identifiable. We further propose SEES, an algorithmic framework to characterize the distribution shift under SJS and to estimate a model’s performance on new data without any labels. We conduct extensive experiments on several real-world datasets with various ML models. Across different datasets and distribution shifts, SEES achieves significant (up to an order of magnitude) shift estimation error improvements over existing approaches.
[ Hall J ]
Learning structures between groups of variables from data with missing values is an important task in the real world, yet difficult to solve. One typical scenario is discovering the structure among topics in the education domain to identify learning pathways. Here, the observations are student performances for questions under each topic which contain missing values. However, most existing methods focus on learning structures between a few individual variables from the complete data. In this work, we propose VISL, a novel scalable structure learning approach that can simultaneously infer structures between groups of variables under missing data and perform missing value imputations with deep learning. Particularly, we propose a generative model with a structured latent space and a graph neural network-based architecture, scaling to a large number of variables. Empirically, we conduct extensive experiments on synthetic, semi-synthetic, and real-world education data sets. We show improved performances on both imputation and structure learning accuracy compared to popular and recent approaches.
[ Hall J ]
Implicit Neural Representations (INRs) encoding continuous multi-media data via multi-layer perceptrons has shown undebatable promise in various computer vision tasks. Despite many successful applications, editing and processing an INR remains intractable as signals are represented by latent parameters of a neural network. Existing works manipulate such continuous representations via processing on their discretized instance, which breaks down the compactness and continuous nature of INR. In this work, we present a pilot study on the question: how to directly modify an INR without explicit decoding? We answer this question by proposing an implicit neural signal processing network, dubbed INSP-Net, via differential operators on INR. Our key insight is that spatial gradients of neural networks can be computed analytically and are invariant to translation, while mathematically we show that any continuous convolution filter can be uniformly approximated by a linear combination of high-order differential operators. With these two knobs, INSP-Net instantiates the signal processing operator as a weighted composition of computational graphs corresponding to the high-order derivatives of INRs, where the weighting parameters can be data-driven learned. Based on our proposed INSP-Net, we further build the first Convolutional Neural Network (CNN) that implicitly runs on INRs, named INSP-ConvNet. Our experiments validate the …
[ Hall J ]

Predicting energetically favorable 3-dimensional conformations of organic molecules frommolecular graph plays a fundamental role in computer-aided drug discovery research.However, effectively exploring the high-dimensional conformation space to identify (meta) stable conformers is anything but trivial.In this work, we introduce RMCF, a novel framework to generate a diverse set of low-energy molecular conformations through samplingfrom a regularized molecular conformation field.We develop a data-driven molecular segmentation algorithm to automatically partition each molecule into several structural building blocks to reduce the modeling degrees of freedom.Then, we employ a Markov Random Field to learn the joint probability distribution of fragment configurations and inter-fragment dihedral angles, which enables us to sample from different low-energy regions of a conformation space.Our model constantly outperforms state-of-the-art models for the conformation generation task on the GEOM-Drugs dataset.We attribute the success of RMCF to modeling in a regularized feature space and learning a global fragment configuration distribution for effective sampling.The proposed method could be generalized to deal with larger biomolecular systems.
[ Hall J ]

Collaborations among multiple organizations, such as financial institutions, medical centers, and retail markets in decentralized settings are crucial to providing improved service and performance. However, the underlying organizations may have little interest in sharing their local data, models, and objective functions. These requirements have created new challenges for multi-organization collaboration. In this work, we propose Gradient Assisted Learning (GAL), a new method for multiple organizations to assist each other in supervised learning tasks without sharing local data, models, and objective functions. In this framework, all participants collaboratively optimize the aggregate of local loss functions, and each participant autonomously builds its own model by iteratively fitting the gradients of the overarching objective function. We also provide asymptotic convergence analysis and practical case studies of GAL. Experimental studies demonstrate that GAL can achieve performance close to centralized learning when all data, models, and objective functions are fully disclosed.
[ Hall J ]

By inferring latent groups in the training data, recent works introduce invariant learning to the case where environment annotations are unavailable. Typically, learning group invariance under a majority/minority split is empirically shown to be effective in improving out-of-distribution generalization on many datasets. However, theoretical guarantee for these methods on learning invariant mechanisms is lacking. In this paper, we reveal the insufficiency of existing group invariant learning methods in preventing classifiers from depending on spurious correlations in the training set. Specifically, we propose two criteria on judging such sufficiency. Theoretically and empirically, we show that existing methods can violate both criteria and thus fail in generalizing to spurious correlation shifts. Motivated by this, we design a new group invariant learning method, which constructs groups with statistical independence tests, and reweights samples by group label proportion to meet the criteria. Experiments on both synthetic and real data demonstrate that the new method significantly outperforms existing group invariant learning methods in generalizing to spurious correlation shifts.
[ Hall J ]

Standard neural networks struggle to generalize under distribution shifts in computer vision. Fortunately, combining multiple networks can consistently improve out-of-distribution generalization. In particular, weight averaging (WA) strategies were shown to perform best on the competitive DomainBed benchmark; they directly average the weights of multiple networks despite their nonlinearities. In this paper, we propose Diverse Weight Averaging (DiWA), a new WA strategy whose main motivation is to increase the functional diversity across averaged models. To this end, DiWA averages weights obtained from several independent training runs: indeed, models obtained from different runs are more diverse than those collected along a single run thanks to differences in hyperparameters and training procedures. We motivate the need for diversity by a new bias-variance-covariance-locality decomposition of the expected error, exploiting similarities between WA and standard functional ensembling. Moreover, this decomposition highlights that WA succeeds when the variance term dominates, which we show occurs when the marginal distribution changes at test time. Experimentally, DiWA consistently improves the state of the art on DomainBed without inference overhead.
[ Hall J ]
Relative positional embeddings (RPE) have received considerable attention since RPEs effectively model the relative distance among tokens and enable length extrapolation. We propose KERPLE, a framework that generalizes relative position embedding for extrapolation by kernelizing positional differences. We achieve this goal using conditionally positive definite (CPD) kernels, a class of functions known for generalizing distance metrics. To maintain the inner product interpretation of self-attention, we show that a CPD kernel can be transformed into a PD kernel by adding a constant offset. This offset is implicitly absorbed in the Softmax normalization during self-attention. The diversity of CPD kernels allows us to derive various RPEs that enable length extrapolation in a principled way. Experiments demonstrate that the logarithmic variant achieves excellent extrapolation performance on three large language modeling datasets. Our implementation and pretrained checkpoints are released at~\url{https://github.com/chijames/KERPLE.git}.
[ Hall J ]

Data augmentation plays a key role in modern machine learning pipelines. While numerous augmentation strategies have been studied in the context of computer vision and natural language processing, less is known for other data modalities. Our work extends the success of data augmentation to compositional data, i.e., simplex-valued data, which is of particular interest in microbiology, geochemistry, and other applications. Drawing on key principles from compositional data analysis, such as the \emph{Aitchison geometry of the simplex} and subcompositions, we define novel augmentation strategies for this data modality. Incorporating our data augmentations into standard supervised learning pipelines results in consistent performance gains across a wide range of standard benchmark datasets. In particular, we set a new state-of-the-art for key disease prediction tasks including colorectal cancer, type 2 diabetes, and Crohn's disease. In addition, our data augmentations enable us to define a novel contrastive learning model, which improves on previous representation learning approaches for microbiome compositional data.
[ Hall J ]
Intensive algorithmic efforts have been made to enable the rapid improvements of certificated robustness for complex ML models recently. However, current robustness certification methods are only able to certify under a limited perturbation radius. Given that existing pure data-driven statistical approaches have reached a bottleneck, in this paper, we propose to integrate statistical ML models with knowledge (expressed as logical rules) as a reasoning component using Markov logic networks (MLN), so as to further improve the overall certified robustness. This opens new research questions about certifying the robustness of such a paradigm, especially the reasoning component (e.g., MLN). As the first step towards understanding these questions, we first prove that the computational complexity of certifying the robustness of MLN is #P-hard. Guided by this hardness result, we then derive the first certified robustness bound for MLN by carefully analyzing different model regimes. Finally, we conduct extensive experiments on five datasets including both high-dimensional images and natural language texts, and we show that the certified robustness with knowledge-based logical reasoning indeed significantly outperforms that of the state-of-the-arts.
[ Hall J ]

Unsupervised distribution alignment estimates a transformation that maps two or more source distributions to a shared aligned distribution given only samples from each distribution. This task has many applications including generative modeling, unsupervised domain adaptation, and socially aware learning. Most prior works use adversarial learning (i.e., min-max optimization), which can be challenging to optimize and evaluate. A few recent works explore non-adversarial flow-based (i.e., invertible) approaches, but they lack a unified perspective and are limited in efficiently aligning multiple distributions. Therefore, we propose to unify and generalize previous flow-based approaches under a single non-adversarial framework, which we prove is equivalent to minimizing an upper bound on the Jensen-Shannon Divergence (JSD). Importantly, our problem reduces to a min-min, i.e., cooperative, problem and can provide a natural evaluation metric for unsupervised distribution alignment. We show empirical results on both simulated and real-world datasets to demonstrate the benefits of our approach. Code is available at https://github.com/inouye-lab/alignment-upper-bound.
[ Hall J ]
[ Hall J ]

[ Hall J ]

Minimizing the inclusive Kullback-Leibler (KL) divergence with stochastic gradient descent (SGD) is challenging since its gradient is defined as an integral over the posterior. Recently, multiple methods have been proposed to run SGD with biased gradient estimates obtained from a Markov chain. This paper provides the first non-asymptotic convergence analysis of these methods by establishing their mixing rate and gradient variance. To do this, we demonstrate that these methods—which we collectively refer to as Markov chain score ascent (MCSA) methods—can be cast as special cases of the Markov chain gradient descent framework. Furthermore, by leveraging this new understanding, we develop a novel MCSA scheme, parallel MCSA (pMCSA), that achieves a tighter bound on the gradient variance. We demonstrate that this improved theoretical result translates to superior empirical performance.
[ Hall J ]

Synthetic data generation has become a key ingredient for training machine learning procedures, addressing tasks such as data augmentation, analysing privacy-sensitive data, or visualising representative samples. Assessing the quality of such synthetic data generators hence has to be addressed. As (deep) generative models for synthetic data often do not admit explicit probability distributions, classical statistical procedures for assessing model goodness-of-fit may not be applicable. In this paper, we propose a principled procedure to assess the quality of a synthetic data generator. The procedure is a Kernelised Stein Discrepancy-type test which is based on a non-parametric Stein operator for the synthetic data generator of interest. This operator is estimated from samples which are obtained from the synthetic data generator and hence can be applied even when the model is only implicit. In contrast to classical testing, the sample size from the synthetic data generator can be as large as desired, while the size of the observed data that the generator aims to emulate is fixed. Experimental results on synthetic distributions and trained generative models on synthetic and real datasets illustrate that the method shows improved power performance compared to existing approaches.
[ Hall J ]

Deep neural networks can approximate functions on different types of data, from images to graphs, with varied underlying structure. This underlying structure can be viewed as the geometry of the data manifold. By extending recent advances in the theoretical understanding of neural networks, we study how a randomly initialized neural network with piecewise linear activation splits the data manifold into regions where the neural network behaves as a linear function. We derive bounds on the density of boundary of linear regions and the distance to these boundaries on the data manifold. This leads to insights into the expressivity of randomly initialized deep neural networks on non-Euclidean data sets. We empirically corroborate our theoretical results using a toy supervised learning problem. Our experiments demonstrate that number of linear regions varies across manifolds and the results hold with changing neural network architectures. We further demonstrate how the complexity of linear regions is different on the low dimensional manifold of images as compared to the Euclidean space, using the MetFaces dataset.
[ Hall J ]

Recently, research has increasingly focused on developing efficient neural network architectures. In this work, we explore logic gate networks for machine learning tasks by learning combinations of logic gates. These networks comprise logic gates such as "AND" and "XOR", which allow for very fast execution. The difficulty in learning logic gate networks is that they are conventionally non-differentiable and therefore do not allow training with gradient descent. Thus, to allow for effective training, we propose differentiable logic gate networks, an architecture that combines real-valued logics and a continuously parameterized relaxation of the network. The resulting discretized logic gate networks achieve fast inference speeds, e.g., beyond a million images of MNIST per second on a single CPU core.
[ Hall J ]
Autoencoders exhibit impressive abilities to embed the data manifold into a low-dimensional latent space, making them a staple of representation learning methods. However, without explicit supervision, which is often unavailable, the representation is usually uninterpretable, making analysis and principled progress challenging. We propose a framework, called latent responses, which exploits the locally contractive behavior exhibited by variational autoencoders to explore the learned manifold. More specifically, we develop tools to probe the representation using interventions in the latent space to quantify the relationships between latent variables. We extend the notion of disentanglement to take the learned generative process into account and consequently avoid the limitations of existing metrics that may rely on spurious correlations. Our analyses underscore the importance of studying the causal structure of the representation to improve performance on downstream tasks such as generation, interpolation, and inference of the factors of variation.
[ Hall J ]
Mapping between discrete and continuous distributions is a difficult task and many have had to resort to heuristical approaches. We propose a tessellation-based approach that directly learns quantization boundaries in a continuous space, complete with exact likelihood evaluations. This is done through constructing normalizing flows on convex polytopes parameterized using a simple homeomorphism with an efficient log determinant Jacobian. We explore this approach in two application settings, mapping from discrete to continuous and vice versa. Firstly, a Voronoi dequantization allows automatically learning quantization boundaries in a multidimensional space. The location of boundaries and distances between regions can encode useful structural relations between the quantized discrete values. Secondly, a Voronoi mixture model has near-constant computation cost for likelihood evaluation regardless of the number of mixture components. Empirically, we show improvements over existing methods across a range of structured data modalities.
[ Hall J ]
Generating temporally coherent high fidelity video is an important milestone in generative modeling research. We make progress towards this milestone by proposing a diffusion model for video generation that shows very promising initial results. Our model is a natural extension of the standard image diffusion architecture, and it enables jointly training from image and video data, which we find to reduce the variance of minibatch gradients and speed up optimization. To generate long and higher resolution videos we introduce a new conditional sampling technique for spatial and temporal video extension that performs better than previously proposed methods. We present the first results on a large text-conditioned video generation task, as well as state-of-the-art results on established benchmarks for video prediction and unconditional video generation. Supplementary material is available at https://video-diffusion.github.io/.
[ Hall J ]
Given an input image, and nothing else, our method returns the bounding boxes of objects in the image and phrases that describe the objects. This is achieved within an open world paradigm, in which the objects in the input image may not have been encountered during the training of the localization mechanism. Moreover, training takes place in a weakly supervised setting, where no bounding boxes are provided. To achieve this, our method combines two pre-trained networks: the CLIP image-to-text matching score and the BLIP image captioning tool. Training takes place on COCO images and their captions and is based on CLIP. Then, during inference, BLIP is used to generate a hypothesis regarding various regions of the current image. Our work generalizes weakly supervised segmentation and phrase grounding and is shown empirically to outperform the state of the art in both domains. It also shows very convincing results in the novel task of weakly-supervised open-world purely visual phrase-grounding presented in our work.For example, on the datasets used for benchmarking phrase-grounding, our method results in a very modest degradation in comparison to methods that employ human captions as an additional input.
[ Hall J ]

We propose generative multitask learning (GMTL), a simple and scalable approach to causal machine learning in the multitask setting. Our approach makes a minor change to the conventional multitask inference objective, and improves robustness to target shift. Since GMTL only modifies the inference objective, it can be used with existing multitask learning methods without requiring additional training. The improvement in robustness comes from mitigating unobserved confounders that cause the targets, but not the input. We refer to them as \emph{target-causing confounders}. These confounders induce spurious dependencies between the input and targets. This poses a problem for conventional multitask learning, due to its assumption that the targets are conditionally independent given the input. GMTL mitigates target-causing confounding at inference time, by removing the influence of the joint target distribution, and predicting all targets jointly. This removes the spurious dependencies between the input and targets, where the degree of removal is adjustable via a single hyperparameter. This flexibility is useful for managing the trade-off between in- and out-of-distribution generalization. Our results on the Attributes of People and Taskonomy datasets reflect an improved robustness to target shift across four multitask learning methods.
[ Hall J ]
The success of meta-learning on existing benchmarks is predicated on the assumption that the distribution of meta-training tasks covers meta-testing tasks. Frequent violation of the assumption in applications with either insufficient tasks or a very narrow meta-training task distribution leads to memorization or learner overfitting. Recent solutions have pursued augmentation of meta-training tasks, while it is still an open question to generate both correct and sufficiently imaginary tasks. In this paper, we seek an approach that up-samples meta-training tasks from the task representation via a task up-sampling network. Besides, the resulting approach named Adversarial Task Up-sampling (ATU) suffices to generate tasks that can maximally contribute to the latest meta-learner by maximizing an adversarial loss. On few-shot sine regression and image classification datasets, we empirically validate the marked improvement of ATU over state-of-the-art task augmentation strategies in the meta-testing performance and also the quality of up-sampled tasks.
[ Hall J ]

[ Hall J ]

Deploying deep convolutional neural networks on Internet-of-Things (IoT) devices is challenging due to the limited computational resources, such as limited SRAM memory and Flash storage. Previous works re-design a small network for IoT devices, and then compress the network size by mixed-precision quantization. This two-stage procedure cannot optimize the architecture and the corresponding quantization jointly, leading to sub-optimal tiny deep models. In this work, we propose a one-stage solution that optimizes both jointly and automatically. The key idea of our approach is to cast the joint architecture design and quantization as an Entropy Maximization process. Particularly, our algorithm automatically designs a tiny deep model such that: 1) Its representation capacity measured by entropy is maximized under the given computational budget; 2) Each layer is assigned with a proper quantization precision; 3) The overall design loop can be done on CPU, and no GPU is required. More impressively, our method can directly search high-expressiveness architecture for IoT devices within less than half a CPU hour. Extensive experiments on three widely adopted benchmarks, ImageNet, VWW and WIDER FACE, demonstrate that our method can achieve the state-of-the-art performance in the tiny deep model regime. Code and pre-trained models are available at https://github.com/alibaba/lightweight-neural-architecture-search.
[ Hall J ]

Adversarial training of Deep Neural Networks is known to be significantly more data-hungry when compared to standard training. Furthermore, complex data augmentations such as AutoAugment, which have led to substantial gains in standard training of image classifiers, have not been successful with Adversarial Training. We first explain this contrasting behavior by viewing augmentation during training as a problem of domain generalization, and further propose Diverse Augmentation-based Joint Adversarial Training (DAJAT) to use data augmentations effectively in adversarial training. We aim to handle the conflicting goals of enhancing the diversity of the training dataset and training with data that is close to the test distribution by using a combination of simple and complex augmentations with separate batch normalization layers during training. We further utilize the popular Jensen-Shannon divergence loss to encourage the \emph{joint} learning of the \emph{diverse augmentations}, thereby allowing simple augmentations to guide the learning of complex ones. Lastly, to improve the computational efficiency of the proposed method, we propose and utilize a two-step defense, Ascending Constraint Adversarial Training (ACAT), that uses an increasing epsilon schedule and weight-space smoothing to prevent gradient masking. The proposed method DAJAT achieves substantially better robustness-accuracy trade-off when compared to existing methods on the RobustBench …
[ Hall J ]

Self-supervised models are increasingly prevalent in machine learning (ML) since they reduce the need for expensively labeled data. Because of their versatility in downstream applications, they are increasingly used as a service exposed via public APIs. At the same time, these encoder models are particularly vulnerable to model stealing attacks due to the high dimensionality of vector representations they output. Yet, encoders remain undefended: existing mitigation strategies for stealing attacks focus on supervised learning. We introduce a new dataset inference defense, which uses the private training set of the victim encoder model to attribute its ownership in the event of stealing. The intuition is that the log-likelihood of an encoder's output representations is higher on the victim's training data than on test data if it is stolen from the victim, but not if it is independently trained. We compute this log-likelihood using density estimation models. As part of our evaluation, we also propose measuring the fidelity of stolen encoders and quantifying the effectiveness of the theft detection without involving downstream tasks; instead, we leverage mutual information and distance measurements. Our extensive empirical results in the vision domain demonstrate that dataset inference is a promising direction for defending self-supervised models against …
[ Hall J ]

Sparse training is a popular technique to reduce the overhead of training large models. Although previous work has shown promising results for nonstructured sparse models, it is still unclear whether a sparse model with structural constraints can be trained from scratch to high accuracy. In this work, we study the dynamic sparse training for a class of sparse models with shuffled block structures. Compared to nonstructured models, such fine-grained structured models are more hardware-friendly and can effectively accelerate the training process. We propose an algorithm that keeps adapting the sparse model while maintaining the active parameters in shuffled blocks. We conduct experiments on a variety of networks and datasets and obtain positive results. In particular, on ImageNet, we achieve dense accuracy for ResNet50 and ResNet18 at 0.5 sparsity. On CIFAR10/100, we show that dense accuracy can be recovered at 0.6 sparsity for various models. At higher sparsity, our algorithm can still match the accuracy of nonstructured sparse training in most cases, while reducing the training time by up to 5x due to the fine-grained block structures in the models.
[ Hall J ]

Modern deep neural networks for classification usually jointly learn a backbone for representation and a linear classifier to output the logit of each class. A recent study has shown a phenomenon called neural collapse that the within-class means of features and the classifier vectors converge to the vertices of a simplex equiangular tight frame (ETF) at the terminal phase of training on a balanced dataset. Since the ETF geometric structure maximally separates the pair-wise angles of all classes in the classifier, it is natural to raise the question, why do we spend an effort to learn a classifier when we know its optimal geometric structure? In this paper, we study the potential of learning a neural network for classification with the classifier randomly initialized as an ETF and fixed during training. Our analytical work based on the layer-peeled model indicates that the feature learning with a fixed ETF classifier naturally leads to the neural collapse state even when the dataset is imbalanced among classes. We further show that in this case the cross entropy (CE) loss is not necessary and can be replaced by a simple squared loss that shares the same global optimality but enjoys a better convergence property. …
[ Hall J ]

[ Hall J ]

[ Hall J ]

[ Hall J ]
Off-policy evaluation often refers to two related tasks: estimating the expected return of a policy and estimating its value function (or other functions of interest, such as density ratios). While recent works on marginalized importance sampling (MIS) show that the former can enjoy provable guarantees under realizable function approximation, the latter is only known to be feasible under much stronger assumptions such as prohibitively expressive discriminators. In this work, we provide guarantees for off-policy function estimation under only realizability, by imposing proper regularization on the MIS objectives. Compared to commonly used regularization in MIS, our regularizer is much more flexible and can account for an arbitrary user-specified distribution, under which the learned function will be close to the groundtruth. We provide exact characterization of the optimal dual solution that needs to be realized by the discriminator class, which determines the data-coverage assumption in the case of value-function learning. As another surprising observation, the regularizer can be altered to relax the data-coverage requirement, and completely eliminate it in the ideal case with strong side information.
[ Hall J ]
We study a stochastic bandit problem with a general unknown reward function and a general unknown constraint function. Both functions can be non-linear (even non-convex) and are assumed to lie in a reproducing kernel Hilbert space (RKHS) with a bounded norm. This kernelized bandit setup strictly generalizes standard multi-armed bandits and linear bandits. In contrast to safety-type hard constraints studied in prior works, we consider soft constraints that may be violated in any round as long as the cumulative violations are small, which is motivated by various practical applications. Our ultimate goal is to study how to utilize the nature of soft constraints to attain a finer complexity-regret-constraint trade-off in the kernelized bandit setting. To this end, leveraging primal-dual optimization, we propose a general framework for both algorithm design and performance analysis. This framework builds upon a novel sufficient condition, which not only is satisfied under general exploration strategies, including \emph{upper confidence bound} (UCB), \emph{Thompson sampling} (TS), and new ones based on \emph{random exploration}, but also enables a unified analysis for showing both sublinear regret and sublinear or even zero constraint violation. We demonstrate the superior performance of our proposed algorithms via numerical experiments based on both synthetic and real-world …
[ Hall J ]
Kernel ridge regression (KRR) has recently attracted renewed interest due to its potential for explaining the transient effects, such as double descent, that emerge during neural network training. In this work, we study how the alignment between the target function and the kernel affects the performance of the KRR. We focus on the truncated KRR (TKRR) which utilizes an additional parameter that controls the spectral truncation of the kernel matrix. We show that for polynomial alignment, there is an over-aligned regime, in which TKRR can achieve a faster rate than what is achievable by full KRR. The rate of TKRR can improve all the way to the parametric rate, while that of full KRR is capped at a sub-optimal value. This shows that target alignemnt can be better leveraged by utilizing spectral truncation in kernel methods. We also consider the bandlimited alignment setting and show that the regularization surface of TKRR can exhibit transient effects including multiple descent and non-monotonic behavior. Our results show that there is a strong and quantifable relation between the shape of the alignment spectrum and the generalization performance of kernel methods, both in terms of rates and in finite samples.
[ Hall J ]
Local optimization presents a promising approach to expensive, high-dimensional black-box optimization by sidestepping the need to globally explore the search space. For objective functions whose gradient cannot be evaluated directly, Bayesian optimization offers one solution -- we construct a probabilistic model of the objective, design a policy to learn about the gradient at the current location, and use the resulting information to navigate the objective landscape. Previous work has realized this scheme by minimizing the variance in the estimate of the gradient, then moving in the direction of the expected gradient. In this paper, we re-examine and refine this approach. We demonstrate that, surprisingly, the expected value of the gradient is not always the direction maximizing the probability of descent, and in fact, these directions may be nearly orthogonal. This observation then inspires an elegant optimization scheme seeking to maximize the probability of descent while moving in the direction of most-probable descent. Experiments on both synthetic and real-world objectives show that our method outperforms previous realizations of this optimization scheme and is competitive against other, significantly more complicated baselines.
[ Hall J ]

While deep neural networks can attain good accuracy on in-distribution test points, many applications require robustness even in the face of unexpected perturbations in the input, changes in the domain, or other sources of distribution shift. We study the problem of test time robustification, i.e., using the test input to improve model robustness. Recent prior works have proposed methods for test time adaptation, however, they each introduce additional assumptions, such as access to multiple test points, that prevent widespread adoption. In this work, we aim to study and devise methods that make no assumptions about the model training process and are broadly applicable at test time. We propose a simple approach that can be used in any test setting where the model is probabilistic and adaptable: when presented with a test example, perform different data augmentations on the data point, and then adapt (all of) the model parameters by minimizing the entropy of the model's average, or marginal, output distribution across the augmentations. Intuitively, this objective encourages the model to make the same prediction across different augmentations, thus enforcing the invariances encoded in these augmentations, while also maintaining confidence in its predictions. In our experiments, we evaluate two baseline ResNet …
[ Hall J ]

Planning enables autonomous agents to solve complex decision-making problems by evaluating predictions of the future. However, classical planning algorithms often become infeasible in real-world settings where state spaces are high-dimensional and transition dynamics unknown. The idea behind latent planning is to simplify the decision-making task by mapping it to a lower-dimensional embedding space. Common latent planning strategies are based on trajectory optimization techniques such as shooting or collocation, which are prone to failure in long-horizon and highly non-convex settings. In this work, we study long-horizon goal-reaching scenarios from visual inputs and formulate latent planning as an explorative tree search. Inspired by classical sampling-based motion planning algorithms, we design a method which iteratively grows and optimizes a tree representation of visited areas of the latent space. To encourage fast exploration, the sampling of new states is biased towards sparsely represented regions within the estimated data support. Our method, called Expansive Latent Space Trees (ELAST), relies on self-supervised training via contrastive learning to obtain (a) a latent state representation and (b) a latent transition density model. We embed ELAST into a model-predictive control scheme and demonstrate significant performance improvements compared to existing baselines given challenging visual control tasks in simulation, including the …
[ Hall J ]

Bipartite graphs can be used to model a wide variety of dyadic information such as user-rating, document-term, and gene-disorder pairs. Biclustering is an extension of clustering to the underlying bipartite graph induced from this kind of data. In this paper, we leverage optimal transport (OT) which has gained momentum in the machine learning community to propose a novel and scalable biclustering model that generalizes several classical biclustering approaches. We perform extensive experimentation to show the validity of our approach compared to other OT biclustering algorithms along both dimensions of the dyadic datasets.
[ Hall J ]

We show that deep networks trained to satisfy demographic parity often do so through a form of race or gender awareness, and that the more we force a network to be fair, the more accurately we can recover race or gender from the internal state of the network. Based on this observation, we investigate an alternative fairness approach: we add a second classification head to the network to explicitly predict the protected attribute (such as race or gender) alongside the original task. After training the two-headed network, we enforce demographic parity by merging the two heads, creating a network with the same architecture as the original network. We establish a close relationship between existing approaches and our approach by showing (1) that the decisions of a fair classifier are well-approximated by our approach, and (2) that an unfair and optimally accurate classifier can be recovered from a fair classifier and our second head predicting the protected attribute. We use our explicit formulation to argue that the existing fairness approaches, just as ours, demonstrate disparate treatment and that they are likely to be unlawful in a wide range of scenarios under US law.
[ Hall J ]

Adversarial robustness is a key desirable property of neural networks. It has been empirically shown to be affected by their sizes, with larger networks being typically more robust. Recently, \citet{bubeck2021universal} proved a lower bound on the Lipschitz constant of functions that fit the training data in terms of their number of parameters. This raises an interesting open question, do---and can---functions with more parameters, but not necessarily more computational cost, have better robustness? We study this question for sparse Mixture of Expert models (MoEs), that make it possible to scale up the model size for a roughly constant computational cost. We theoretically show that under certain conditions on the routing and the structure of the data, MoEs can have significantly smaller Lipschitz constants than their dense counterparts. The robustness of MoEs can suffer when the highest weighted experts for an input implement sufficiently different functions. We next empirically evaluate the robustness of MoEs on ImageNet using adversarial attacks and show they are indeed more robust than dense models with the same computational cost. We make key observations showing the robustness of MoEs to the choice of experts, highlighting the redundancy of experts in models trained in practice.
[ Hall J ]

Distributionally robust optimization (DRO) has shown a lot of promise in providing robustness in learning as well as sample-based optimization problems. We endeavor to provide DRO solutions for a class of sum of fractionals, non-convex optimization which is used for decision making in prominent areas such as facility location and security games. In contrast to previous work, we find it more tractable to optimize the equivalent variance regularized form of DRO rather than the minimax form. We transform the variance regularized form to a mixed-integer second-order cone program (MISOCP), which, while guaranteeing global optimality, does not scale enough to solve problems with real-world datasets. We further propose two abstraction approaches based on clustering and stratified sampling to increase scalability, which we then use for real-world datasets. Importantly, we provide global optimality guarantees for our approach and show experimentally that our solution quality is better than the locally optimal ones achieved by state-of-the-art gradient-based methods. We experimentally compare our different approaches and baselines and reveal nuanced properties of a DRO solution.
[ Hall J ]
[ Hall J ]

Policy Optimization (PO) algorithms have been proven particularly suited to handle the high-dimensionality of real-world continuous control tasks. In this context, Trust Region Policy Optimization methods represent a popular approach to stabilize the policy updates. These usually rely on the Kullback-Leibler (KL) divergence to limit the change in the policy. The Wasserstein distance represents a natural alternative, in place of the KL divergence, to define trust regions or to regularize the objective function. However, state-of-the-art works either resort to its approximations or do not provide an algorithm for continuous state-action spaces, reducing the applicability of the method.In this paper, we explore optimal transport discrepancies (which include the Wasserstein distance) to define trust regions, and we propose a novel algorithm - Optimal Transport Trust Region Policy Optimization (OT-TRPO) - for continuous state-action spaces. We circumvent the infinite-dimensional optimization problem for PO by providing a one-dimensional dual reformulation for which strong duality holds.We then analytically derive the optimal policy update given the solution of the dual problem. This way, we bypass the computation of optimal transport costs and of optimal transport maps, which we implicitly characterize by solving the dual formulation.Finally, we provide an experimental evaluation of our approach across various control …
[ Hall J ]
We consider the problem of learning from observation (LfO), in which the agent aims to mimic the expert's behavior from the state-only demonstrations by experts. We additionally assume that the agent cannot interact with the environment but has access to the action-labeled transition data collected by some agents with unknown qualities. This offline setting for LfO is appealing in many real-world scenarios where the ground-truth expert actions are inaccessible and the arbitrary environment interactions are costly or risky. In this paper, we present LobsDICE, an offline LfO algorithm that learns to imitate the expert policy via optimization in the space of stationary distributions. Our algorithm solves a single convex minimization problem, which minimizes the divergence between the two state-transition distributions induced by the expert and the agent policy. Through an extensive set of offline LfO tasks, we show that LobsDICE outperforms strong baseline methods.
[ Hall J ]

Bilevel optimization has been shown to be a powerful framework for formulating multi-task machine learning problems, e.g., reinforcement learning (RL) and meta-learning, where the decision variables are coupled in both levels of the minimization problems. In practice, the learning tasks would be located at different computing resource environments, and thus there is a need for deploying a decentralized training framework to implement multi-agent and multi-task learning. We develop a stochastic linearized augmented Lagrangian method (SLAM) for solving general nonconvex bilevel optimization problems over a graph, where both upper and lower optimization variables are able to achieve a consensus. We also establish that the theoretical convergence rate of the proposed SLAM to the Karush-Kuhn-Tucker (KKT) points of this class of problems is on the same order as the one achieved by the classical distributed stochastic gradient descent for only single-level nonconvex minimization problems. Numerical results tested on multi-agent RL problems showcase the superiority of SLAM compared with the benchmarks.
[ Hall J ]

We propose a framework for online meta-optimization of parameters that govern optimization, called Amortized Proximal Optimization (APO). We first interpret various existing neural network optimizers as approximate stochastic proximal point methods which trade off the current-batch loss with proximity terms in both function space and weight space. The idea behind APO is to amortize the minimization of the proximal point objective by meta-learning the parameters of an update rule. We show how APO can be used to adapt a learning rate or a structured preconditioning matrix. Under appropriate assumptions, APO can recover existing optimizers such as natural gradient descent and KFAC. It enjoys low computational overhead and avoids expensive and numerically sensitive operations required by some second-order optimizers, such as matrix inverses. We empirically test APO for online adaptation of learning rates and structured preconditioning matrices for regression, image reconstruction, image classification, and natural language translation tasks. Empirically, the learning rate schedules found by APO generally outperform optimal fixed learning rates and are competitive with manually tuned decay schedules. Using APO to adapt a structured preconditioning matrix generally results in optimization performance competitive with second-order methods. Moreover, the absence of matrix inversion provides numerical stability, making it effective for low-precision …
[ Hall J ]
In this work we propose a batch Bayesian optimization method for combinatorial problems on permutations, which is well suited for expensive-to-evaluate objectives. We first introduce LAW, an efficient batch acquisition method based on determinantal point processes using the acquisition weighted kernel. Relying on multiple parallel evaluations, LAW enables accelerated search on combinatorial spaces. We then apply the framework to permutation problems, which have so far received little attention in the Bayesian Optimization literature, despite their practical importance. We call this method LAW2ORDER. On the theoretical front, we prove that LAW2ORDER has vanishing simple regret by showing that the batch cumulative regret is sublinear. Empirically, we assess the method on several standard combinatorial problems involving permutations such as quadratic assignment, flowshop scheduling and the traveling salesman, as well as on a structure learning task.
[ Hall J ]

Recurrent neural networks (RNNs) are wide-spread machine learning tools for modeling sequential and time series data. They are notoriously hard to train because their loss gradients backpropagated in time tend to saturate or diverge during training. This is known as the exploding and vanishing gradient problem. Previous solutions to this issue either built on rather complicated, purpose-engineered architectures with gated memory buffers, or - more recently - imposed constraints that ensure convergence to a fixed point or restrict (the eigenspectrum of) the recurrence matrix. Such constraints, however, convey severe limitations on the expressivity of the RNN. Essential intrinsic dynamics such as multistability or chaos are disabled. This is inherently at disaccord with the chaotic nature of many, if not most, time series encountered in nature and society. It is particularly problematic in scientific applications where one aims to reconstruct the underlying dynamical system. Here we offer a comprehensive theoretical treatment of this problem by relating the loss gradients during RNN training to the Lyapunov spectrum of RNN-generated orbits. We mathematically prove that RNNs producing stable equilibrium or cyclic behavior have bounded gradients, whereas the gradients of RNNs with chaotic dynamics always diverge. Based on these analyses and insights we suggest …
[ Hall J ]

We present a new method for scaling automatic configuration of computer networks. The key idea is to relax the computationally hard search problem of finding a configuration that satisfies a given specification into an approximate objective amenable to learning-based techniques. Based on this idea, we train a neural algorithmic model which learns to generate configurations likely to (fully or partially) satisfy a given specification under existing routing protocols. By relaxing the rigid satisfaction guarantees, our approach (i) enables greater flexibility: it is protocol-agnostic, enables cross-protocol reasoning, and does not depend on hardcoded rules; and (ii) finds configurations for much larger computer networks than previously possible. Our learned synthesizer is up to 490x faster than state-of-the-art SMT-based methods, while producing configurations which on average satisfy more than 93% of the provided requirements.
[ Hall J ]
Knowledge-intensive language tasks require NLP systems to both provide the correct answer and retrieve supporting evidence for it in a given corpus. Autoregressive language models are emerging as the de-facto standard for generating answers, with newer and more powerful systems emerging at an astonishing pace. In this paper we argue that all this (and future) progress can be directly applied to the retrieval problem with minimal intervention to the models' architecture. Previous work has explored ways to partition the search space into hierarchical structures and retrieve documents by autoregressively generating their unique identifier. In this work we propose an alternative that doesn't force any structure in the search space: using all ngrams in a passage as its possible identifiers. This setup allows us to use an autoregressive model to generate and score distinctive ngrams, that are then mapped to full passages through an efficient data structure. Empirically, we show this not only outperforms prior autoregressive approaches but also leads to an average improvement of at least 10 points over more established retrieval solutions for passage-level retrieval on the KILT benchmark, establishing new state-of-the-art downstream performance on some datasets, while using a considerably lighter memory footprint than competing systems. Code available …
[ Hall J ]

In domains where sample sizes are limited, efficient learning algorithms are critical. Learning using privileged information (LuPI) offers increased sample efficiency by allowing prediction models access to auxiliary information at training time which is unavailable when the models are used. In recent work, it was shown that for prediction in linear-Gaussian dynamical systems, a LuPI learner with access to intermediate time series data is never worse and often better in expectation than any unbiased classical learner. We provide new insights into this analysis and generalize it to nonlinear prediction tasks in latent dynamical systems, extending theoretical guarantees to the case where the map connecting latent variables and observations is known up to a linear transform. In addition, we propose algorithms based on random features and representation learning for the case when this map is unknown. A suite of empirical results confirm theoretical findings and show the potential of using privileged time-series information in nonlinear prediction.
[ Hall J ]

Decoders built on Gaussian processes (GPs) are enticing due to the marginalisation over the non-linear function space. Such models (also known as GP-LVMs) are often expensive and notoriously difficult to train in practice, but can be scaled using variational inference and inducing points. In this paper, we revisit active set approximations. We develop a new stochastic estimate of the log-marginal likelihood based on recently discovered links to cross-validation, and we propose a computationally efficient approximation thereof. We demonstrate that the resulting stochastic active sets (SAS) approximation significantly improves the robustness of GP decoder training, while reducing computational cost. The SAS-GP obtains more structure in the latent space, scales to many datapoints, and learns better representations than variational autoencoders, which is rarely the case for GP decoders.
[ Hall J ]

Reliable predictive uncertainty estimation plays an important role in enabling the deployment of neural networks to safety-critical settings. A popular approach for estimating the predictive uncertainty of neural networks is to define a prior distribution over the network parameters, infer an approximate posterior distribution, and use it to make stochastic predictions. However, explicit inference over neural network parameters makes it difficult to incorporate meaningful prior information about the data-generating process into the model. In this paper, we pursue an alternative approach. Recognizing that the primary object of interest in most settings is the distribution over functions induced by the posterior distribution over neural network parameters, we frame Bayesian inference in neural networks explicitly as inferring a posterior distribution over functions and propose a scalable function-space variational inference method that allows incorporating prior information and results in reliable predictive uncertainty estimates. We show that the proposed method leads to state-of-the-art uncertainty estimation and predictive performance on a range of prediction tasks and demonstrate that it performs well on a challenging safety-critical medical diagnosis task in which reliable uncertainty estimation is essential.
[ Hall J ]

Recurrent neural networks (RNNs) are widely used throughout neuroscience as models of local neural activity. Many properties of single RNNs are well characterized theoretically, but experimental neuroscience has moved in the direction of studying multiple interacting areas, and RNN theory needs to be likewise extended. We take a constructive approach towards this problem, leveraging tools from nonlinear control theory and machine learning to characterize when combinations of stable RNNs will themselves be stable. Importantly, we derive conditions which allow for massive feedback connections between interacting RNNs. We parameterize these conditions for easy optimization using gradient-based techniques, and show that stability-constrained "networks of networks" can perform well on challenging sequential-processing benchmark tasks. Altogether, our results provide a principled approach towards understanding distributed, modular function in the brain.
[ Hall J ]

A growing body of research runs human subject evaluations to study whether providing users with explanations of machine learning models can help them with practical real-world use cases. However, running user studies is challenging and costly, and consequently each study typically only evaluates a limited number of different settings, e.g., studies often only evaluate a few arbitrarily selected model explanation methods. To address these challenges and aid user study design, we introduce Simulated Evaluations (SimEvals). SimEvals involve training algorithmic agents that take as input the information content (such as model explanations) that would be presented to the user, to predict answers to the use case of interest. The algorithmic agent's test set accuracy provides a measure of the predictiveness of the information content for the downstream use case. We run a comprehensive evaluation on three real-world use cases (forward simulation, model debugging, and counterfactual reasoning) to demonstrate that SimEvals can effectively identify which explanation methods will help humans for each use case. These results provide evidence that \simevals{} can be used to efficiently screen an important set of user study design decisions, e.g., selecting which explanations should be presented to the user, before running a potentially costly user study.
[ Hall J ]
[ Hall J ]

We show how transformers can be used to vastly simplify neural video compression. Previous methods have been relying on an increasing number of architectural biases and priors, including motion prediction and warping operations, resulting in complex models. Instead, we independently map input frames to representations and use a transformer to model their dependencies, letting it predict the distribution of future representations given the past. The resulting video compression transformer outperforms previous methods on standard video compression data sets. Experiments on synthetic data show that our model learns to handle complex motion patterns such as panning, blurring and fading purely from data. Our approach is easy to implement, and we release code to facilitate future research.
[ Hall J ]

We introduce a new intrinsic measure of local curvature on point-cloud data called diffusion curvature. Our measure uses the framework of diffusion maps, including the data diffusion operator, to structure point cloud data and define local curvature based on the laziness of a random walk starting at a point or region of the data. We show that this laziness directly relates to volume comparison results from Riemannian geometry. We then extend this scalar curvature notion to an entire quadratic form using neural network estimations based on the diffusion map of point-cloud data. We show applications of both estimations on toy data, single-cell data, and on estimating local Hessian matrices of neural network loss landscapes.
[ Hall J ]
Decision trees are well-known due to their ease of interpretability.To improve accuracy, we need to grow deep trees or ensembles of trees.These are hard to interpret, offsetting their original benefits. Shapley values have recently become a popular way to explain the predictions of tree-based machine learning models. It provides a linear weighting to features independent of the tree structure. The rise in popularity is mainly due to TreeShap, which solves a general exponential complexity problem in polynomial time. Following extensive adoption in the industry, more efficient algorithms are required. This paper presents a more efficient and straightforward algorithm: Linear TreeShap.Like TreeShap, Linear TreeShap is exact and requires the same amount of memory.
[ Hall J ]

Structured kernel interpolation (SKI) accelerates Gaussian processes (GP) inference by interpolating the kernel covariance function using a dense grid of inducing points, whose corresponding kernel matrix is highly structured and thus amenable to fast linear algebra. Unfortunately, SKI scales poorly in the dimension of the input points, since the dense grid size grows exponentially with the dimension. To mitigate this issue, we propose the use of sparse grids within the SKI framework. These grids enable accurate interpolation, but with a number of points growing more slowly with dimension. We contribute a novel nearly linear time matrix-vector multiplication algorithm for the sparse grid kernel matrix. We also describe how sparse grids can be combined with an efficient interpolation scheme based on simplicial complexes. With these modifications, we demonstrate that SKI can be scaled to higher dimensions while maintaining accuracy, for both synthetic and real datasets.
[ Hall J ]
Emphatic algorithms have shown great promise in stabilizing and improving reinforcement learning by selectively emphasizing the update rule. Although the emphasis fundamentally depends on an interest function which defines the intrinsic importance of each state, most approaches simply adopt a uniform interest over all states (except where a hand-designed interest is possible based on domain knowledge). In this paper, we investigate adaptive methods that allow the interest function to dynamically vary over states and iterations. In particular, we leverage meta-gradients to automatically discover online an interest function that would accelerate the agent’s learning process. Empirical evaluations on a wide range of environments show that adapting the interest is key to provide significant gains. Qualitative analysis indicates that the learned interest function emphasizes states of particular importance, such as bottlenecks, which can be especially useful in a transfer learning setting.
[ Hall J ]
We study Reinforcement Learning for partially observable systems using function approximation. We propose a new PO-bilinear framework, that is general enough to include models such as undercomplete tabular Partially Observable Markov Decision Processes (POMDPs), Linear Quadratic Gaussian (LQG), Predictive State Representations (PSRs), as well as a newly introduced model Hilbert Space Embeddings of POMDPs. Under this framework, we propose an actor-critic style algorithm that is capable to performing agnostic policy learning. Given a policy class that consists of memory based policies (i.e., policy that looks at a fixed-length window of recent observations), and a value function class that consists of functions taking both memory and future observations as inputs, our algorithm learns to compete against the best memory-based policy among the policy class. For certain examples such as undercomplete POMDPs and LQGs, by leveraging their special properties, our algorithm is even capable of competing against the globally optimal policy without paying an exponential dependence on the horizon.
[ Hall J ]
With deep neural network based solution more readily being incorporated in real-world applications, it has been pressing requirement that predictions by such models, especially in safety-critical environments, be highly accurate and well-calibrated. Although some techniques addressing DNN calibration have been proposed, they are only limited to visual classification applications and in-domain predictions. Unfortunately, very little to no attention is paid towards addressing calibration of DNN-based visual object detectors, that occupy similar space and importance in many decision making systems as their visual classification counterparts. In this work, we study the calibration of DNN-based object detection models, particularly under domain shift. To this end, we first propose a new, plug-and-play, train-time calibration loss for object detection (coined as TCD). It can be used with various application-specific loss functions as an auxiliary loss function to improve detection calibration. Second, we devise a new implicit technique for improving calibration in self-training based domain adaptive detectors, featuring a new uncertainty quantification mechanism for object detection. We demonstrate TCD is capable of enhancing calibration with notable margins (1) across different DNN-based object detection paradigms both in in-domain and out-of-domain predictions, and (2) in different domain-adaptive detectors across challenging adaptation scenarios. Finally, we empirically show that …
[ Hall J ]
Modern multi-agent reinforcement learning frameworks rely on centralized training and reward shaping to perform well. However, centralized training and dense rewards are not readily available in the real world. Current multi-agent algorithms struggle to learn in the alternative setup of decentralized training or sparse rewards. To address these issues, we propose a self-supervised intrinsic reward \textit{ELIGN - expectation alignment - } inspired by the self-organization principle in Zoology. Similar to how animals collaborate in a decentralized manner with those in their vicinity, agents trained with expectation alignment learn behaviors that match their neighbors' expectations. This allows the agents to learn collaborative behaviors without any external reward or centralized training. We demonstrate the efficacy of our approach across 6 tasks in the multi-agent particle and the complex Google Research football environments, comparing ELIGN to sparse and curiosity-based intrinsic rewards. When the number of agents increases, ELIGN scales well in all multi-agent tasks except for one where agents have different capabilities. We show that agent coordination improves through expectation alignment because agents learn to divide tasks amongst themselves, break coordination symmetries, and confuse adversaries. These results identify tasks where expectation alignment is a more useful strategy than curiosity-driven exploration for multi-agent coordination, …
[ Hall J ]

An accurate model of the environment and the dynamic agents acting in it offers great potential for improving motion planning. We present MILE: a Model-based Imitation LEarning approach to jointly learn a model of the world and a policy for autonomous driving. Our method leverages 3D geometry as an inductive bias and learns a highly compact latent space directly from high-resolution videos of expert demonstrations. Our model is trained on an offline corpus of urban driving data, without any online interaction with the environment. MILE improves upon prior state-of-the-art by 31% in driving score on the CARLA simulator when deployed in a completely new town and new weather conditions. Our model can predict diverse and plausible states and actions, that can be interpretably decoded to bird's-eye view semantic segmentation. Further, we demonstrate that it can execute complex driving manoeuvres from plans entirely predicted in imagination. Our approach is the first camera-only method that models static scene, dynamic scene, and ego-behaviour in an urban driving environment. The code and model weights are available at https://github.com/wayveai/mile.
[ Hall J ]
Prediction failures of machine learning models often arise from deficiencies in training data, such as incorrect labels, outliers, and selection biases. However, such data points that are responsible for a given failure mode are generally not known a priori, let alone a mechanism for repairing the failure. This work draws on the Bayesian view of continual learning, and develops a generic framework for both, identifying training examples which have given rise to the target failure, and fixing the model through erasing information about them. This framework naturally allows leveraging recent advances in continual learning to this new problem of model repairment, while subsuming the existing works on influence functions and data deletion as specific instances. Experimentally, the proposed approach outperforms the baselines for both identification of detrimental training data and fixing model failures in a generalisable manner.
[ Hall J ]

Deep Reinforcement Learning has demonstrated the potential of neural networks tuned with gradient descent for solving complex tasks in well-delimited environments. However, these neural systems are slow learners producing specialized agents with no mechanism to continue learning beyond their training curriculum. On the contrary, biological synaptic plasticity is persistent and manifold, and has been hypothesized to play a key role in executive functions such as working memory and cognitive flexibility, potentially supporting more efficient and generic learning abilities. Inspired by this, we propose to build networks with dynamic weights, able to continually perform self-reflexive modification as a function of their current synaptic state and action-reward feedback, rather than a fixed network configuration. The resulting model, MetODS (for Meta-Optimized Dynamical Synapses) is a broadly applicable meta-reinforcement learning system able to learn efficient and powerful control rules in the agent policy space. A single layer with dynamic synapses can perform one-shot learning, generalize navigation principles to unseen environments and demonstrates a strong ability to learn adaptive motor policies, comparing favorably with previous meta-reinforcement learning approaches.
[ Hall J ]
Does prompting a large language model (LLM) like GPT-3 with explanations improve in-context learning? We study this question on two NLP tasks that involve reasoning over text, namely question answering and natural language inference. We test the performance of four LLMs on three textual reasoning datasets using prompts that include explanations in multiple different styles. For these tasks, we find that including explanations in the prompts for OPT, GPT-3 (davinci), and InstructGPT (text-davinci-001) only yields small to moderate accuracy improvements over standard few-show learning. However, text-davinci-002 is able to benefit more substantially.We further show that explanations generated by the LLMs may not entail the models’ predictions nor be factually grounded in the input, even on simple tasks with extractive explanations. However, these flawed explanations can still be useful as a way to verify LLMs’ predictions post-hoc. Through analysis in our three settings, we show that explanations judged by humans to be good—logically consistent with the input and the prediction—more likely cooccur with accurate predictions. Following these observations, we train calibrators using automatically extracted scores that assess the reliability of explanations, allowing us to improve performance post-hoc across all of our datasets.
[ Hall J ]

Neural representations are popular for representing shapes as they can be used for data cleanup, model completion, shape editing, and shape synthesis. Current neural representations can be categorized as either overfitting to a single object instance, or representing a collection of objects. However, neither allows accurate editing of neural scene representations: on the one hand, methods that overfit objects achieve highly accurate reconstructions but do not support editing, as they do not generalize to unseen object configurations; on the other hand, methods that represent a family of objects with variations do generalize but produce approximate reconstructions. We propose NeuForm to combine the advantages of both overfitted and generalizable representations by adaptively overfitting a generalizable representation to regions where reliable data is available, while using the generalizable representation everywhere else. We achieve this with a carefully designed architecture and an approach that blends the network weights of the two representations. We demonstrate edits that successfully reconfigure parts of human-made shapes, such as chairs, tables, and lamps, while preserving the accuracy of an overfitted shape representation. We compare with two state-of-the-art competitors and demonstrate clear improvements in terms of plausibility and fidelity of the resultant edits.
[ Hall J ]

Meaningful uncertainty quantification in computer vision requires reasoning about semantic information---say, the hair color of the person in a photo or the location of a car on the street. To this end, recent breakthroughs in generative modeling allow us to represent semantic information in disentangled latent spaces, but providing uncertainties on the semantic latent variables has remained challenging. In this work, we provide principled uncertainty intervals that are guaranteed to contain the true semantic factors for any underlying generative model. The method does the following: (1) it uses quantile regression to output a heuristic uncertainty interval for each element in the latent space (2) calibrates these uncertainties such that they contain the true value of the latent for a new, unseen input. The endpoints of these calibrated intervals can then be propagated through the generator to produce interpretable uncertainty visualizations for each semantic factor. This technique reliably communicates semantically meaningful, principled, and instance-adaptive uncertainty in inverse problems like image super-resolution and image completion. Project page: https://swamiviv.github.io/semanticuncertaintyintervals/
[ Hall J ]

Recent advances have extended the scope of Bayesian optimization (BO) to expensive-to-evaluate black-box functions with dozens of dimensions, aspiring to unlock impactful applications, for example, in the life sciences, neural architecture search, and robotics. However, a closer examination reveals that the state-of-the-art methods for high-dimensional Bayesian optimization (HDBO) suffer from degrading performance as the number of dimensions increases, or even risk failure if certain unverifiable assumptions are not met. This paper proposes BAxUS that leverages a novel family of nested random subspaces to adapt the space it optimizes over to the problem. This ensures high performance while removing the risk of failure, which we assert via theoretical guarantees. A comprehensive evaluation demonstrates that BAxUS achieves better results than the state-of-the-art methods for a broad set of applications.
[ Hall J ]
[ Hall J ]

The \FedProx~algorithm is a simple yet powerful distributed proximal point optimization method widely used for federated learning (FL) over heterogeneous data. Despite its popularity and remarkable success witnessed in practice, the theoretical understanding of FedProx is largely underinvestigated: the appealing convergence behavior of \FedProx~is so far characterized under certain non-standard and unrealistic dissimilarity assumptions of local functions, and the results are limited to smooth optimization problems. In order to remedy these deficiencies, we develop a novel local dissimilarity invariant convergence theory for \FedProx~and its minibatch stochastic extension through the lens of algorithmic stability. As a result, we contribute to derive several new and deeper insights into \FedProx~for non-convex federated optimization including: 1) convergence guarantees invariant to certain stringent local dissimilarity conditions; 2) convergence guarantees for non-smooth FL problems; and 3) linear speedup with respect to size of minibatch and number of sampled devices. Our theory for the first time reveals that local dissimilarity and smoothness are not must-have for \FedProx~to get favorable complexity bounds.
[ Hall J ]

Many deep learning models involve optimizing multiple objectives. Since objectives are often conflicting, we aim to get diverse and representative trade-off solutions among these objectives. Gradient-based multi-objective optimization (MOO) algorithms using reference vectors have shown promising performance. However, they may still produce undesirable solutions due to mismatch between the pre-specified reference vectors and the problem's underlying Pareto front. In this paper, we propose a novel gradient-based MOO algorithm with adaptive reference vectors. We formulate reference vector adaption as a bilevel optimization problem, and solve it with an efficient solver. Theoretical convergence analysis is also provided. Experiments on an extensive set of learning scenarios demonstrate the superiority of the proposed algorithm over the state-of-the-art.
[ Hall J ]

We study the multi-step off-policy learning approach to distributional RL. Despite the apparent similarity between value-based RL and distributional RL, our study reveals intriguing and fundamental differences between the two cases in the multi-step setting. We identify a novel notion of path-dependent distributional TD error, which is indispensable for principled multi-step distributional RL. The distinction from the value-based case bears important implications on concepts such as backward-view algorithms. Our work provides the first theoretical guarantees on multi-step off-policy distributional RL algorithms, including results that apply to the small number of existing approaches to multi-step distributional RL. In addition, we derive a novel algorithm, Quantile Regression-Retrace, which leads to a deep RL agent QR-DQN-Retrace that shows empirical improvements over QR-DQN on the Atari-57 benchmark. Collectively, we shed light on how unique challenges in multi-step distributional RL can be addressed both in theory and practice.
[ Hall J ]
We study envy-free policy teaching. A number of agents independently explore a common Markov decision process (MDP), but each with their own reward function and discounting rate. A teacher wants to teach a target policy to this diverse group of agents, by means of modifying the agents' reward functions: providing additional bonuses to certain actions, or penalizing them. When personalized reward modification programs are used, an important question is how to design the programs so that the agents think they are treated fairly. We adopt the notion of envy-freeness (EF) from the literature on fair division to formalize this problem and investigate several fundamental questions about the existence of EF solutions in our setting, the computation of cost-minimizing solutions, as well as the price of fairness (PoF), which measures the increase of cost due to the consideration of fairness. We show that 1) an EF solution may not exist if penalties are not allowed in the modifications, but otherwise always exists. 2) Computing a cost-minimizing EF solution can be formulated as convex optimization and hence solved efficiently. 3) The PoF increases but at most quadratically with the geometric sum of the discount factor, and at most linearly with the size …
[ Hall J ]

[ Hall J ]

Via an overparameterized linear model with Gaussian features, we provide conditions for good generalization for multiclass classification of minimum-norm interpolating solutions in an asymptotic setting where both the number of underlying features and the number of classes scale with the number of training points. The survival/contamination analysis framework for understanding the behavior of overparameterized learning problems is adapted to this setting, revealing that multiclass classification qualitatively behaves like binary classification in that, as long as there are not too many classes (made precise in the paper), it is possible to generalize well even in settings where regression tasks would not generalize. Besides various technical challenges, it turns out that the key difference from the binary classification setting is that there are relatively fewer training examples of each class in the multiclass setting as the number of classes increases, making the multiclass problem ``harder'' than the binary one.
[ Hall J ]
Inverse problems are paramount in Science and Engineering. In this paper, we consider the setup of Statistical Inverse Problem (SIP) and demonstrate how Stochastic Gradient Descent (SGD) algorithms can be used to solve linear SIP. We provide consistency and finite sample bounds for the excess risk. We also propose a modification for the SGD algorithm where we leverage machine learning methods to smooth the stochastic gradients and improve empirical performance. We exemplify the algorithm in a setting of great interest nowadays: the Functional Linear Regression model. In this case we consider a synthetic data example and a classification problem for predicting the main activity of bitcoin addresses based on their balances.
[ Hall J ]
[ Hall J ]

[ Hall J ]

[ Hall J ]

[ Hall J ]

[ Hall J ]
[ Hall J ]

[ Hall J ]

[ Hall J ]

A recent trend in generative modeling is building 3D-aware generators from 2D image collections. To induce the 3D bias, such models typically rely on volumetric rendering, which is expensive to employ at high resolutions. Over the past months, more than ten works have addressed this scaling issue by training a separate 2D decoder to upsample a low-resolution image (or a feature tensor) produced from a pure 3D generator. But this solution comes at a cost: not only does it break multi-view consistency (i.e., shape and texture change when the camera moves), but it also learns geometry in low fidelity. In this work, we show that obtaining a high-resolution 3D generator with SotA image quality is possible by following a completely different route of simply training the model patch-wise. We revisit and improve this optimization scheme in two ways. First, we design a location- and scale-aware discriminator to work on patches of different proportions and spatial positions. Second, we modify the patch sampling strategy based on an annealed beta distribution to stabilize training and accelerate the convergence. The resulting model, named EpiGRAF, is an efficient, high-resolution, pure 3D generator, and we test it on four datasets (two introduced in this work) …
[ Hall J ]
[ Hall J ]

Large language models have been widely adopted but require significant GPU memory for inference. We develop a procedure for Int8 matrix multiplication for feed-forward and attention projection layers in transformers, which cut the memory needed for inference by half while retaining full precision performance. With our method, a 175B parameter 16/32-bit checkpoint can be loaded, converted to Int8, and used immediately without performance degradation. This is made possible by understanding and working around properties of highly systematic emergent features in transformer language models that dominate attention and transformer predictive performance. To cope with these features, we develop a two-part quantization procedure, {\bf LLM.int8()}. We first use vector-wise quantization with separate normalization constants for each inner product in the matrix multiplication, to quantize most of the features. However, for the emergent outliers, we also include a new mixed-precision decomposition scheme, which isolates the outlier feature dimensions into a 16-bit matrix multiplication while still more than 99.9\% of values are multiplied in 8-bit. Using LLM.int8(), we show empirically it is possible to perform inference in LLMs with up to 175B parameters without any performance degradation. This result makes such models much more accessible, for example making it possible to use OPT-175B/BLOOM on …
[ Hall J ]
Modeling neural population dynamics underlying noisy single-trial spiking activities is essential for relating neural observation and behavior. A recent non-recurrent method - Neural Data Transformers (NDT) - has shown great success in capturing neural dynamics with low inference latency without an explicit dynamical model. However, NDT focuses on modeling the temporal evolution of the population activity while neglecting the rich covariation between individual neurons. In this paper we introduce SpatioTemporal Neural Data Transformer (STNDT), an NDT-based architecture that explicitly models responses of individual neurons in the population across time and space to uncover their underlying firing rates. In addition, we propose a contrastive learning loss that works in accordance with mask modeling objective to further improve the predictive performance. We show that our model achieves state-of-the-art performance on ensemble level in estimating neural activities across four neural datasets, demonstrating its capability to capture autonomous and non-autonomous dynamics spanning different cortical regions while being completely agnostic to the specific behaviors at hand. Furthermore, STNDT spatial attention mechanism reveals consistently important subsets of neurons that play a vital role in driving the response of the entire population, providing interpretability and key insights into how the population of neurons performs computation.
[ Hall J ]

We present Neural Shape Deformation Priors, a novel method for shape manipulation that predicts mesh deformations of non-rigid objects from user-provided handle movements. State-of-the-art methods cast this problem as an optimization task, where the input source mesh is iteratively deformed to minimize an objective function according to hand-crafted regularizers such as ARAP. In this work, we learn the deformation behavior based on the underlying geometric properties of a shape, while leveraging a large-scale dataset containing a diverse set of non-rigid deformations. Specifically, given a source mesh and desired target locations of handles that describe the partial surface deformation, we predict a continuous deformation field that is defined in 3D space to describe the space deformation. To this end, we introduce transformer-based deformation networks that represent a shape deformation as a composition of local surface deformations. It learns a set of local latent codes anchored in 3D space, from which we can learn a set of continuous deformation functions for local surfaces. Our method can be applied to challenging deformations and generalizes well to unseen deformations. We validate our approach in experiments using the DeformingThing4D dataset, and compare to both classic optimization-based and recent neural network-based methods.
[ Hall J ]

Point cloud completion is an active research topic for 3D vision and has been widelystudied in recent years. Instead of directly predicting missing point cloud fromthe partial input, we introduce a Semantic-Prototype Variational Transformer(SPoVT) in this work, which takes both partial point cloud and their semanticlabels as the inputs for semantic point cloud object completion. By observingand attending at geometry and semantic information as input features, our SPoVTwould derive point cloud features and their semantic prototypes for completionpurposes. As a result, our SPoVT not only performs point cloud completion withvarying resolution, it also allows manipulation of different semantic parts of anobject. Experiments on benchmark datasets would quantitatively and qualitativelyverify the effectiveness and practicality of our proposed model.
[ Hall J ]

Vision-language (VL) pre-training has recently received considerable attention. However, most existing end-to-end pre-training approaches either only aim to tackle VL tasks such as image-text retrieval, visual question answering (VQA) and image captioning that test high-level understanding of images, or only target region-level understanding for tasks such as phrase grounding and object detection. We present FIBER (Fusion-In-the-Backbone-based transformER), a new VL model architecture that can seamlessly handle both these types of tasks. Instead of having dedicated transformer layers for fusion after the uni-modal backbones, FIBER pushes multimodal fusion deep into the model by inserting cross-attention into the image and text backbones to better capture multimodal interactions. In addition, unlike previous work that is either only pre-trained on image-text data or on fine-grained data with box-level annotations, we present a two-stage pre-training strategy that uses both these kinds of data efficiently: (i) coarse-grained pre-training based on image-text data; followed by (ii) fine-grained pre-training based on image-text-box data. We conduct comprehensive experiments on a wide range of VL tasks, ranging from VQA, image captioning, and retrieval, to phrase grounding, referring expression comprehension, and object detection. Using deep multimodal fusion coupled with the two-stage pre-training, FIBER provides consistent performance improvements over strong baselines across …
[ Hall J ]

By learning a sequence of tasks continually, an agent in continual learning (CL) can improve the learning performance of both a new task and `old' tasks by leveraging the forward knowledge transfer and the backward knowledge transfer, respectively. However, most existing CL methods focus on addressing catastrophic forgetting in neural networks by minimizing the modification of the learnt model for old tasks. This inevitably limits the backward knowledge transfer from the new task to the old tasks, because judicious model updates could possibly improve the learning performance of the old tasks as well. To tackle this problem, we first theoretically analyze the conditions under which updating the learnt model of old tasks could be beneficial for CL and also lead to backward knowledge transfer, based on the gradient projection onto the input subspaces of old tasks. Building on the theoretical analysis, we next develop a ContinUal learning method with Backward knowlEdge tRansfer (CUBER), for a fixed capacity neural network without data replay. In particular, CUBER first characterizes the task correlation to identify the positively correlated old tasks in a layer-wise manner, and then selectively modifies the learnt model of the old tasks when learning the new task. Experimental studies show …
[ Hall J ]

[ Hall J ]

Adapting large-scale pretrained models to various downstream tasks via fine-tuning is a standard method in machine learning. Recently, parameter-efficient fine-tuning methods have shown promise in adapting a pretrained model to different tasks while training only a few parameters. Despite their success, most existing methods are proposed in Natural Language Processing tasks with language Transformers, and adaptation to Computer Vision tasks with Vision Transformers remains under-explored, especially for dense vision tasks. Further, in multi-task settings, individually fine-tuning and storing separate models for different tasks is inefficient. In this work, we provide an extensive single- and multi-task parameter-efficient benchmark and examine existing parameter-efficient fine-tuning NLP methods for vision tasks. Our results on four different dense vision tasks showed that existing methods cannot be efficiently integrated due to the hierarchical nature of the Hierarchical Vision Transformers. To overcome this issue, we propose Polyhistor and Polyhistor-Lite, consisting of Decomposed HyperNetworks and Layer-wise Scaling Kernels, to share information across different tasks with a few trainable parameters. This leads to favorable performance improvements against existing parameter-efficient methods while using fewer trainable parameters. Specifically, Polyhistor achieves competitive accuracy compared to the state-of-the-art while only using less than 10% of their trainable parameters. Furthermore, our methods show larger …
[ Hall J ]

This paper targets at improving the generalizability of hypergraph neural networks in the low-label regime, through applying the contrastive learning approach from images/graphs (we refer to it as HyperGCL). We focus on the following question: How to construct contrastive views for hypergraphs via augmentations? We provide the solutions in two folds. First, guided by domain knowledge, we fabricate two schemes to augment hyperedges with higher-order relations encoded, and adopt three vertex augmentation strategies from graph-structured data. Second, in search of more effective views in a data-driven manner, we for the first time propose a hypergraph generative model to generate augmented views, and then an end-to-end differentiable pipeline to jointly learn hypergraph augmentations and model parameters. Our technical innovations are reflected in designing both fabricated and generative augmentations of hypergraphs. The experimental findings include: (i) Among fabricated augmentations in HyperGCL, augmenting hyperedges provides the most numerical gains, implying that higher-order information in structures is usually more downstream-relevant; (ii) Generative augmentations do better in preserving higher-order information to further benefit generalizability; (iii) HyperGCL also boosts robustness and fairness in hypergraph representation learning. Codes are released at https://github.com/weitianxin/HyperGCL.
[ Hall J ]
In this paper, we address the challenging problem of 3D concept grounding (i.e., segmenting and learning visual concepts) by looking at RGBD images and reasoning about paired questions and answers. Existing visual reasoning approaches typically utilize supervised methods to extract 2D segmentation masks on which concepts are grounded. In contrast, humans are capable of grounding concepts on the underlying 3D representation of images. However, traditionally inferred 3D representations (e.g., point clouds, voxelgrids and meshes) cannot capture continuous 3D features flexibly, thus making it challenging to ground concepts to 3D regions based on the language description of the object being referred to. To address both issues, we propose to leverage the continuous, differentiable nature of neural fields to segment and learn concepts. Specifically, each 3D coordinate in a scene is represented as a high dimensional descriptor. Concept grounding can then be performed by computing the similarity between the descriptor vector of a 3D coordinate and the vector embedding of a language concept, which enables segmentations and concept learning to be jointly learned on neural fields in a differentiable fashion. As a result, both 3D semantic and instance segmentations can emerge directly from question answering supervision using a set of defined neural …
[ Hall J ]

Neural Architecture Search (NAS) can automatically design promising neural architectures without artificial experience. Though it achieves great success, prohibitively high search cost is required to find a high-performance architecture, which blocks its practical implementation. Neural predictor can directly evaluate the performance of neural networks based on their architectures and thereby save much budget. However, existing neural predictors require substantial annotated architectures trained from scratch, which still consume many computational resources. To solve this issue, we propose a Cross-Domain Predictor (CDP), which is trained based on the existing NAS benchmark datasets (e.g., NAS-Bench-101), but can be used to find high-performance architectures in large-scale search spaces. Particularly, we propose a progressive subspace adaptation strategy to address the domain discrepancy between the source architecture space and the target space. Considering the large difference between two architecture spaces, an assistant space is developed to smooth the transfer process. Compared with existing NAS methods, the proposed CDP is much more efficient. For example, CDP only requires the search cost of 0.1 GPU Days to find architectures with 76.9% top-1 accuracy on ImageNet and 97.51% on CIFAR-10.
[ Hall J ]

Few-shot semantic segmentation aims to segment the target objects in query under the condition of a few annotated support images. Most previous works strive to mine more effective category information from the support to match with the corresponding objects in query. However, they all ignored the category information gap between query and support images. If the objects in them show large intra-class diversity, forcibly migrating the category information from the support to the query is ineffective. To solve this problem, we are the first to introduce an intermediate prototype for mining both deterministic category information from the support and adaptive category knowledge from the query. Specifically, we design an Intermediate Prototype Mining Transformer (IPMT) to learn the prototype in an iterative way. In each IPMT layer, we propagate the object information in both support and query features to the prototype and then use it to activate the query feature map. By conducting this process iteratively, both the intermediate prototype and the query feature can be progressively improved. At last, the final query feature is used to yield precise segmentation prediction. Extensive experiments on both PASCAL-5i and COCO-20i datasets clearly verify the effectiveness of our IPMT and show that it outperforms …
[ Hall J ]

Incremental implicitly-refined classification task aims at assigning hierarchical labels to each sample encountered at different phases. Existing methods tend to fail in generating hierarchy-invariant descriptors when the novel classes are inherited from the old ones. To address the issue, this paper, which explores the inheritance relations in the process of multi-level semantic increment, proposes an Uncertainty-Aware Hierarchical Refinement (UAHR) scheme. Specifically, our proposed scheme consists of a global representation extension strategy that enhances the discrimination of incremental representation by widening the corresponding margin distance, and a hierarchical distribution alignment strategy that refines the distillation process by explicitly determining the inheritance relationship of the incremental class. Particularly, the shifting subclasses are corrected under the guidance of hierarchical uncertainty, ensuring the consistency of the homogeneous features. Extensive experiments on widely used benchmarks (i.e., IIRC-CIFAR, IIRC-ImageNet-lite, IIRC-ImageNet-Subset, and IIRC-ImageNet-full) demonstrate the superiority of our proposed method over the state-of-the-art approaches.
[ Hall J ]
LiDAR point clouds, which are usually scanned by rotating LiDAR sensors continuously, capture precise geometry of the surrounding environment and are crucial to many autonomous detection and navigation tasks. Though many 3D deep architectures have been developed, efficient collection and annotation of large amounts of point clouds remain one major challenge in the analytics and understanding of point cloud data. This paper presents PolarMix, a point cloud augmentation technique that is simple and generic but can mitigate the data constraint effectively across various perception tasks and scenarios. PolarMix enriches point cloud distributions and preserves point cloud fidelity via two cross-scan augmentation strategies that cut, edit, and mix point clouds along the scanning direction. The first is scene-level swapping which exchanges point cloud sectors of two LiDAR scans that are cut along the LiDAR scanning direction. The second is instance-level rotation and paste which crops point instances from one LiDAR scan, rotates them by multiple angles (to create multiple copies), and paste the rotated point instances into other scans. Extensive experiments show that PolarMix achieves superior performance consistently across different perception tasks and scenarios. In addition, it can work as a plug-and-play for various 3D deep architectures and also performs well …
[ Hall J ]

We present ShapeCrafter, a neural network for recursive text-conditioned 3D shape generation. Existing methods to generate text-conditioned 3D shapes consume an entire text prompt to generate a 3D shape in a single step. However, humans tend to describe shapes recursively---we may start with an initial description and progressively add details based on intermediate results. To capture this recursive process, we introduce a method to generate a 3D shape distribution, conditioned on an initial phrase, that gradually evolves as more phrases are added. Since existing datasets are insufficient for training this approach, we present Text2Shape++, a large dataset of 369K shape--text pairs that supports recursive shape generation. To capture local details that are often used to refine shape descriptions, we build on top of vector-quantized deep implicit functions that generate a distribution of high-quality shapes. Results show that our method can generate shapes consistent with text descriptions, and shapes evolve gradually as more phrases are added. Our method supports shape editing, extrapolation, and can enable new applications in human--machine collaboration for creative design.
[ Hall J ]

Is dynamics prediction indispensable for physical reasoning? If so, what kind of roles do the dynamics prediction modules play during the physical reasoning process? Most studies focus on designing dynamics prediction networks and treating physical reasoning as a downstream task without investigating the questions above, taking for granted that the designed dynamics prediction would undoubtedly help the reasoning process. In this work, we take a closer look at this assumption, exploring this fundamental hypothesis by comparing two learning mechanisms: Learning from Dynamics (LfD) and Learning from Intuition (LfI). In the first experiment, we directly examine and compare these two mechanisms. Results show a surprising finding: Simple LfI is better than or on par with state-of-the-art LfD. This observation leads to the second experiment with Ground-truth Dynamics (GD), the ideal case of LfD wherein dynamics are obtained directly from a simulator. Results show that dynamics, if directly given instead of approximated, would achieve much higher performance than LfI alone on physical reasoning; this essentially serves as the performance upper bound. Yet practically, LfD mechanism can only predict Approximate Dynamics (AD) using dynamics learning modules that mimic the physical laws, making the following downstream physical reasoning modules degenerate into the LfI paradigm; …
[ Hall J ]

The practical success of overparameterized neural networks has motivated the recent scientific study of \emph{interpolating methods}-- learning methods which are able fit their training data perfectly. Empirically, certain interpolating methods can fit noisy training data without catastrophically bad test performance, which defies standard intuitions from statistical learning theory. Aiming to explain this, a large body of recent work has studied \emph{benign overfitting}, a behavior seen in certain asymptotic settings under which interpolating methods approach Bayes-optimality, even in the presence of noise. In this work, we argue that, while benign overfitting has been instructive to study, real interpolating methods like deep networks do not fit benignly. That is, noise in the train set leads to suboptimal generalization, suggesting that these methods fall in an intermediate regime between benign and catastrophic overfitting, in which asymptotic risk is neither is neither Bayes-optimal nor unbounded, with the confounding effect of the noise being ``tempered" but non-negligible. We call this behavior \textit{tempered overfitting}. We first provide broad empirical evidence for our three-part taxonomy, demonstrating that deep neural networks and kernel machines fit to noisy data can be reasonably well classified as benign, tempered, or catastrophic. We then specialize to kernel (ridge) regression (KR), obtaining conditions …
[ Hall J ]

[ Hall J ]

Graph Neural Networks (GNNs) have recently been applied to graph learning tasks and achieved state-of-the-art (SOTA) results. However, many competitive methods run GNNs multiple times with subgraph extraction and customized labeling to capture information that is hard for normal GNNs to learn. Such operations are time-consuming and do not scale to large graphs. In this paper, we propose an efficient GNN framework called Geodesic GNN (GDGNN) that requires only one GNN run and injects conditional relationships between nodes into the model without labeling. This strategy effectively reduces the runtime of subgraph methods. Specifically, we view the shortest paths between two nodes as the spatial graph context of the neighborhood around them. The GNN embeddings of nodes on the shortest paths are used to generate geodesic representations. Conditioned on the geodesic representations, GDGNN can generate node, link, and graph representations that carry much richer structural information than plain GNNs. We theoretically prove that GDGNN is more powerful than plain GNNs. We present experimental results to show that GDGNN achieves highly competitive performance with SOTA GNN models on various graph learning tasks while taking significantly less time.
[ Hall J ]

Designing spectral convolutional networks is a challenging problem in graph learning. ChebNet, one of the early attempts, approximates the spectral graph convolutions using Chebyshev polynomials. GCN simplifies ChebNet by utilizing only the first two Chebyshev polynomials while still outperforming it on real-world datasets. GPR-GNN and BernNet demonstrate that the Monomial and Bernstein bases also outperform the Chebyshev basis in terms of learning the spectral graph convolutions. Such conclusions are counter-intuitive in the field of approximation theory, where it is established that the Chebyshev polynomial achieves the optimum convergent rate for approximating a function. In this paper, we revisit the problem of approximating the spectral graph convolutions with Chebyshev polynomials. We show that ChebNet's inferior performance is primarily due to illegal coefficients learnt by ChebNet approximating analytic filter functions, which leads to over-fitting. We then propose ChebNetII, a new GNN model based on Chebyshev interpolation, which enhances the original Chebyshev polynomial approximation while reducing the Runge phenomenon. We conducted an extensive experimental study to demonstrate that ChebNetII can learn arbitrary graph convolutions and achieve superior performance in both full- and semi-supervised node classification tasks. Most notably, we scale ChebNetII to a billion graph ogbn-papers100M, showing that spectral-based GNNs have superior performance. …
[ Hall J ]
[ Hall J ]

The multiple-try Metropolis (MTM) algorithm is an extension of the Metropolis-Hastings (MH) algorithm by selecting the proposed state among multiple trials according to some weight function. Although MTM has gained great popularity owing to its faster empirical convergence and mixing than the standard MH algorithm, its theoretical mixing property is rarely studied in the literature due to its complex proposal scheme. We prove that MTM can achieve a mixing time bound smaller than that of MH by a factor of the number of trials under a general setting applicable to high-dimensional model selection problems with discrete state spaces. Our theoretical results motivate a new class of weight functions called locally balanced weight functions and guide the choice of the number of trials, which leads to improved performance over standard MTM algorithms. We support our theoretical results by extensive simulation studies and real data applications with several Bayesian model selection problems.
[ Hall J ]
Minimax optimization has served as the backbone of many machine learning problems. Although the convergence behavior of optimization algorithms has been extensively studied in minimax settings, their generalization guarantees, i.e., how the model trained on empirical data performs on the unseen testing data, have been relatively under-explored. A fundamental question remains elusive: What is a good metric to study generalization of minimax learners? In this paper, we aim to answer this question by first showing that primal risk, a universal metric to study generalization in minimization problems, fails in simple examples of minimax problems. Furthermore, another popular metric, the primal-dual risk, also fails to characterize the generalization behavior for minimax problems with nonconvexity, due to non-existence of saddle points. We thus propose a new metric to study generalization of minimax learners: the primal gap, to circumvent these issues. Next, we derive generalization bounds for the primal gap in nonconvex-concave settings. As byproducts of our analysis, we also solve two open questions: establishing generalization bounds for primal risk and primal-dual risk in this setting, and in the strong sense, i.e., without assuming that the maximization and expectation can be interchanged. Finally, we leverage this new metric to compare the generalization behavior …
[ Hall J ]
In this paper, we study the problem of bandits with knapsacks (BwK) in a non-stationary environment. The BwK problem generalizes the multi-arm bandit (MAB) problem to model the resource consumption associated with playing each arm. At each time, the decision maker/player chooses to play an arm, and s/he will receive a reward and consume certain amount of resource from each of the multiple resource types. The objective is to maximize the cumulative reward over a finite horizon subject to some knapsack constraints on the resources. Existing works study the BwK problem under either a stochastic or adversarial environment. Our paper considers a non-stationary environment which continuously interpolates between these two extremes. We first show that the traditional notion of variation budget is insufficient to characterize the non-stationarity of the BwK problem for a sublinear regret due to the presence of the constraints, and then we propose a new notion of global non-stationarity measure. We employ both non-stationarity measures to derive upper and lower bounds for the problem. Our results are based on a primal-dual analysis of the underlying linear programs and highlight the interplay between the constraints and the non-stationarity. Finally, we also extend the non-stationarity measure to the problem …
[ Hall J ]

Semi-supervised learning seeks to learn a machine learning model when only a small amount of the available data is labeled. The most widespread approach uses a graph prior, which encourages similar instances to have similar predictions. This has been very successful with models ranging from kernel machines to neural networks, but has remained inapplicable to decision trees, for which the optimization problem is much harder. We solve this based on a reformulation of the problem which requires iteratively solving two simpler problems: a supervised tree learning problem, which can be solved by the Tree Alternating Optimization algorithm; and a label smoothing problem, which can be solved through a sparse linear system. The algorithm is scalable and highly effective even with very few labeled instances, and makes it possible to learn accurate, interpretable models based on decision trees in such situations.
[ Hall J ]
Training with backpropagation (BP) in standard deep learning consists of two main steps: a forward pass that maps a data point to its prediction, and a backward pass that propagates the error of this prediction back through the network. This process is highly effective when the goal is to minimize a specific objective function. However, it does not allow training on networks with cyclic or backward connections. This is an obstacle to reaching brain-like capabilities, as the highly complex heterarchical structure of the neural connections in the neocortex are potentially fundamental for its effectiveness. In this paper, we show how predictive coding (PC), a theory of information processing in the cortex, can be used to perform inference and learning on arbitrary graph topologies. We experimentally show how this formulation, called PC graphs, can be used to flexibly perform different tasks with the same network by simply stimulating specific neurons. This enables the model to be queried on stimuli with different structures, such as partial images, images with labels, or images without labels. We conclude by investigating how the topology of the graph influences the final performance, and comparing against simple baselines trained with BP.
[ Hall J ]

Synchronizing decisions across multiple agents in realistic settings is problematic since it requires agents to wait for other agents to terminate and communicate about termination reliably. Ideally, agents should learn and execute asynchronously instead. Such asynchronous methods also allow temporally extended actions that can take different amounts of time based on the situation and action executed. Unfortunately, current policy gradient methods are not applicable in asynchronous settings, as they assume that agents synchronously reason about action selection at every time step. To allow asynchronous learning and decision-making, we formulate a set of asynchronous multi-agent actor-critic methods that allow agents to directly optimize asynchronous policies in three standard training paradigms: decentralized learning, centralized learning, and centralized training for decentralized execution. Empirical results (in simulation and hardware) in a variety of realistic domains demonstrate the superiority of our approaches in large multi-agent problems and validate the effectiveness of our algorithms for learning high-quality and asynchronous solutions.
[ Hall J ]
Pretraining on noisy, internet-scale datasets has been heavily studied as a technique for training models with broad, general capabilities for text, images, and other modalities. However, for many sequential decision domains such as robotics, video games, and computer use, publicly available data does not contain the labels required to train behavioral priors in the same way. We extend the internet-scale pretraining paradigm to sequential decision domains through semi-supervised imitation learning wherein agents learn to act by watching online unlabeled videos. Specifically, we show that with a small amount of labeled data we can train an inverse dynamics model accurate enough to label a huge unlabeled source of online data -- here, online videos of people playing Minecraft -- from which we can then train a general behavioral prior. Despite using the native human interface (mouse and keyboard at 20Hz), we show that this behavioral prior has nontrivial zero-shot capabilities and that it can be fine-tuned, with both imitation learning and reinforcement learning, to hard-exploration tasks that are impossible to learn from scratch via reinforcement learning. For many tasks our models exhibit human-level performance, and we are the first to report computer agents that can craft diamond tools, which can take …
[ Hall J ]

Open-vocabulary models like CLIP achieve high accuracy across many image classification tasks. However, there are still settings where their zero-shot performance is far from optimal. We study model patching, where the goal is to improve accuracy on specific tasks without degrading accuracy on tasks where performance is already adequate. Towards this goal, we introduce PAINT, a patching method that uses interpolations between the weights of a model before fine-tuning and the weights after fine-tuning on a task to be patched. On nine tasks where zero-shot CLIP performs poorly, PAINT increases accuracy by 15 to 60 percentage points while preserving accuracy on ImageNet within one percentage point of the zero-shot model. PAINT also allows a single model to be patched on multiple tasks and improves with model scale. Furthermore, we identify cases of broad transfer, where patching on one task increases accuracy on other tasks even when the tasks have disjoint classes. Finally, we investigate applications beyond common benchmarks such as counting or reducing the impact of typographic attacks on CLIP. Our findings demonstrate that it is possible to expand the set of tasks on which open-vocabulary models achieve high accuracy without re-training them from scratch.
[ Hall J ]

Generative models (e.g., GANs, diffusion models) learn the underlying data distribution in an unsupervised manner. However, many applications of interest require sampling from a particular region of the output space or sampling evenly over a range of characteristics. For efficient sampling in these scenarios, we propose Generative Visual Prompt (PromptGen), a framework for distributional control over pre-trained generative models by incorporating knowledge of other off-the-shelf models. PromptGen defines control as energy-based models (EBMs) and samples images in a feed-forward manner by approximating the EBM with invertible neural networks, avoiding optimization at inference. Our experiments demonstrate how PromptGen can efficiently sample from several unconditional generative models (e.g., StyleGAN2, StyleNeRF, diffusion autoencoder, NVAE) in a controlled or/and de-biased manner using various off-the-shelf models: (1) with the CLIP model as control, PromptGen can sample images guided by text, (2) with image classifiers as control, PromptGen can de-bias generative models across a set of attributes or attribute combinations, and (3) with inverse graphics models as control, PromptGen can sample images of the same identity in different poses. (4) Finally, PromptGen reveals that the CLIP model shows a "reporting bias" when used as control, and PromptGen can further de-bias this controlled distribution in an iterative …
[ Hall J ]

Identifying statistical regularities in solutions to some tasks in multi-task reinforcement learning can accelerate the learning of new tasks.Skill learning offers one way of identifying these regularities by decomposing pre-collected experiences into a sequence of skills.A popular approach to skill learning is maximizing the likelihood of the pre-collected experience with latent variable models,where the latent variables represent the skills. However, there are often many solutions that maximize the likelihood equally well, including degenerate solutions. To address this underspecification, we propose a new objective that combines the maximum likelihood objective with a penalty on the description length of the skills. This penalty incentivizes the skills to maximally extract common structures from the experiences. Empirically, our objective learns skills that solve downstream tasks in fewer samples compared to skills learned from only maximizing likelihood. Further, while most prior works in the offline multi-task setting focus on tasks with low-dimensional observations, our objective can scale to challenging tasks with high-dimensional image observations.
[ Hall J ]

Intelligent agents should have the ability to leverage knowledge from previously learned tasks in order to learn new ones quickly and efficiently. Meta-learning approaches have emerged as a popular solution to achieve this. However, meta-reinforcement learning (meta-RL) algorithms have thus far been restricted to simple environments with narrow task distributions and have seen limited success. Moreover, the paradigm of pretraining followed by fine-tuning to adapt to new tasks has emerged as a simple yet effective solution in supervised learning. This calls into question the benefits of meta learning approaches also in reinforcement learning, which typically come at the cost of high complexity. We therefore investigate meta-RL approaches in a variety of vision-based benchmarks, including Procgen, RLBench, and Atari, where evaluations are made on completely novel tasks. Our findings show that when meta-learning approaches are evaluated on different tasks (rather than different variations of the same task), multi-task pretraining with fine-tuning on new tasks performs equally as well, or better, than meta-pretraining with meta test-time adaptation. This is encouraging for future research, as multi-task pretraining tends to be simpler and computationally cheaper than meta-RL. From these findings, we advocate for evaluating future meta-RL methods on more challenging tasks and including multi-task …
[ Hall J ]

Learning tabula rasa, that is without any prior knowledge, is the prevalent workflow in reinforcement learning (RL) research. However, RL systems, when applied to large-scale settings, rarely operate tabula rasa. Such large-scale systems undergo multiple design or algorithmic changes during their development cycle and use ad hoc approaches for incorporating these changes without re-training from scratch, which would have been prohibitively expensive. Additionally, the inefficiency of deep RL typically excludes researchers without access to industrial-scale resources from tackling computationally-demanding problems. To address these issues, we present reincarnating RL as an alternative workflow or class of problem settings, where prior computational work (e.g., learned policies) is reused or transferred between design iterations of an RL agent, or from one RL agent to another. As a step towards enabling reincarnating RL from any agent to any other agent, we focus on the specific setting of efficiently transferring an existing sub-optimal policy to a standalone value-based RL agent. We find that existing approaches fail in this setting and propose a simple algorithm to address their limitations. Equipped with this algorithm, we demonstrate reincarnating RL's gains over tabula rasa RL on Atari 2600 games, a challenging locomotion task, and the real-world problem of navigating …
[ Hall J ]

Single image-level annotations only correctly describe an often small subset of an image’s content, particularly when complex real-world scenes are depicted. While this might be acceptable in many classification scenarios, it poses a significant challenge for applications where the set of classes differs significantly between training and test time. In this paper, we take a closer look at the implications in the context of few-shot learning. Splitting the input samples into patches and encoding these via the help of Vision Transformers allows us to establish semantic correspondences between local regions across images and independent of their respective class. The most informative patch embeddings for the task at hand are then determined as a function of the support set via online optimization at inference time, additionally providing visual interpretability of ‘what matters most’ in the image. We build on recent advances in unsupervised training of networks via masked image modelling to overcome the lack of fine-grained labels and learn the more general statistical structure of the data while avoiding negative image-level annotation influence, aka supervision collapse. Experimental results show the competitiveness of our approach, achieving new state-of-the-art results on four popular few-shot classification benchmarks for 5-shot and 1-shot scenarios.
[ Hall J ]

The need for interpretable models has fostered the development of self-explainable classifiers. Prior approaches are either based on multi-stage optimization schemes, impacting the predictive performance of the model, or produce explanations that are not transparent, trustworthy or do not capture the diversity of the data. To address these shortcomings, we propose ProtoVAE, a variational autoencoder-based framework that learns class-specific prototypes in an end-to-end manner and enforces trustworthiness and diversity by regularizing the representation space and introducing an orthonormality constraint. Finally, the model is designed to be transparent by directly incorporating the prototypes into the decision process. Extensive comparisons with previous self-explainable approaches demonstrate the superiority of ProtoVAE, highlighting its ability to generate trustworthy and diverse explanations, while not degrading predictive performance.
[ Hall J ]

Existing convolutional neural networks widely adopt spatial down-/up-sampling for multi-scale modeling. However, spatial up-sampling operators (e.g., interpolation, transposed convolution, and un-pooling) heavily depend on local pixel attention, incapably exploring the global dependency. In contrast, the Fourier domain is in accordance with the nature of global modeling according to the spectral convolution theorem. Unlike the spatial domain that easily performs up-sampling with the property of local similarity, up-sampling in the Fourier domain is more challenging as it does not follow such a local property. In this study, we propose a theoretically feasible Deep Fourier Up-Sampling (FourierUp) to solve these issues. We revisit the relationships between spatial and Fourier domains and reveal the transform rules on the features of different resolutions in the Fourier domain, which provide key insights for FourierUp's designs. FourierUp as a generic operator consists of three key components: 2D discrete Fourier transform, Fourier dimension increase rules, and 2D inverse Fourier transform, which can be directly integrated with existing networks. Extensive experiments across multiple computer vision tasks, including object detection, image segmentation, image de-raining, image dehazing, and guided image super-resolution, demonstrate the consistent performance gains obtained by introducing our FourierUp. Code will be publicly available.
[ Hall J ]

Unsupervised mixture learning (UML) aims at identifying linearly or nonlinearly mixed latent components in a blind manner. UML is known to be challenging: Even learning linear mixtures requires highly nontrivial analytical tools, e.g., independent component analysis or nonnegative matrix factorization. In this work, the post-nonlinear (PNL) mixture model---where {\it unknown} element-wise nonlinear functions are imposed onto a linear mixture---is revisited. The PNL model is widely employed in different fields ranging from brain signal classification, speech separation, remote sensing, to causal discovery. To identify and remove the unknown nonlinear functions, existing works often assume different properties on the latent components (e.g., statistical independence or probability-simplex structures). This work shows that under a carefully designed UML criterion, the existence of a nontrivial {\it null space} associated with the underlying mixing system suffices to guarantee identification/removal of the unknown nonlinearity. Compared to prior works, our finding largely relaxes the conditions of attaining PNL identifiability, and thus may benefit applications where no strong structural information on the latent components is known. A finite-sample analysis is offered to characterize the performance of the proposed approach under realistic settings. To implement the proposed learning criterion, a block coordinate descent algorithm is proposed. A series of numerical …
[ Hall J ]

[ Hall J ]
Light-weight convolutional neural networks (CNNs) are specially designed for applications on mobile devices with faster inference speed. The convolutional operation can only capture local information in a window region, which prevents performance from being further improved. Introducing self-attention into convolution can capture global information well, but it will largely encumber the actual speed. In this paper, we propose a hardware-friendly attention mechanism (dubbed DFC attention) and then present a new GhostNetV2 architecture for mobile applications. The proposed DFC attention is constructed based on fully-connected layers, which can not only execute fast on common hardware but also capture the dependence between long-range pixels. We further revisit the expressiveness bottleneck in previous GhostNet and propose to enhance expanded features produced by cheap operations with DFC attention, so that a GhostNetV2 block can aggregate local and long-range information simultaneously. Extensive experiments demonstrate the superiority of GhostNetV2 over existing architectures. For example, it achieves 75.3% top-1 accuracy on ImageNet with 167M FLOPs, significantly suppressing GhostNetV1 (74.5%) with a similar computational cost. The source code will be available at https://github.com/huawei-noah/Efficient-AI-Backbones/tree/master/ghostnetv2_pytorch and https://gitee.com/mindspore/models/tree/master/research/cv/ghostnetv2.
[ Hall J ]

Glass surfaces are omnipresent in our daily lives and often go unnoticed by the majority of us. While humans are generally able to infer their locations and thus avoid collisions, it can be difficult for current object detection systems to handle them due to the transparent nature of glass surfaces. Previous methods approached the problem by extracting global context information to obtain priors such as object boundaries and reflections. However, their performances cannot be guaranteed when these deterministic features are not available. We observe that humans often reason through the semantic context of the environment, which offers insights into the categories of and proximity between entities that are expected to appear in the surrounding. For example, the odds of co-occurrence of glass windows with walls and curtains are generally higher than that with other objects such as cars and trees, which have relatively less semantic relevance. Based on this observation, we propose a model ('GlassSemNet') that integrates the contextual relationship of the scenes for glass surface detection with two novel modules: (1) Scene Aware Activation (SAA) Module to adaptively filter critical channels with respect to spatial and semantic features, and (2) Context Correlation Attention (CCA) Module to progressively learn the …
[ Hall J ]

The performance of spectral clustering heavily relies on the quality of affinity matrix. A variety of affinity-matrix-construction (AMC) methods have been proposed but they have hyperparameters to determine beforehand, which requires strong experience and leads to difficulty in real applications, especially when the inter-cluster similarity is high and/or the dataset is large. In addition, we often need to choose different AMC methods for different datasets, which still depends on experience. To solve these two challenging problems, in this paper, we present a simple yet effective method for automated spectral clustering. First, we propose to find the most reliable affinity matrix via grid search or Bayesian optimization among a set of candidates given by different AMC methods with different hyperparameters, where the reliability is quantified by the \textit{relative-eigen-gap} of graph Laplacian introduced in this paper. Second, we propose a fast and accurate AMC method based on least squares representation and thresholding and prove its effectiveness theoretically. Finally, we provide a large-scale extension for the automated spectral clustering method, of which the time complexity is linear with the number of data points. Extensive experiments of natural image clustering show that our method is more versatile, accurate, and efficient than baseline methods.
[ Hall J ]

Data hiding with deep neural networks (DNNs) has experienced impressive successes in recent years. A prevailing scheme is to train an autoencoder, consisting of an encoding network to embed (or transform) secret messages in (or into) a carrier, and a decoding network to extract the hidden messages. This scheme may suffer from several limitations regarding practicability, security, and embedding capacity. In this work, we describe a different computational framework to hide images in deep probabilistic models. Specifically, we use a DNN to model the probability density of cover images, and hide a secret image in one particular location of the learned distribution. As an instantiation, we adopt a SinGAN, a pyramid of generative adversarial networks (GANs), to learn the patch distribution of one cover image. We hide the secret image by fitting a deterministic mapping from a fixed set of noise maps (generated by an embedding key) to the secret image during patch distribution learning. The stego SinGAN, behaving as the original SinGAN, is publicly communicated; only the receiver with the embedding key is able to extract the secret image. We demonstrate the feasibility of our SinGAN approach in terms of extraction accuracy and model security. Moreover, we show the …
[ Hall J ]
The lottery ticket hypothesis (LTH) has attracted attention because it can explain why over-parameterized models often show high generalization ability. It is known that when we use iterative magnitude pruning (IMP), which is an algorithm to find sparse networks with high generalization ability that can be trained from the initial weights independently, called winning tickets, the initial large learning rate does not work well in deep neural networks such as ResNet. However, since the initial large learning rate generally helps the optimizer to converge to flatter minima, we hypothesize that the winning tickets have relatively sharp minima, which is considered a disadvantage in terms of generalization ability. In this paper, we confirm this hypothesis and show that the PAC-Bayesian theory can provide an explicit understanding of the relationship between LTH and generalization behavior. On the basis of our experimental findings that IMP with a small learning rate finds relatively sharp minima and that the distance from the initial weights is deeply involved in winning tickets, we offer the PAC-Bayes bound using a spike-and-slab distribution to analyze winning tickets. Finally, we revisit existing algorithms for finding winning tickets from a PAC-Bayesian perspective and provide new insights into these methods.
[ Hall J ]

Pretrained large language models (LLMs) are widely used in many sub-fields of natural language processing (NLP) and generally known as excellent few-shot learners with task-specific exemplars. Notably, chain of thought (CoT) prompting, a recent technique for eliciting complex multi-step reasoning through step-by-step answer examples, achieved the state-of-the-art performances in arithmetics and symbolic reasoning, difficult system-2 tasks that do not follow the standard scaling laws for LLMs. While these successes are often attributed to LLMs' ability for few-shot learning, we show that LLMs are decent zero-shot reasoners by simply adding ``Let's think step by step'' before each answer. Experimental results demonstrate that our Zero-shot-CoT, using the same single prompt template, significantly outperforms zero-shot LLM performances on diverse benchmark reasoning tasks including arithmetics (MultiArith, GSM8K, AQUA-RAT, SVAMP), symbolic reasoning (Last Letter, Coin Flip), and other logical reasoning tasks (Date Understanding, Tracking Shuffled Objects), without any hand-crafted few-shot examples, e.g. increasing the accuracy on MultiArith from 17.7% to 78.7% and GSM8K from 10.4% to 40.7% with large-scale InstructGPT model (text-davinci-002), as well as similar magnitudes of improvements with another off-the-shelf large model, 540B parameter PaLM. The versatility of this single prompt across very diverse reasoning tasks hints at untapped and understudied fundamental zero-shot …
[ Hall J ]

[ Hall J ]

Deep neural networks (DNNs) typically require massive data to train on, which is a hurdle for numerous practical domains. Facing the data shortfall, one viable option is to acquire domain-specific training data from external uncensored sources, such as open webs or third-party data collectors. However, the quality of such acquired data is often not rigorously scrutinized, and one cannot easily rule out the risk of `"poisoned" examples being included in such unreliable datasets, resulting in unreliable trained models which pose potential risks to many high-stake applications. While existing options usually suffer from high computational costs or assumptions on clean data access, this paper attempts to detect backdoors for potential victim models with minimal prior knowledge. In particular, provided with a trained model, users are assumed to (1) have no prior knowledge of whether it is already poisoned, or what the target class/percentage of samples is poisoned, and (2) have no access to a clean sample set from the same training distribution, nor any trusted model trained on such clean data. To tackle this challenging scenario, we first observe the contrasting channel-level statistics between the backdoor trigger and clean image features, and consequently, how they can be differentiated by progressive channel …
[ Hall J ]

Unlabeled data examples awaiting annotations contain open-set noise inevitably. A few active learning studies have attempted to deal with this open-set noise for sample selection by filtering out the noisy examples. However, because focusing on the purity of examples in a query set leads to overlooking the informativeness of the examples, the best balancing of purity and informativeness remains an important question. In this paper, to solve this purity-informativeness dilemma in open-set active learning, we propose a novel Meta-Query-Net (MQ-Net) that adaptively finds the best balancing between the two factors. Specifically, by leveraging the multi-round property of active learning, we train MQ-Net using a query set without an additional validation set. Furthermore, a clear dominance relationship between unlabeled examples is effectively captured by MQ-Net through a novel skyline regularization. Extensive experiments on multiple open-set active learning scenarios demonstrate that the proposed MQ-Net achieves 20.14% improvement in terms of accuracy, compared with the state-of-the-art methods.
[ Hall J ]

[ Hall J ]
[ Hall J ]
Active learning methods have shown great promise in reducing the number of samples necessary for learning. As automated learning systems are adopted into real-time, real-world decision-making pipelines, it is increasingly important that such algorithms are designed with safety in mind. In this work we investigate the complexity of learning the best safe decision in interactive environments. We reduce this problem to a safe linear bandits problem, where our goal is to find the best arm satisfying certain (unknown) safety constraints. We propose an adaptive experimental design-based algorithm, which we show efficiently trades off between the difficulty of showing an arm is unsafe vs suboptimal. To our knowledge, our results are the first on best-arm identification in linear bandits with safety constraints. In practice, we demonstrate that this approach performs well on synthetic and real world datasets.
[ Hall J ]
Equivariant networks capture the inductive bias about the symmetry of the learning task by building those symmetries into the model. In this paper, we study how equivariance relates to generalization error utilizing PAC Bayesian analysis for equivariant networks, where the transformation laws of feature spaces are deter- mined by group representations. By using perturbation analysis of equivariant networks in Fourier domain for each layer, we derive norm-based PAC-Bayesian generalization bounds. The bound characterizes the impact of group size, and multiplicity and degree of irreducible representations on the generalization error and thereby provide a guideline for selecting them. In general, the bound indicates that using larger group size in the model improves the generalization error substantiated by extensive numerical experiments.
[ Hall J ]

Providing a timely intervention before the onset of a critical event, such as a system failure, is of importance in many industrial settings. Before the onset of the critical event, systems typically exhibit behavioral changes which often manifest as stochastic co-variate observations which may be leveraged to trigger intervention. In this paper, for the first time, we formulate the problem of finding an optimally timed intervention (OTI) policy as minimizing the expected residual time to event, subject to a constraint on the probability of missing the event. Existing machine learning approaches to intervention on critical events focus on predicting event occurrence within a pre-defined window (a classification problem) or predicting time-to-event (a regression problem). Interventions are then triggered by setting model thresholds. These are heuristic-driven, lacking guarantees regarding optimality. To model the evolution of system behavior, we introduce the concept of a hazard rate process. We show that the OTI problem is equivalent to an optimal stopping problem on the associated hazard rate process. This key link has not been explored in literature. Under Markovian assumptions on the hazard rate process, we show that an OTI policy at any time can be analytically determined from the conditional hazard rate function …
[ Hall J ]

Pruning techniques have been successfully used in neural networks to trade accuracy for sparsity. However, the impact of network pruning is not uniform: prior work has shown that the recall for underrepresented classes in a dataset may be more negatively affected. In this work, we study such relative distortions in recall by hypothesizing an intensification effect that is inherent to the model. Namely, that pruning makes recall relatively worse for a class with recall below accuracy and, conversely, that it makes recall relatively better for a class with recall above accuracy. In addition, we propose a new pruning algorithm aimed at attenuating such effect. Through statistical analysis, we have observed that intensification is less severe with our algorithm but nevertheless more pronounced with relatively more difficult tasks, less complex models, and higher pruning ratios. More surprisingly, we conversely observe a de-intensification effect with lower pruning ratios.
[ Hall J ]
[ Hall J ]
We study the change point problem that considers alterations in the conditional distribution of an inferential target on a set of covariates. This paired data scenario is in contrast to the standard setting where a sequentially observed variable is analyzed for potential changes in the marginal distribution. We propose new methodology for solving this problem, by starting from a simpler task that analyzes changes in conditional expectation, and generalizing the tools developed for that task to conditional distributions. Large sample properties of the proposed statistics are derived. In empirical studies, we illustrate the performance of the proposed method against baselines adapted from existing tools. Two real data applications are presented to demonstrate its potential.
[ Hall J ]

Solution concepts such as Nash Equilibria, Correlated Equilibria, and Coarse Correlated Equilibria are useful components for many multiagent machine learning algorithms. Unfortunately, solving a normal-form game could take prohibitive or non-deterministic time to converge, and could fail. We introduce the Neural Equilibrium Solver which utilizes a special equivariant neural network architecture to approximately solve the space of all games of fixed shape, buying speed and determinism. We define a flexible equilibrium selection framework, that is capable of uniquely selecting an equilibrium that minimizes relative entropy, or maximizes welfare. The network is trained without needing to generate any supervised training data. We show remarkable zero-shot generalization to larger games. We argue that such a network is a powerful component for many possible multiagent algorithms.
[ Hall J ]
We study linear regression from data distributed over a network of agents (with no master node) under high-dimensional scaling, which allows the ambient dimension to grow faster than the sample size. We propose a novel decentralization of the projected gradient algorithm whereby agents iteratively update their local estimates by a “double-mixing” mechanism, which suitably combines averages of iterates and gradients of neighbouring nodes. Under standard assumptions on the statistical model and network connectivity, the proposed method enjoys global linear convergence up to the statistical precision of the model. This improves on guarantees of (plain) DGD algorithms, whose iteration complexity grows undesirably with the ambient dimension. Our technical contribution is a novel convergence analysis that resembles (albeit different) algorithmic stability arguments extended to high-dimensions and distributed setting, which is of independent interest.
[ Hall J ]
We consider streaming principal component analysis when the stochastic data-generating model is subject to perturbations. While existing models assume a fixed covariance, we adopt a robust perspective where the covariance matrix belongs to a temporal uncertainty set. Under this setting, we provide fundamental limits on any algorithm recovering principal components. We analyze the convergence of the noisy power method and Oja’s algorithm, both studied for the stationary data generating model, and argue that the noisy power method is rate-optimal in our setting. Finally, we demonstrate the validity of our analysis through numerical experiments.
[ Hall J ]
We study the problem of learning generalized linear models under adversarial corruptions.We analyze a classical heuristic called the \textit{iterative trimmed maximum likelihood estimator} which is known to be effective against \textit{label corruptions} in practice. Under label corruptions, we prove that this simple estimator achieves minimax near-optimal risk on a wide range of generalized linear models, including Gaussian regression, Poisson regression and Binomial regression. Finally, we extend the estimator to the much more challenging setting of \textit{label and covariate corruptions} and demonstrate its robustness and optimality in that setting as well.
[ Hall J ]
We demonstrate for the first time that ill-conditioned, non-smooth, constrained distributions in very high dimension, upwards of 100,000, can be sampled efficiently \emph{in practice}. Our algorithm incorporates constraints into the Riemannian version of Hamiltonian Monte Carlo and maintains sparsity. This allows us to achieve a mixing rate independent of smoothness and condition numbers. On benchmark data sets in systems biology and linear programming, our algorithm outperforms existing packages by orders of magnitude. In particular, we achieve a 1,000-fold speed-up for sampling from the largest published human metabolic network (RECON3D). Our package has been incorporated into a popular Bioinformatics library.
[ Hall J ]
The intersection of causal inference and machine learning for decision-making is rapidly expanding, but the default decision criterion remains an average of individual causal outcomes across a population. In practice, various operational restrictions ensure that a decision-maker's utility is not realized as an average but rather as an output of a downstream decision-making problem (such as matching, assignment, network flow, minimizing predictive risk). In this work, we develop a new framework for off-policy evaluation with policy-dependent linear optimization responses: causal outcomes introduce stochasticity in objective function coefficients. Under this framework, a decision-maker's utility depends on the policy-dependent optimization, which introduces a fundamental challenge of optimization bias even for the case of policy evaluation. We construct unbiased estimators for the policy-dependent estimand by a perturbation method, and discuss asymptotic variance properties for a set of adjusted plug-in estimators. Lastly, attaining unbiased policy evaluation allows for policy optimization: we provide a general algorithm for optimizing causal interventions. We corroborate our theoretical results with numerical simulations.
[ Hall J ]

We consider finite-horizon Markov Decision Processes where parameters, such as transition probabilities, are unknown and estimated from data. The popular distributionally robust approach to addressing the parameter uncertainty can sometimes be overly conservative. In this paper, we propose a new formulation, Bayesian risk Markov decision process (BR-MDP), to address parameter uncertainty in MDPs, where a risk functional is applied in nested form to the expected total cost with respect to the Bayesian posterior distributions of the unknown parameters. The proposed formulation provides more flexible risk attitudes towards parameter uncertainty and takes into account the availability of data in future time stages. To solve the proposed formulation with the conditional value-at-risk (CVaR) risk functional, we propose an efficient approximation algorithm by deriving an analytical approximation of the value function and utilizing the convexity of CVaR. We demonstrate the empirical performance of the BR-MDP formulation and proposed algorithms on a gambler’s betting problem and an inventory control problem.
[ Hall J ]

[ Hall J ]
[ Hall J ]

[ Hall J ]

To regulate a social system comprised of self-interested agents, economic incentives are often required to induce a desirable outcome. This incentive design problem naturally possesses a bilevel structure, in which a designer modifies the payoffs of the agents with incentives while anticipating the response of the agents, who play a non-cooperative game that converges to an equilibrium. The existing bilevel optimization algorithms raise a dilemma when applied to this problem: anticipating how incentives affect the agents at equilibrium requires solving the equilibrium problem repeatedly, which is computationally inefficient; bypassing the time-consuming step of equilibrium-finding can reduce the computational cost, but may lead the designer to a sub-optimal solution. To address such a dilemma, we propose a method that tackles the designer’s and agents’ problems simultaneously in a single loop. Specifically, at each iteration, both the designer and the agents only move one step. Nevertheless, we allow the designer to gradually learn the overall influence of the incentives on the agents, which guarantees optimality after convergence. The convergence rate of the proposed scheme is also established for a broad class of games.
[ Hall J ]

A key challenge in many modern data analysis tasks is that user data is heterogeneous. Different users may possess vastly different numbers of data points. More importantly, it cannot be assumed that all users sample from the same underlying distribution. This is true, for example in language data, where different speech styles result in data heterogeneity. In this work we propose a simple model of heterogeneous user data that differs in both distribution and quantity of data, and we provide a method for estimating the population-level mean while preserving user-level differential privacy. We demonstrate asymptotic optimality of our estimator and also prove general lower bounds on the error achievable in our problem.
[ Hall J ]

[ Hall J ]

The use of black-box models (e.g., deep neural networks) in high-stakes decision-making systems, whose internal logic is complex, raises the need for providing explanations about their decisions. Model explanation techniques mitigate this problem by generating an interpretable and high-fidelity surrogate model (e.g., a logistic regressor or decision tree) to explain the logic of black-box models. In this work, we investigate the issue of fairwashing, in which model explanation techniques are manipulated to rationalize decisions taken by an unfair black-box model using deceptive surrogate models. More precisely, we theoretically characterize and analyze fairwashing, proving that this phenomenon is difficult to avoid due to an irreducible factor---the unfairness of the black-box model. Based on the theory developed, we propose a novel technique, called FRAUD-Detect (FaiRness AUDit Detection), to detect fairwashed models by measuring a divergence over subpopulation-wise fidelity measures of the interpretable model. We empirically demonstrate that this divergence is significantly larger in purposefully fairwashed interpretable models than in honest ones. Furthermore, we show that our detector is robust to an informed adversary trying to bypass our detector. The code implementing FRAUD-Detect is available at https://github.com/cleverhans-lab/FRAUD-Detect.
[ Hall J ]

Personalized PageRank (PPR) is a fundamental tool in unsupervised learning of graph representations such as node ranking, labeling, and graph embedding. However, while data privacy is one of the most important recent concerns, existing PPR algorithms are not designed to protect user privacy. PPR is highly sensitive to the input graph edges: the difference of only one edge may cause a big change in the PPR vector, potentially leaking private user data.In this work, we propose an algorithm which outputs an approximate PPR and has provably bounded sensitivity to input edges. In addition, we prove that our algorithm achieves similar accuracy to non-private algorithms when the input graph has large degrees. Our sensitivity-bounded PPR directly implies private algorithms for several tools of graph learning, such as, differentially private (DP) PPR ranking, DP node classification, and DP node embedding. To complement our theoretical analysis, we also empirically verify the practical performances of our algorithms.
[ Hall J ]

Causal discovery aims to recover causal structures generating the observational data. Despite its success in certain problems, in many real-world scenarios the observed variables are not the target variables of interest, but the imperfect measures of the target variables. Causal discovery under measurement error aims to recover the causal graph among unobserved target variables from observations made with measurement error. We consider a specific formulation of the problem, where the unobserved target variables follow a linear non-Gaussian acyclic model, and the measurement process follows the random measurement error model. Existing methods on this formulation rely on non-scalable over-complete independent component analysis (OICA). In this work, we propose the Transformed Independent Noise (TIN) condition, which checks for independence between a specific linear transformation of some measured variables and certain other measured variables. By leveraging the non-Gaussianity and higher-order statistics of data, TIN is informative about the graph structure among the unobserved target variables. By utilizing TIN, the ordered group decomposition of the causal model is identifiable. In other words, we could achieve what once required OICA to achieve by only conducting independence tests. Experimental results on both synthetic and real-world data demonstrate the effectiveness and reliability of our method.
[ Hall J ]

Understanding emerging behaviors of reinforcement learning (RL) agents may be difficult since such agents are often trained in complex environments using highly complex decision making procedures. This has given rise to a variety of approaches to explainability in RL that aim to reconcile discrepancies that may arise between the behavior of an agent and the behavior that is anticipated by an observer. Most recent approaches have relied either on domain knowledge, that may not always be available, on an analysis of the agent’s policy, or on an analysis of specific elements of the underlying environment, typically modeled as a Markov Decision Process (MDP). Our key claim is that even if the underlying model is not fully known (e.g., the transition probabilities have not been accurately learned) or is not maintained by the agent (i.e., when using model-free methods), the model can nevertheless be exploited to automatically generate explanations. For this purpose, we suggest using formal MDP abstractions and transforms, previously used in the literature for expediting the search for optimal policies, to automatically produce explanations. Since such transforms are typically based on a symbolic representation of the environment, they can provide meaningful explanations for gaps between the anticipated and actual …
[ Hall J ]

Conventional saliency maps highlight input features to which neural network predictions are highly sensitive. We take a different approach to saliency, in which we identify and analyze the network parameters, rather than inputs, which are responsible for erroneous decisions. We first verify that identified salient parameters are indeed responsible for misclassification by showing that turning these parameters off improves predictions on the associated samples more than turning off the same number of random or least salient parameters. We further validate the link between salient parameters and network misclassification errors by observing that fine-tuning a small number of the most salient parameters on a single sample results in error correction on other samples which were misclassified for similar reasons -- nearest neighbors in the saliency space. After validating our parameter-space saliency maps, we demonstrate that samples which cause similar parameters to malfunction are semantically similar. Further, we introduce an input-space saliency counterpart which reveals how image features cause specific network components to malfunction.
[ Hall J ]
Artificial neural networks for motor control usually adopt generic architectures like fully connected MLPs. While general, these tabula rasa architectures rely on large amounts of experience to learn, are not easily transferable to new bodies, and have internal dynamics that are difficult to interpret. In nature, animals are born with highly structured connectivity in their nervous systems shaped by evolution; this innate circuitry acts synergistically with learning mechanisms to provide inductive biases that enable most animals to function well soon after birth and learn efficiently. Convolutional networks inspired by visual circuitry have encoded useful biases for vision. However, it is unknown the extent to which ANN architectures inspired by neural circuitry can yield useful biases for other AI domains. In this work, we ask what advantages biologically inspired ANN architecture can provide in the domain of motor control. Specifically, we translate C. elegans locomotion circuits into an ANN model controlling a simulated Swimmer agent. On a locomotion task, our architecture achieves good initial performance and asymptotic performance comparable with MLPs, while dramatically improving data efficiency and requiring orders of magnitude fewer parameters. Our architecture is interpretable and transfers to new body designs. An ablation analysis shows that constrained excitation/inhibition is …
[ Hall J ]
[ Hall J ]
We study what dataset assumption permits solving offline two-player zero-sum Markov games. In stark contrast to the offline single-agent Markov decision process, we show that the single strategy concentration assumption is insufficient for learning the Nash equilibrium (NE) strategy in offline two-player zero-sum Markov games. On the other hand, we propose a new assumption named unilateral concentration and design a pessimism-type algorithm that is provably efficient under this assumption. In addition, we show that the unilateral concentration assumption is necessary for learning an NE strategy. Furthermore, our algorithm can achieve minimax sample complexity without any modification for two widely studied settings: dataset with uniform concentration assumption and turn-based Markov games. Our work serves as an important initial step towards understanding offline multi-agent reinforcement learning.
[ Hall J ]

Modern statistical estimation is often performed in a distributed setting where each sample belongs to single user who shares their data with a central server. Users are typically concerned with preserving the privacy of their sample, and also with minimizing the amount of data they must transmit to the server. We give improved private and communication-efficient algorithms for estimating several popular measures of the entropy of a distribution. All of our algorithms have constant communication cost and satisfy local differential privacy. For a joint distribution on many variables whose conditional independence graph is a tree, we describe algorithms for estimating Shannon entropy that require a number of samples that is linear in the number of variables, compared to the quadratic sample complexity of prior work. We also describe an algorithm for estimating Gini entropy whose sample complexity has no dependence on the support size of the distribution and can be implemented using a single round of concurrent communication between the users and the server, while the previously best-known algorithm has high communication cost and requires the server to facilitate interaction between the users. Finally, we describe an algorithm for estimating collision entropy that matches the space and sample complexity of …
[ Hall J ]

[ Hall J ]

[ Hall J ]

[ Hall J ]
[ Hall J ]

[ Hall J ]
[ Hall J ]

[ Hall J ]

[ Hall J ]

[ Hall J ]

We propose a very general framework for deriving rigorous bounds on the approximation error for physics-informed neural networks (PINNs) and operator learning architectures such as DeepONets and FNOs as well as for physics-informed operator learning. These bounds guarantee that PINNs and (physics-informed) DeepONets or FNOs will efficiently approximate the underlying solution or solution-operator of generic partial differential equations (PDEs). Our framework utilizes existing neural network approximation results to obtain bounds on more-involved learning architectures for PDEs. We illustrate the general framework by deriving the first rigorous bounds on the approximation error of physics-informed operator learning and by showing that PINNs (and physics-informed DeepONets and FNOs) mitigate the curse of dimensionality in approximating nonlinear parabolic PDEs.
[ Hall J ]
Zero-sum stochastic games have found important applications in a variety of fields, from machine learning to economics. Work on this model has primarily focused on the computation of Nash equilibrium due to its effectiveness in solving adversarial board and video games. Unfortunately, a Nash equilibrium is not guaranteed to exist in zero-sum stochastic games when the payoffs at each state are not convex-concave in the players' actions. A Stackelberg equilibrium, however, is guaranteed to exist. Consequently, in this paper, we study zero-sum stochastic Stackelberg games. Going beyond known existence results for (non-stationary) Stackelberg equilibria, we prove the existence of recursive (i.e., Markov perfect) Stackelberg equilibria (recSE) in these games, provide necessary and sufficient conditions for a policy profile to be a recSE, and show that recSE can be computed in (weakly) polynomial time via value iteration. Finally, we show that zero-sum stochastic Stackelberg games can model the problem of pricing and allocating goods across agents and time. More specifically, we propose a zero-sum stochastic Stackelberg game whose recSE correspond to the recursive competitive equilibria of a large class of stochastic Fisher markets. We close with a series of experiments that showcase how our methodology can be used to solve the …
[ Hall J ]

[ Hall J ]
[ Hall J ]
[ Hall J ]

[ Hall J ]

[ Hall J ]

[ Hall J ]

[ Hall J ]
[ Hall J ]

[ Hall J ]
[ Hall J ]

[ Hall J ]

[ Hall J ]
[ Hall J ]
[ Hall J ]

[ Hall J ]

[ Hall J ]

[ Hall J ]
Motivated by the statistical and computational challenges of computing Wasserstein distances in high-dimensional contexts, machine learning researchers have defined modified Wasserstein distances based on computing distances between one-dimensional projections of the measures. Different choices of how to aggregate these projected distances (averaging, random sampling, maximizing) give rise to different distances, requiring different statistical analyses. We define the \emph{Sliced Wasserstein Process}, a stochastic process defined by the empirical Wasserstein distance between projections of empirical probability measures to all one-dimensional subspaces, and prove a uniform distributional limit theorem for this process. As a result, we obtain a unified framework in which to prove sample complexity and distributional limit results for all Wasserstein distances based on one-dimensional projections. We illustrate these results on a number of examples where no distributional limits were previously known.
[ Hall J ]
We study the design of optimal Bayesian data acquisition mechanisms for a platform interested in estimating the mean of a distribution by collecting data from privacy-conscious users. In our setting, users have heterogeneous sensitivities for two types of privacy losses corresponding to local and central differential privacy measures. The local privacy loss is due to the leakage of a user's information when she shares her data with the platform, and the central privacy loss is due to the released estimate by the platform to the public. The users share their data in exchange for a payment (e.g., through monetary transfers or services) that compensates for their privacy losses. The platform does not know the privacy sensitivity of users and must design a mechanism to solicit their preferences and then deliver both local and central privacy guarantees while minimizing the estimation error plus the expected payment to users. We first establish minimax lower bounds for the estimation error, given a vector of privacy guarantees, and show that a linear estimator is (near) optimal. We then turn to our main goal: designing an optimal data acquisition mechanism. We establish that the design of such mechanisms in a Bayesian setting (where the platform …
[ Hall J ]

[ Hall J ]
The implicit bias of neural networks has been extensively studied in recent years. Lyu and Li (2019) showed that in homogeneous networks trained with the exponential or the logistic loss, gradient flow converges to a KKT point of the max margin problem in parameter space. However, that leaves open the question of whether this point will generally be an actual optimum of the max margin problem. In this paper, we study this question in detail, for several neural network architectures involving linear and ReLU activations. Perhaps surprisingly, we show that in many cases, the KKT point is not even a local optimum of the max margin problem. On the flip side, we identify multiple settings where a local or global optimum can be guaranteed.
[ Hall J ]

[ Hall J ]

The training of optimal decision tree via mixed-integer programming (MIP) has attracted much attention in recent literature. However, for large datasets, state-of-the-art approaches struggle to solve the optimal decision tree training problems to a provable global optimal solution within a reasonable time. In this paper, we reformulate the optimal decision tree training problem as a two-stage optimization problem and propose a tailored reduced-space branch and bound algorithm to train optimal decision tree for the classification tasks with continuous features. We present several structure-exploiting lower and upper bounding methods. The computation of bounds can be decomposed into the solution of many small-scale subproblems and can be naturally parallelized. With these bounding methods, we prove that our algorithm can converge by branching only on variables representing the optimal decision tree structure, which is invariant to the size of datasets. Moreover, we propose a novel sample reduction method that can predetermine the cost of part of samples at each BB node. Combining the sample reduction method with the parallelized bounding strategies, our algorithm can be extremely scalable. Our algorithm can find global optimal solutions on dataset with over 245,000 samples (1000 cores, less than 1% optimality gap, within 2 hours). We test 21 …
[ Hall J ]
[ Hall J ]

[ Hall J ]

Concept-based explanations permit to understand the predictions of a deep neural network (DNN) through the lens of concepts specified by users. Existing methods assume that the examples illustrating a concept are mapped in a fixed direction of the DNN's latent space. When this holds true, the concept can be represented by a concept activation vector (CAV) pointing in that direction. In this work, we propose to relax this assumption by allowing concept examples to be scattered across different clusters in the DNN's latent space. Each concept is then represented by a region of the DNN's latent space that includes these clusters and that we call concept activation region (CAR). To formalize this idea, we introduce an extension of the CAV formalism that is based on the kernel trick and support vector classifiers. This CAR formalism yields global concept-based explanations and local concept-based feature importance. We prove that CAR explanations built with radial kernels are invariant under latent space isometries. In this way, CAR assigns the same explanations to latent spaces that have the same geometry. We further demonstrate empirically that CARs offer (1) more accurate descriptions of how concepts are scattered in the DNN's latent space; (2) global explanations that …
[ Hall J ]
[ Hall J ]
[ Hall J ]

Recursion is the fundamental paradigm to finitely describe potentially infinite objects. As state-of-the-art reinforcement learning (RL) algorithms cannot directly reason about recursion, they must rely on the practitioner's ingenuity in designing a suitable "flat" representation of the environment. The resulting manual feature constructions and approximations are cumbersome and error-prone; their lack of transparency hampers scalability. To overcome these challenges, we develop RL algorithms capable of computing optimal policies in environments described as a collection of Markov decision processes (MDPs) that can recursively invoke one another. Each constituent MDP is characterized by several entry and exit points that correspond to input and output values of these invocations. These recursive MDPs (or RMDPs) are expressively equivalent to probabilistic pushdown systems (with call-stack playing the role of the pushdown stack), and can model probabilistic programs with recursive procedural calls. We introduce Recursive Q-learning---a model-free RL algorithm for RMDPs---and prove that it converges for finite, single-exit and deterministic multi-exit RMDPs under mild assumptions.
[ Hall J ]

[ Hall J ]
This paper studies a model learning and online planning approach towards building flexible and general robots. Specifically, we investigate how to exploit the locality and sparsity structures in the underlying environmental transition model to improve model generalization, data-efficiency, and runtime-efficiency. We present a new domain definition language, named PDSketch. It allows users to flexibly define high-level structures in the transition models, such as object and feature dependencies, in a way similar to how programmers use TensorFlow or PyTorch to specify kernel sizes and hidden dimensions of a convolutional neural network. The details of the transition model will be filled in by trainable neural networks. Based on the defined structures and learned parameters, PDSketch automatically generates domain-independent planning heuristics without additional training. The derived heuristics accelerate the performance-time planning for novel goals.
[ Hall J ]

Human-AI shared control allows human to interact and collaborate with autonomous agents to accomplish control tasks in complex environments. Previous Reinforcement Learning (RL) methods attempted goal-conditioned designs to achieve human-controllable policies at the cost of redesigning the reward function and training paradigm. Inspired by the neuroscience approach to investigate the motor cortex in primates, we develop a simple yet effective frequency-based approach called Policy Dissection to align the intermediate representation of the learned neural controller with the kinematic attributes of the agent behavior. Without modifying the neural controller or retraining the model, the proposed approach can convert a given RL-trained policy into a human-controllable policy. We evaluate the proposed approach on many RL tasks such as autonomous driving and locomotion. The experiments show that human-AI shared control system achieved by Policy Dissection in driving task can substantially improve the performance and safety in unseen traffic scenes. With human in the inference loop, the locomotion robots also exhibit versatile controllable motion skills even though they are only trained to move forward. Our results suggest the promising direction of implementing human-AI shared autonomy through interpreting the learned representation of the autonomous agents. Code and demo videos are available at https://metadriverse.github.io/policydissect
[ Hall J ]

We propose embodied scene-aware human pose estimation where we estimate 3D poses based on a simulated agent's proprioception and scene awareness, along with external third-person observations. Unlike prior methods that often resort to multistage optimization, non-causal inference, and complex contact modeling to estimate human pose and human scene interactions, our method is one-stage, causal, and recovers global 3D human poses in a simulated environment. Since 2D third-person observations are coupled with the camera pose, we propose to disentangle the camera pose and use a multi-step projection gradient defined in the global coordinate frame as the movement cue for our embodied agent. Leveraging a physics simulation and prescanned scenes (e.g., 3D mesh), we simulate our agent in everyday environments (library, office, bedroom, etc.) and equip our agent with environmental sensors to intelligently navigate and interact with the geometries of the scene. Our method also relies only on 2D keypoints and can be trained on synthetic datasets derived from popular human motion databases. To evaluate, we use the popular H36M and PROX datasets and achieve high quality pose estimation on the challenging PROX dataset without ever using PROX motion sequences for training. Code and videos are available on the project page.
[ Hall J ]

Sentence summarization aims at compressing a long sentence into a short one that keeps the main gist, and has extensive real-world applications such as headline generation. In previous work, researchers have developed various approaches to improve the ROUGE score, which is the main evaluation metric for summarization, whereas controlling the summary length has not drawn much attention. In our work, we address a new problem of explicit character-level length control for summarization, and propose a dynamic programming algorithm based on the Connectionist Temporal Classification (CTC) model. Results show that our approach not only achieves higher ROUGE scores but also yields more complete sentences.
[ Hall J ]

[ Hall J ]
Analyzing the spatiotemporal behavior of multiple agents is of great interest to many communities. Existing probabilistic models in this realm are formalized either in an unsupervised framework, where the latent space is described by discrete or continuous variables, or in a supervised framework, where weakly preserved labels add explicit information to continuous latent representations. To overcome inherent limitations, we propose a novel objective function for processing multi-agent trajectories based on semi-supervised variational autoencoders, where equivariance and interaction of agents are captured via customized graph networks. The resulting architecture disentangles discrete and continuous latent effects and provides a natural solution for injecting expensive domain knowledge into interactive sequential systems. Empirically, our model not only outperforms various state-of-the-art baselines in trajectory forecasting, but also learns to effectively leverage unsupervised multi-agent sequences for classification tasks on interactive real-world sports datasets.
[ Hall J ]

Solving inverse problems, such as parameter estimation and optimal control, is a vital part of science. Many experiments repeatedly collect data and rely on machine learning algorithms to quickly infer solutions to the associated inverse problems. We find that state-of-the-art training techniques are not well-suited to many problems that involve physical processes. The highly nonlinear behavior, common in physical processes, results in strongly varying gradients that lead first-order optimizers like SGD or Adam to compute suboptimal optimization directions.We propose a novel hybrid training approach that combines higher-order optimization methods with machine learning techniques. We take updates from a scale-invariant inverse problem solver and embed them into the gradient-descent-based learning pipeline, replacing the regular gradient of the physical process.We demonstrate the capabilities of our method on a variety of canonical physical systems, showing that it yields significant improvements on a wide range of optimization and learning problems.
[ Hall J ]

[ Hall J ]
A cursory reading of the literature suggests that we have made a lot of progress in designing effective adversarial defenses for Graph Neural Networks (GNNs). Yet, the standard methodology has a serious flaw – virtually all of the defenses are evaluated against non-adaptive attacks leading to overly optimistic robustness estimates. We perform a thorough robustness analysis of 7 of the most popular defenses spanning the entire spectrum of strategies, i.e., aimed at improving the graph, the architecture, or the training. The results are sobering – most defenses show no or only marginal improvement compared to an undefended baseline. We advocate using custom adaptive attacks as a gold standard and we outline the lessons we learned from successfully designing such attacks. Moreover, our diverse collection of perturbed graphs forms a (black-box) unit test offering a first glance at a model's robustness.
[ Hall J ]

Abstract Human-AI collaboration looks at harnessing the complementary strengths of both humans and AI. We propose a new method for human-AI collaboration in Bayesian optimisation where the optimum is mainly pursued by the Bayesian optimisation algorithm following complex computation, whilst getting occasional help from the accompanying expert having a deeper knowledge of the underlying physical phenomenon. We expect experts to have some understanding of the correlation structures of the experimental system, but not the location of the optimum. The expert provides feedback by either changing the current recommendation or providing her belief on the good and bad regions of the search space based on the current observations. Our proposed method takes such feedback to build a model that aligns with the expert’s model and then uses it for optimisation. We provide theoretical underpinning on why such an approach may be more efficient than the one without expert’s feedback. The empirical results show the robustness and superiority of our method with promising efficiency gains.
[ Hall J ]

Most complex machine learning and modelling techniques are prone to over-fitting and may subsequently generalise poorly to future data. Artificial neural networks are no different in this regard and, despite having a level of implicit regularisation when trained with gradient descent, often require the aid of explicit regularisers. We introduce a new framework, Model Gradient Similarity (MGS), that (1) serves as a metric of regularisation, which can be used to monitor neural network training, (2) adds insight into how explicit regularisers, while derived from widely different principles, operate via the same mechanism underneath by increasing MGS, and (3) provides the basis for a new regularisation scheme which exhibits excellent performance, especially in challenging settings such as high levels of label noise or limited sample sizes.
[ Hall J ]

Generating new molecules is fundamental to advancing critical applications such as drug discovery and material synthesis. Flows can generate molecules effectively by inverting the encoding process, however, existing flow models either require artifactual dequantization or specific node/edge orderings, lack desiderata such as permutation invariance, or induce discrepancy between encoding and decoding steps that necessitates post hoc validity correction. Inspired by graph PDEs, we circumvent these issues with novel continuous normalizing E(3)-equivariant flows, based on a system of coupled node ODEs, that repeatedly reconcile locally toward globally aligned densities. Our models can be cast as message passing temporal networks, and result in superlative density estimation and molecular generation. In particular, our generated samples achieve state of the art on both the standard QM9 and ZINC250K benchmarks.
[ Hall J ]

Error correction code is a major part of the physical communication layer, ensuring the reliable transfer of data over noisy channels.Recently, neural decoders were shown to outperform classical decoding techniques.However, the existing neural approaches present strong overfitting, due to the exponential training complexity, or a restrictive inductive bias, due to reliance on Belief Propagation.Recently, Transformers have become methods of choice in many applications, thanks to their ability to represent complex interactions between elements.In this work, we propose to extend for the first time the Transformer architecture to the soft decoding of linear codes at arbitrary block lengths.We encode each channel's output dimension to a high dimension for a better representation of the bits' information to be processed separately.The element-wise processing allows the analysis of channel output reliability, while the algebraic code and the interaction between the bits are inserted into the model via an adapted masked self-attention module.The proposed approach demonstrates the power and flexibility of Transformers and outperforms existing state-of-the-art neural decoders by large margins, at a fraction of their time complexity.
[ Hall J ]

We present BYOL-Explore, a conceptually simple yet general approach for curiosity-driven exploration in visually complex environments. BYOL-Explore learns the world representation, the world dynamics and the exploration policy all-together by optimizing a single prediction loss in the latent space with no additional auxiliary objective. We show that BYOL-Explore is effective in DM-HARD-8, a challenging partially-observable continuous-action hard-exploration benchmark with visually rich 3-D environment. On this benchmark, we solve the majority of the tasks purely through augmenting the extrinsic reward with BYOL-Explore intrinsic reward, whereas prior work could only get off the ground with human demonstrations. As further evidence of the generality of BYOL-Explore, we show that it achieves superhuman performance on the ten hardest exploration games in Atari while having a much simpler design than other competitive agents.
[ Hall J ]

This paper deals with deep transductive learning, and proposes TransBoost as a procedure for fine-tuning any deep neural model to improve its performance on any (unlabeled) test set provided at training time. TransBoost is inspired by a large margin principle and is efficient and simple to use. Our method significantly improves the ImageNet classification performance on a wide range of architectures, such as ResNets, MobileNetV3-L, EfficientNetB0, ViT-S, and ConvNext-T, leading to state-of-the-art transductive performance.Additionally we show that TransBoost is effective on a wide variety of image classification datasets. The implementation of TransBoost is provided at: https://github.com/omerb01/TransBoost .
[ Hall J ]

[ Hall J ]
Recent extensions of Cellular Automata (CA) have incorporated key ideas from modern deep learning, dramatically extending their capabilities and catalyzing a new family of Neural Cellular Automata (NCA) techniques. Inspired by Transformer-based architectures, our work presents a new class of attention-based NCAs formed using a spatially localized—yet globally organized—self-attention scheme. We introduce an instance of this class named Vision Transformer Cellular Automata (ViTCA). We present quantitative and qualitative results on denoising autoencoding across six benchmark datasets, comparing ViTCA to a U-Net, a U-Net-based CA baseline (UNetCA), and a Vision Transformer (ViT). When comparing across architectures configured to similar parameter complexity, ViTCA architectures yield superior performance across all benchmarks and for nearly every evaluation metric. We present an ablation study on various architectural configurations of ViTCA, an analysis of its effect on cell states, and an investigation on its inductive biases. Finally, we examine its learned representations via linear probes on its converged cell state hidden representations, yielding, on average, superior results when compared to our U-Net, ViT, and UNetCA baselines.
[ Hall J ]
[ Hall J ]
Reinforcement learning (RL) in long horizon and sparse reward tasks is notoriously difficult and requires a lot of training steps. A standard solution to speed up the process is to leverage additional reward signals, shaping it to better guide the learning process.In the context of language-conditioned RL, the abstraction and generalisation properties of the language input provide opportunities for more efficient ways of shaping the reward.In this paper, we leverage this idea and propose an automated reward shaping method where the agent extracts auxiliary objectives from the general language goal. These auxiliary objectives use a question generation (QG) and a question answering (QA) system: they consist of questions leading the agent to try to reconstruct partial information about the global goal using its own trajectory.When it succeeds, it receives an intrinsic reward proportional to its confidence in its answer. This incentivizes the agent to generate trajectories which unambiguously explain various aspects of the general language goal.Our experimental study using various BabyAI environments shows that this approach, which does not require engineer intervention to design the auxiliary objectives, improves sample efficiency by effectively directing the exploration.
[ Hall J ]

We present Variable Experience Rollout (VER), a technique for efficiently scaling batched on-policy reinforcement learning in heterogenous environments (where different environments take vastly different times to generate rollouts) to many GPUs residing on, potentially, many machines. VER combines the strengths of and blurs the line between synchronous and asynchronous on-policy RL methods (SyncOnRL and AsyncOnRL, respectively). Specifically, it learns from on-policy experience (like SyncOnRL) and has no synchronization points (like AsyncOnRL) enabling high throughput.We find that VER leads to significant and consistent speed-ups across a broad range of embodied navigation and mobile manipulation tasks in photorealistic 3D simulation environments. Specifically, for PointGoal navigation and ObjectGoal navigation in Habitat 1.0, VER is 60-100% faster (1.6-2x speedup) than DD-PPO, the current state of art for distributed SyncOnRL, with similar sample efficiency. For mobile manipulation tasks (open fridge/cabinet, pick/place objects) in Habitat 2.0 VER is 150% faster (2.5x speedup) on 1 GPU and 170% faster (2.7x speedup) on 8 GPUs than DD-PPO. Compared to SampleFactory (the current state-of-the-art AsyncOnRL), VER matches its speed on 1 GPU, and is 70% faster (1.7x speedup) on 8 GPUs with better sample efficiency.We leverage these speed-ups to train chained skills for GeometricGoal rearrangement tasks in the Home …
[ Hall J ]
Adder Neural Network (AdderNet) provides a new way for developing energy-efficient neural networks by replacing the expensive multiplications in convolution with cheaper additions (i.e., L1-norm). To achieve higher hardware efficiency, it is necessary to further study the low-bit quantization of AdderNet. Due to the limitation that the commutative law in multiplication does not hold in L1-norm, the well-established quantization methods on convolutional networks cannot be applied on AdderNets. Thus, the existing AdderNet quantization techniques propose to use only one shared scale to quantize both the weights and activations simultaneously. Admittedly, such an approach can keep the commutative law in the L1-norm quantization process, while the accuracy drop after low-bit quantization cannot be ignored. To this end, we first thoroughly analyze the difference on distributions of weights and activations in AdderNet and then propose a new quantization algorithm by redistributing the weights and the activations. Specifically, the pre-trained full-precision weights in different kernels are clustered into different groups, then the intra-group sharing and inter-group independent scales can be adopted. To further compensate the accuracy drop caused by the distribution difference, we then develop a lossless range clamp scheme for weights and a simple yet effective outliers clamp strategy for activations. Thus, …
[ Hall J ]

When we use the wisdom of the crowds, we usually rank the answers according to their popularity, especially when we cannot verify the answers. However, this can be very dangerous when the majority make systematic mistakes. A fundamental question arises: can we build a hierarchy among the answers without any prior where the higher-ranking answers, which may not be supported by the majority, are from more sophisticated people? To address the question, we propose 1) a novel model to describe people's thinking hierarchy; 2) two algorithms to learn the thinking hierarchy without any prior; 3) a novel open-response based crowdsourcing approach based on the above theoretic framework. In addition to theoretic justifications, we conduct four empirical crowdsourcing studies and show that a) the accuracy of the top-ranking answers learned by our approach is much higher than that of plurality voting (In one question, the plurality answer is supported by 74 respondents but the correct answer is only supported by 3 respondents. Our approach ranks the correct answer the highest without any prior); b) our model has a high goodness-of-fit, especially for the questions where our top-ranking answer is correct. To the best of our knowledge, we are the first to …
[ Hall J ]

How can we train an assistive human-machine interface (e.g., an electromyography-based limb prosthesis) to translate a user's raw command signals into the actions of a robot or computer when there is no prior mapping, we cannot ask the user for supervision in the form of action labels or reward feedback, and we do not have prior knowledge of the tasks the user is trying to accomplish? The key idea in this paper is that, regardless of the task, when an interface is more intuitive, the user's commands are less noisy. We formalize this idea as a completely unsupervised objective for optimizing interfaces: the mutual information between the user's command signals and the induced state transitions in the environment. To evaluate whether this mutual information score can distinguish between effective and ineffective interfaces, we conduct a large-scale observational study on 540K examples of users operating various keyboard and eye gaze interfaces for typing, controlling simulated robots, and playing video games. The results show that our mutual information scores are predictive of the ground-truth task completion metrics in a variety of domains, with an average Spearman's rank correlation of 0.43. In addition to offline evaluation of existing interfaces, we use our unsupervised …
[ Hall J ]

A recent goal in the theory of deep learning is to identify how neural networks can escape the “lazy training,” or Neural Tangent Kernel (NTK) regime, where the network is coupled with its first order Taylor expansion at initialization. While the NTK is minimax optimal for learning dense polynomials (Ghorbani et al, 2021), it cannot learn features, and hence has poor sample complexity for learning many classes of functions including sparse polynomials. Recent works have thus aimed to identify settings where gradient based algorithms provably generalize better than the NTK. One such example is the “QuadNTK” approach of Bai & Lee (2020), which analyzes the second-order term in the Taylor expansion. Bai & Lee (2020) show that the second-order term can learn sparse polynomials efficiently; however, it sacrifices the ability to learn general dense polynomials.In this paper, we analyze how gradient descent on a two-layer neural network can escape the NTK regime by utilizing a spectral characterization of the NTK (Montanari & Zhong, 2020) and building on the QuadNTK approach. We first expand upon the spectral analysis to identify “good” directions in parameter space in which we can move without harming generalization. Next, we show that a wide two-layer neural …
[ Hall J ]

[ Hall J ]

In this paper, we study dataset distillation (DD), from a novel perspective and introduce a \emph{dataset factorization} approach, termed \emph{HaBa}, which is a plug-and-play strategy portable to any existing DD baseline. Unlike conventional DD approaches that aim to produce distilled and representative samples, \emph{HaBa} explores decomposing a dataset into two components: data \emph{Ha}llucination networks and \emph{Ba}ses, where the latter is fed into the former to reconstruct image samples. The flexible combinations between bases and hallucination networks, therefore, equip the distilled data with exponential informativeness gain, which largely increase the representation capability of distilled datasets. To furthermore increase the data efficiency of compression results, we further introduce a pair of adversarial contrastive \xw{constraints} on the resultant hallucination networks and bases, which increase the diversity of generated images and inject more discriminant information into the factorization. Extensive comparisons and experiments demonstrate that our method can yield significant improvement on downstream classification tasks compared with previous state of the arts, while reducing the total number of compressed parameters by up to 65\%. Moreover, distilled datasets by our approach also achieve \textasciitilde10\% higher accuracy than baseline methods in cross-architecture generalization. Our code is available \href{https://github.com/Huage001/DatasetFactorization}{here}.
[ Hall J ]
Hippocampal place cells of freely moving rodents display an intriguing temporal organization in their responses known as `theta phase precession', in which individual neurons fire at progressively earlier phases in successive theta cycles as the animal traverses the place fields. Recent experimental studies found that in addition to phase precession, many place cells also exhibit accompanied phase procession, but the underlying neural mechanism remains unclear. Here, we propose a neural circuit model to elucidate the generation of both kinds of phase shift in place cells' firing. Specifically, we consider a continuous attractor neural network (CANN) with feedback inhibition, which is inspired by the reciprocal interaction between the hippocampus and the medial septum. The feedback inhibition induces intrinsic mobility of the CANN which competes with the extrinsic mobility arising from the external drive. Their interplay generates an oscillatory tracking state, that is, the network bump state (resembling the decoded virtual position of the animal) sweeps back and forth around the external moving input (resembling the physical position of the animal). We show that this oscillatory tracking naturally explains the forward and backward sweeps of the decoded position during the animal's locomotion. At the single neuron level, the forward and backward sweeps …
[ Hall J ]

Large and diverse datasets have been the cornerstones of many impressive advancements in artificial intelligence. Intelligent creatures, however, learn by interacting with the environment, which changes the input sensory signals and the state of the environment. In this work, we aim to bring the best of both worlds and propose an algorithm that exhibits an exploratory behavior whilst it utilizes large diverse datasets. Our key idea is to leverage deep generative models that are pretrained on static datasets and introduce a dynamic model in the latent space. The transition dynamics simply mixes an action and a random sampled latent. It then applies an exponential moving average for temporal persistency, the resulting latent is decoded to image using pretrained generator. We then employ an unsupervised reinforcement learning algorithm to explore in this environment and perform unsupervised representation learning on the collected data. We further leverage the temporal information of this data to pair data points as a natural supervision for representation learning. Our experiments suggest that the learned representations can be successfully transferred to downstream tasks in both vision and reinforcement learning domains.
[ Hall J ]
The automation of the medical evidence acquisition and diagnosis process has recently attracted increasing attention in order to reduce the workload of doctors and democratize access to medical care. However, most works proposed in the machine learning literature focus solely on improving the prediction accuracy of a patient's pathology. We argue that this objective is insufficient to ensure doctors' acceptability of such systems. In their initial interaction with patients, doctors do not only focus on identifying the pathology a patient is suffering from; they instead generate a differential diagnosis (in the form of a short list of plausible diseases) because the medical evidence collected from patients is often insufficient to establish a final diagnosis. Moreover, doctors explicitly explore severe pathologies before potentially ruling them out from the differential, especially in acute care settings. Finally, for doctors to trust a system's recommendations, they need to understand how the gathered evidences led to the predicted diseases. In particular, interactions between a system and a patient need to emulate the reasoning of doctors. We therefore propose to model the evidence acquisition and automatic diagnosis tasks using a deep reinforcement learning framework that considers three essential aspects of a doctor's reasoning, namely generating a …
[ Hall J ]
Effective decision making involves flexibly relating past experiences and relevant contextual information to a novel situation. In deep reinforcement learning (RL), the dominant paradigm is for an agent to amortise information that helps decision-making into its network weights via gradient descent on training losses. Here, we pursue an alternative approach in which agents can utilise large-scale context-sensitive database lookups to support their parametric computations. This allows agents to directly learn in an end-to-end manner to utilise relevant information to inform their outputs. In addition, new information can be attended to by the agent, without retraining, by simply augmenting the retrieval dataset. We study this approach for offline RL in 9x9 Go, a challenging game for which the vast combinatorial state space privileges generalisation over direct matching to past experiences. We leverage fast, approximate nearest neighbor techniques in order to retrieve relevant data from a set of tens of millions of expert demonstration states. Attending to this information provides a significant boost to prediction accuracy and game-play performance over simply using these demonstrations as training trajectories, providing a compelling demonstration of the value of large-scale retrieval in offline RL agents.
[ Hall J ]
In-context learning is the ability of a model to condition on a prompt sequence consisting of in-context examples (input-output pairs corresponding to some task) along with a new query input, and generate the corresponding output. Crucially, in-context learning happens only at inference time without any parameter updates to the model. While large language models such as GPT-3 exhibit some ability to perform in-context learning, it is unclear what the relationship is between tasks on which this succeeds and what is present in the training data. To investigate this, we consider the problem of training a model to in-context learn a function class (e.g., linear functions): given data derived from some functions in the class, can we train a model (e.g., a Transformer) to in-context learn most functions from that class? We show empirically that standard Transformers can be trained from scratch to perform in-context learning of linear functions---that is, the trained model is able to learn unseen linear functions from in-context examples with performance comparable to the optimal least squares estimator. In fact, in-context learning is possible even under two forms of distribution shift: (i) between the training data of the Transformer and inference-time prompts, and (ii) between the in-context …
[ Hall J ]

Imitation learning aims to extract high-performance policies from logged demonstrations of expert behavior. It is common to frame imitation learning as a supervised learning problem in which one fits a function approximator to the input-output mapping exhibited by the logged demonstrations (input observations to output actions). While the framing of imitation learning as a supervised input-output learning problem allows for applicability in a wide variety of settings, it is also an overly simplistic view of the problem in situations where the expert demonstrations provide much richer insight into expert behavior. For example, applications such as path navigation, robot manipulation, and strategy games acquire expert demonstrations via planning, search, or some other multi-step algorithm, revealing not just the output action to be imitated but also the procedure for how to determine this action. While these intermediate computations may use tools not available to the agent during inference (e.g., environment simulators), they are nevertheless informative as a way to explain an expert’s mapping of state to actions. To properly leverage expert procedure information without relying on the privileged tools the expert may have used to perform the procedure, we propose procedure cloning, which applies supervised sequence prediction to imitate the complete series …
[ Hall J ]

From optimal transport to robust dimensionality reduction, many machine learning applicationscan be cast into the min-max optimization problems over Riemannian manifolds. Though manymin-max algorithms have been analyzed in the Euclidean setting, it has been elusive how theseresults translate to the Riemannian case. Zhang et al. (2022) have recently identified that geodesic convexconcave Riemannian problems admit always Sion’s saddle point solutions. Immediately, an importantquestion that arises is if a performance gap between the Riemannian and the optimal Euclidean spaceconvex concave algorithms is necessary. Our work is the first to answer the question in the negative:We prove that the Riemannian corrected extragradient (RCEG) method achieves last-iterate at alinear convergence rate at the geodesically strongly convex concave case, matching the euclidean one.Our results also extend to the stochastic or non-smooth case where RCEG & Riemanian gradientascent descent (RGDA) achieve respectively near-optimal convergence rates up to factors dependingon curvature of the manifold. Finally, we empirically demonstrate the effectiveness of RCEG insolving robust PCA.
[ Hall J ]
Nonlinear independent component analysis (ICA) aims to recover the underlying independent latent sources from their observable nonlinear mixtures. How to make the nonlinear ICA model identifiable up to certain trivial indeterminacies is a long-standing problem in unsupervised learning. Recent breakthroughs reformulate the standard independence assumption of sources as conditional independence given some auxiliary variables (e.g., class labels and/or domain/time indexes) as weak supervision or inductive bias. However, nonlinear ICA with unconditional priors cannot benefit from such developments. We explore an alternative path and consider only assumptions on the mixing process, such as Structural Sparsity. We show that under specific instantiations of such constraints, the independent latent sources can be identified from their nonlinear mixtures up to a permutation and a component-wise transformation, thus achieving nontrivial identifiability of nonlinear ICA without auxiliary variables. We provide estimation methods and validate the theoretical results experimentally. The results on image data suggest that our conditions may hold in a number of practical data generating processes.
[ Hall J ]

The spectacular successes of recurrent neural network models where key parameters are adjusted via backpropagation-based gradient descent have inspired much thought as to how biological neuronal networks might solve the corresponding synaptic credit assignment problem [1, 2, 3]. There is so far little agreement, however, as to how biological networks could implement the necessary backpropagation through time, given widely recognized constraints of biological synaptic network signaling architectures. Here, we propose that extra-synaptic diffusion of local neuromodulators such as neuropeptides may afford an effective mode of backpropagation lying within the bounds of biological plausibility. Going beyond existing temporal truncation-based gradient approximations [4, 5, 6], our approximate gradient-based update rule, ModProp, propagates credit information through arbitrary time steps. ModProp suggests that modulatory signals can act on receiving cells by convolving their eligibility traces via causal, time-invariant and synapse-type-specific filter taps. Our mathematical analysis of ModProp learning, together with simulation results on benchmark temporal tasks, demonstrate the advantage of ModProp over existing biologically-plausible temporal credit assignment rules. These results suggest a potential neuronal mechanism for signaling credit information related to recurrent interactions over a longer time horizon. Finally, we derive an in-silico implementation of ModProp that could serve as a low-complexity and causal …
[ Hall J ]

We explore the application of a nonlinear MCMC technique first introduced in [1] to problems in Bayesian machine learning. We provide a convergence guarantee in total variation that uses novel results for long-time convergence and large-particle (``propagation of chaos'') convergence. We apply this nonlinear MCMC technique to sampling problems including a Bayesian neural network on CIFAR10.
[ Hall J ]

In this paper we show that feedforward neural networks corresponding to arbitrary directed acyclic graphs undergo transition to linearity as their ``width'' approaches infinity. The width of these general networks is characterized by the minimum in-degree of their neurons, except for the input and first layers. Our results identify the mathematical structure underlying transition to linearity and generalize a number of recent works aimed at characterizing transition to linearity or constancy of the Neural Tangent Kernel for standard architectures.
[ Hall J ]

[ Hall J ]

[ Hall J ]

[ Hall J ]

The standard supervised learning paradigm works effectively when training data shares the same distribution as the upcoming testing samples. However, this stationary assumption is often violated in real-world applications, especially when testing data appear in an online fashion. In this paper, we formulate and investigate the problem of \emph{online label shift} (OLaS): the learner trains an initial model from the labeled offline data and then deploys it to an unlabeled online environment where the underlying label distribution changes over time but the label-conditional density does not. The non-stationarity nature and the lack of supervision make the problem challenging to be tackled. To address the difficulty, we construct a new unbiased risk estimator that utilizes the unlabeled data, which exhibits many benign properties albeit with potential non-convexity. Building upon that, we propose novel online ensemble algorithms to deal with the non-stationarity of the environments. Our approach enjoys optimal \emph{dynamic regret}, indicating that the performance is competitive with a clairvoyant who knows the online environments in hindsight and then chooses the best decision for each round. The obtained dynamic regret bound scales with the intensity and pattern of label distribution shift, hence exhibiting the adaptivity in the OLaS problem. Extensive experiments are …
[ Hall J ]
Subgraph GNNs are a recent class of expressive Graph Neural Networks (GNNs) which model graphs as collections of subgraphs. So far, the design space of possible Subgraph GNN architectures as well as their basic theoretical properties are still largely unexplored. In this paper, we study the most prominent form of subgraph methods, which employs node-based subgraph selection policies such as ego-networks or node marking and deletion. We address two central questions: (1) What is the upper-bound of the expressive power of these methods? and (2) What is the family of equivariant message passing layers on these sets of subgraphs?. Our first step in answering these questions is a novel symmetry analysis which shows that modelling the symmetries of node-based subgraph collections requires a significantly smaller symmetry group than the one adopted in previous works. This analysis is then used to establish a link between Subgraph GNNs and Invariant Graph Networks (IGNs). We answer the questions above by first bounding the expressive power of subgraph methods by 3-WL, and then proposing a general family of message-passing layers for subgraph methods that generalises all previous node-based Subgraph GNNs. Finally, we design a novel Subgraph GNN dubbed SUN, which theoretically unifies previous architectures …
[ Hall J ]
[ Hall J ]
[ Hall J ]

Strong inductive biases give humans the ability to quickly learn to perform a variety of tasks. Although meta-learning is a method to endow neural networks with useful inductive biases, agents trained by meta-learning may sometimes acquire very different strategies from humans. We show that co-training these agents on predicting representations from natural language task descriptions and programs induced to generate such tasks guides them toward more human-like inductive biases. Human-generated language descriptions and program induction models that add new learned primitives both contain abstract concepts that can compress description length. Co-training on these representations result in more human-like behavior in downstream meta-reinforcement learning agents than less abstract controls (synthetic language descriptions, program induction without learned primitives), suggesting that the abstraction supported by these representations is key.
[ Hall J ]
Recent studies have demonstrated that recommender systems (RecSys) are vulnerable to injective attacks.Given a limited fake user budget, attackers can inject fake users with carefully designed behaviors into the open platforms, making RecSys recommend a target item to more real users for profits. In this paper, we first revisit existing attackers and reveal that they suffer from the difficulty-agnostic and diversity-deficit issues. Existing attackers concentrate their efforts on difficult users who have low tendencies toward the target item, thus reducing their effectiveness. Moreover, they are incapable of affecting the target RecSys to recommend the target item to real users in a diverse manner, because their generated fake user behaviors are dominated by large communities. To alleviate these two issues, we propose a difficulty and diversity aware attacker, namely DADA. We design the difficulty-aware and diversity-aware objectives to enable easy users from various communities to contribute more weights when optimizing attackers. By incorporating these two objectives, the proposed attacker DADA can concentrate on easy users while also affecting a broader range of real users simultaneously, thereby boosting the effectiveness. Extensive experiments on three real-world datasets demonstrate the effectiveness of our proposed attacker.
[ Hall J ]

PointNet++ is one of the most influential neural architectures for point cloud understanding. Although the accuracy of PointNet++ has been largely surpassed by recent networks such as PointMLP and Point Transformer, we find that a large portion of the performance gain is due to improved training strategies, i.e. data augmentation and optimization techniques, and increased model sizes rather than architectural innovations. Thus, the full potential of PointNet++ has yet to be explored. In this work, we revisit the classical PointNet++ through a systematic study of model training and scaling strategies, and offer two major contributions. First, we propose a set of improved training strategies that significantly improve PointNet++ performance. For example, we show that, without any change in architecture, the overall accuracy (OA) of PointNet++ on ScanObjectNN object classification can be raised from 77.9% to 86.1%, even outperforming state-of-the-art PointMLP. Second, we introduce an inverted residual bottleneck design and separable MLPs into PointNet++ to enable efficient and effective model scaling and propose PointNeXt, the next version of PointNets. PointNeXt can be flexibly scaled up and outperforms state-of-the-art methods on both 3D classification and segmentation tasks. For classification, PointNeXt reaches an overall accuracy of 87.7 on ScanObjectNN, surpassing PointMLP by 2.3%, …
[ Hall J ]
Sequential Monte Carlo (SMC) is an inference algorithm for state space models that approximates the posterior by sampling from a sequence of target distributions. The target distributions are often chosen to be the filtering distributions, but these ignore information from future observations, leading to practical and theoretical limitations in inference and model learning. We introduce SIXO, a method that instead learns target distributions that approximate the smoothing distributions, incorporating information from all observations. The key idea is to use density ratio estimation to fit functions that warp the filtering distributions into the smoothing distributions. We then use SMC with these learned targets to define a variational objective for model and proposal learning. SIXO yields provably tighter log marginal lower bounds and offers more accurate posterior inferences and parameter estimates in a variety of domains.
[ Hall J ]

[ Hall J ]
Despite a surge of recent advances in promoting machine Learning (ML) fairness, the existing mainstream approaches mostly require training or finetuning the entire weights of the neural network to meet the fairness criteria. However, this is often infeasible in practice for those large-scale trained models due to large computational and storage costs, low data efficiency, and model privacy issues. In this paper, we propose a new generic fairness learning paradigm, called FairReprogram, which incorporates the model reprogramming technique. Specifically, FairReprogram considers the case where models can not be changed and appends to the input a set of perturbations, called the fairness trigger, which is tuned towards the fairness criteria under a min-max formulation. We further introduce an information-theoretic framework that explains why and under what conditions fairness goals can be achieved using the fairness trigger. We show both theoretically and empirically that the fairness trigger can effectively obscure demographic biases in the output prediction of fixed ML models by providing false demographic information that hinders the model from utilizing the correct demographic information to make the prediction. Extensive experiments on both NLP and CV datasets demonstrate that our method can achieve better fairness improvements than retraining-based methods with far less …
[ Hall J ]

Releasing all pairwise shortest path (APSP) distances between vertices on general graphs under weight Differential Privacy (DP) is known as a challenging task. In previous work, to achieve DP with some fixed budget, with high probability the maximal absolute error among all published pairwise distances is roughly O(n) where n is the number of nodes. It was shown that this error could be reduced for some special graphs, which, however, is hard for general graphs. Therefore, whether the approximation error can be reduced to sublinear is posted as an interesting open problem.In this paper, we break the linear barrier on the distance approximation error of previous result, by proposing an algorithm that releases a constructed synthetic graph privately. Computing all pairwise distances on the constructed graph only introduces O(n^{1/2}) error in answering all pairwise shortest path distances for fixed privacy parameter. Our method is based on a novel graph diameter (link length) augmentation via constructing ``shortcuts'' for the paths. By adding a set of shortcut edges to the original graph, we show that any node pair has a shortest path with link length O(n^{1/2}). Then by adding noises with some positive mean to the edge weights, the new graph is …
[ Hall J ]

Practical online learning tasks are often naturally defined on unconstrained domains, where optimal algorithms for general convex losses are characterized by the notion of comparator adaptivity. In this paper, we design such algorithms in the presence of switching cost - the latter penalizes the typical optimism in adaptive algorithms, leading to a delicate design trade-off. Based on a novel dual space scaling strategy discovered by a continuous-time analysis, we propose a simple algorithm that improves the existing comparator adaptive regret bound [ZCP22a] to the optimal rate. The obtained benefits are further extended to the expert setting, and the practicality of the proposed algorithm is demonstrated through a sequential investment task.
[ Hall J ]

[ Hall J ]

We propose a general purpose Bayesian inference algorithm for expensive likelihoods, replacing the stochastic term in the Langevin equation with a deterministic density gradient term. The particle density is evaluated from the current particle positions using a Normalizing Flow (NF), which is differentiable and has good generalization properties in high dimensions. We take advantage of NF preconditioning and NF based Metropolis-Hastings updates for a faster convergence. We show on various examples that the method is competitive against state of the art sampling methods.
[ Hall J ]

[ Hall J ]

Given a long list of anomaly detection algorithms developed in the last few decades, how do they perform with regard to (i) varying levels of supervision, (ii) different types of anomalies, and (iii) noisy and corrupted data? In this work, we answer these key questions by conducting (to our best knowledge) the most comprehensive anomaly detection benchmark with 30 algorithms on 57 benchmark datasets, named ADBench. Our extensive experiments (98,436 in total) identify meaningful insights into the role of supervision and anomaly types, and unlock future directions for researchers in algorithm selection and design. With ADBench, researchers can easily conduct comprehensive and fair evaluations for newly proposed methods on the datasets (including our contributed ones from natural language and computer vision domains) against the existing baselines. To foster accessibility and reproducibility, we fully open-source ADBench and the corresponding results.
[ Hall J ]

[ Hall J ]

Detecting which nodes in graphs are outliers is a relatively new machine learning task with numerous applications. Despite the proliferation of algorithms developed in recent years for this task, there has been no standard comprehensive setting for performance evaluation. Consequently, it has been difficult to understand which methods work well and when under a broad range of settings. To bridge this gap, we present—to the best of our knowledge—the first comprehensive benchmark for unsupervised outlier node detection on static attributed graphs called BOND, with the following highlights. (1) We benchmark the outlier detection performance of 14 methods ranging from classical matrix factorization to the latest graph neural networks. (2) Using nine real datasets, our benchmark assesses how the different detection methods respond to two major types of synthetic outliers and separately to “organic” (real non-synthetic) outliers. (3) Using an existing random graph generation technique, we produce a family of synthetically generated datasets of different graph sizes that enable us to compare the running time and memory usage of the different outlier detection algorithms. Based on our experimental results, we discuss the pros and cons of existing graph outlier detection algorithms, and we highlight opportunities for future research. Importantly, our code …
[ Hall J ]

High-quality data is necessary for modern machine learning. However, the acquisition of such data is difficult due to noisy and ambiguous annotations of humans. The aggregation of such annotations to determine the label of an image leads to a lower data quality. We propose a data-centric image classification benchmark with nine real-world datasets and multiple annotations per image to allow researchers to investigate and quantify the impact of such data quality issues. With the benchmark we can study the impact of annotation costs and (semi-)supervised methods on the data quality for image classification by applying a novel methodology to a range of different algorithms and diverse datasets. Our benchmark uses a two-phase approach via a data label improvement method in the first phase and a fixed evaluation model in the second phase. Thereby, we give a measure for the relation between the input labeling effort and the performance of (semi-)supervised algorithms to enable a deeper insight into how labels should be created for effective model training. Across thousands of experiments, we show that one annotation is not enough and that the inclusion of multiple annotations allows for a better approximation of the real underlying class distribution. We identify that hard …
[ Hall J ]

Recent breakthroughs in the development of agents to solve challenging sequential decision making problems such as Go, StarCraft, or DOTA, have relied on both simulated environments and large-scale datasets. However, progress on this research has been hindered by the scarcity of open-sourced datasets and the prohibitive computational cost to work with them. Here we present the NetHack Learning Dataset (NLD), a large and highly-scalable dataset of trajectories from the popular game of NetHack, which is both extremely challenging for current methods and very fast to run. NLD consists of three parts: 10 billion state transitions from 1.5 million human trajectories collected on the NAO public NetHack server from 2009 to 2020; 3 billion state-action-score transitions from 100,000 trajectories collected from the symbolic bot winner of the NetHack Challenge 2021; and, accompanying code for users to record, load and stream any collection of such trajectories in a highly compressed form. We evaluate a wide range of existing algorithms for learning from demonstrations, showing that significant research advances are needed to fully leverage large-scale datasets for challenging sequential decision making tasks.
[ Hall J ]

This paper introduces Honor of Kings Arena, a reinforcement learning (RL) environment based on the Honor of Kings, one of the world’s most popular games at present. Compared to other environments studied in most previous work, ours presents new generalization challenges for competitive reinforcement learning. It is a multi-agent problem with one agent competing against its opponent; and it requires the generalization ability as it has diverse targets to control and diverse opponents to compete with. We describe the observation, action, and reward specifications for the Honor of Kings domain and provide an open-source Python-based interface for communicating with the game engine. We provide twenty target heroes with a variety of tasks in Honor of Kings Arena and present initial baseline results for RL-based methods with feasible computing resources. Finally, we showcase the generalization challenges imposed by Honor of Kings Arena and possible remedies to the challenges. All of the software, including the environment-class, are publicly available.
[ Hall J ]

We introduce VISOR, a new dataset of pixel annotations and a benchmark suite for segmenting hands and active objects in egocentric video. VISOR annotates videos from EPIC-KITCHENS, which comes with a new set of challenges not encountered in current video segmentation datasets. Specifically, we need to ensure both short- and long-term consistency of pixel-level annotations as objects undergo transformative interactions, e.g. an onion is peeled, diced and cooked - where we aim to obtain accurate pixel-level annotations of the peel, onion pieces, chopping board, knife, pan, as well as the acting hands. VISOR introduces an annotation pipeline, AI-powered in parts, for scalability and quality. In total, we publicly release 272K manual semantic masks of 257 object classes, 9.9M interpolated dense masks, 67K hand-object relations, covering 36 hours of 179 untrimmed videos. Along with the annotations, we introduce three challenges in video object segmentation, interaction understanding and long-term reasoning.For data, code and leaderboards: http://epic-kitchens.github.io/VISOR
[ Hall J ]

Understanding human tasks through video observations is an essential capability of intelligent agents. The challenges of such capability lie in the difficulty of generating a detailed understanding of situated actions, their effects on object states (\ie, state changes), and their causal dependencies. These challenges are further aggravated by the natural parallelism from multi-tasking and partial observations in multi-agent collaboration. Most prior works leverage action localization or future prediction as an \textit{indirect} metric for evaluating such task understanding from videos. To make a \textit{direct} evaluation, we introduce the EgoTaskQA benchmark that provides a single home for the crucial dimensions of task understanding through question answering on real-world egocentric videos. We meticulously design questions that target the understanding of (1) action dependencies and effects, (2) intents and goals, and (3) agents' beliefs about others. These questions are divided into four types, including descriptive (what status?), predictive (what will?), explanatory (what caused?), and counterfactual (what if?) to provide diagnostic analyses on \textit{spatial, temporal, and causal} understandings of goal-oriented tasks. We evaluate state-of-the-art video reasoning models on our benchmark and show their significant gaps between humans in understanding complex goal-oriented egocentric videos. We hope this effort would drive the vision community to move onward …
[ Hall J ]
The use of cameras and computational algorithms for noninvasive, low-cost and scalable measurement of physiological (e.g., cardiac and pulmonary) vital signs is very attractive. However, diverse data representing a range of environments, body motions, illumination conditions and physiological states is laborious, time consuming and expensive to obtain. Synthetic data have proven a valuable tool in several areas of machine learning, yet are not widely available for camera measurement of physiological states. Synthetic data offer "perfect" labels (e.g., without noise and with precise synchronization), labels that may not be possible to obtain otherwise (e.g., precise pixel level segmentation maps) and provide a high degree of control over variation and diversity in the dataset. We present SCAMPS, a dataset of synthetics containing 2,800 videos (1.68M frames) with aligned cardiac and respiratory signals and facial action intensities. The RGB frames are provided alongside segmentation maps and precise descriptive statistics about the underlying waveforms, including inter-beat interval, heart rate variability, and pulse arrival time. Finally, we present baseline results training on these synthetic data and testing on real-world datasets to illustrate generalizability.
[ Hall J ]
Facial analysis systems have been deployed by large companies and critiqued by scholars and activists for the past decade. Many existing algorithmic audits examine the performance of these systems on later stage elements of facial analysis systems like facial recognition and age, emotion, or perceived gender prediction; however, a core component to these systems has been vastly understudied from a fairness perspective: face detection, sometimes called face localization. Since face detection is a pre-requisite step in facial analysis systems, the bias we observe in face detection will flow downstream to the other components like facial recognition and emotion prediction. Additionally, no prior work has focused on the robustness of these systems under various perturbations and corruptions, which leaves open the question of how various people are impacted by these phenomena. We present the first of its kind detailed benchmark of face detection systems, specifically examining the robustness to noise of commercial and academic models. We use both standard and recently released academic facial datasets to quantitatively analyze trends in face detection robustness. Across all the datasets and systems, we generally find that photos of individuals who are masculine presenting, older, of darker skin type, or have dim lighting are more …
[ Hall J ]

[ Hall J ]
Building machines that can reason about physical events and their causal relationships is crucial for flexible interaction with the physical world. However, most existing physical and causal reasoning benchmarks are exclusively based on synthetically generated events and synthetic natural language descriptions of the causal relationships. This design brings up two issues. First, there is a lack of diversity in both event types and natural language descriptions; second, causal relationships based on manually-defined heuristics are different from human judgments. To address both shortcomings, we present the CLEVRER-Humans benchmark, a video reasoning dataset for causal judgment of physical events with human labels. We employ two techniques to improve data collection efficiency: first, a novel iterative event cloze task to elicit a new representation of events in videos, which we term Causal Event Graphs (CEGs); second, a data augmentation technique based on neural language generative models. We convert the collected CEGs into questions and answers to be consistent with prior work. Finally, we study a collection of baseline approaches for CLEVRER-Humans question-answering, highlighting great challenges set forth by our benchmark.
[ Hall J ]

Current state-of-the-art vision-and-language models are evaluated on tasks either individually or in a multi-task setting, overlooking the challenges of continually learning (CL) tasks as they arrive. Existing CL benchmarks have facilitated research on task adaptation and mitigating "catastrophic forgetting", but are limited to vision-only and language-only tasks. We present CLiMB, a benchmark to study the challenge of learning multimodal tasks in a CL setting, and to systematically evaluate how upstream continual learning can rapidly generalize to new multimodal and unimodal tasks. CLiMB includes implementations of several CL algorithms and a modified Vision-Language Transformer (ViLT) model that can be deployed on both multimodal and unimodal tasks. We find that common CL methods can help mitigate forgetting during multimodal task learning, but do not enable cross-task knowledge transfer. We envision that CLiMB will facilitate research on a new class of CL algorithms for this challenging multimodal setting.
[ Hall J ]
Clinical diagnosis of the eye is performed over multifarious data modalities including scalar clinical labels, vectorized biomarkers, two-dimensional fundus images, and three-dimensional Optical Coherence Tomography (OCT) scans. Clinical practitioners use all available data modalities for diagnosing and treating eye diseases like Diabetic Retinopathy (DR) or Diabetic Macular Edema (DME). Enabling usage of machine learning algorithms within the ophthalmic medical domain requires research into the relationships and interactions between all relevant data over a treatment period. Existing datasets are limited in that they neither provide data nor consider the explicit relationship modeling between the data modalities. In this paper, we introduce the Ophthalmic Labels for Investigating Visual Eye Semantics (OLIVES) dataset that addresses the above limitation. This is the first OCT and near-IR fundus dataset that includes clinical labels, biomarker labels, disease labels, and time-series patient treatment information from associated clinical trials. The dataset consists of 1268 near-IR fundus images each with at least 49 OCT scans, and 16 biomarkers, along with 4 clinical labels and a disease diagnosis of DR or DME. In total, there are 96 eyes' data averaged over a period of at least two years with each eye treated for an average of 66 weeks and 7 …
[ Hall J ]
For the deployment of artificial intelligence (AI) in high risk settings, such as healthcare, methods that provide interpretability/explainability or allow fine-grained error analysis are critical. Many recent methods for interpretability/explainability and fine-grained error analysis use concepts, which are meta-labels which are semantically meaningful to humans. However, there are only a few datasets that include concept-level meta-labels and most of these meta-labels are relevant for natural images that do not require domain expertise. Previous densely annotated datasets in medicine focused on meta-labels that are relevant to a single disease such as osteoarthritis or melanoma. In dermatology, skin disease is described using an established clinical lexicon that allow clinicians to describe physical exam findings to one another. To provide the first medical dataset densely annotated by domain experts to provide annotations useful across multiple disease processes, we developed SkinCon: a skin disease dataset densely annotated by dermatologists. SkinCon includes 3230 images from the Fitzpatrick 17k skin disease dataset densely annotated with 48 clinical concepts, 22 of which have at least 50 images representing the concept. The concepts used were chosen by two dermatologists considering the clinical descriptor terms used to describe skin lesions. Examples include "plaque", "scale", and "erosion". These same concepts …
[ Hall J ]

Computational inference of aesthetics is an ill-defined task due to its subjective nature. Many datasets have been proposed to tackle the problem by providing pairs of images and aesthetic scores based on human ratings. However, humans are better at expressing their opinion, taste, and emotions by means of language rather than summarizing them in a single number. In fact, photo critiques provide much richer information as they reveal how and why users rate the aesthetics of visual stimuli. In this regard, we propose the Reddit Photo Critique Dataset (RPCD), which contains tuples of image and photo critiques. RPCD consists of 74K images and 220K comments and is collected from a Reddit community used by hobbyists and professional photographers to improve their photography skills by leveraging constructive community feedback. The proposed dataset differs from previous aesthetics datasets mainly in three aspects, namely (i) the large scale of the dataset and the extension of the comments criticizing different aspects of the image, (ii) it contains mostly UltraHD images, and (iii) it can easily be extended to new data as it is collected through an automatic pipeline. To the best of our knowledge, in this work, we propose the first attempt to estimate …
[ Hall J ]

Post-processing ensemble prediction systems can improve the reliability of weather forecasting, especially for extreme event prediction. In recent years, different machine learning models have been developed to improve the quality of weather post-processing. However, these models require a comprehensive dataset of weather simulations to produce high-accuracy results, which comes at a high computational cost to generate. This paper introduces the ENS-10 dataset, consisting of ten ensemble members spanning 20 years (1998--2017). The ensemble members are generated by perturbing numerical weather simulations to capture the chaotic behavior of the Earth. To represent the three-dimensional state of the atmosphere, ENS-10 provides the most relevant atmospheric variables at 11 distinct pressure levels and the surface at \ang{0.5} resolution for forecast lead times T=0, 24, and 48 hours (two data points per week). We propose the ENS-10 prediction correction task for improving the forecast quality at a 48-hour lead time through ensemble post-processing. We provide a set of baselines and compare their skill at correcting the predictions of three important atmospheric variables. Moreover, we measure the baselines' skill at improving predictions of extreme weather events using our dataset. The ENS-10 dataset is available under the Creative Commons Attribution 4.0 International (CC BY 4.0) license.
[ Hall J ]

[ Hall J ]

Video-quality measurement is a critical task in video processing. Nowadays, many implementations of new encoding standards - such as AV1, VVC, and LCEVC - use deep-learning-based decoding algorithms with perceptual metrics that serve as optimization objectives. But investigations of the performance of modern video- and image-quality metrics commonly employ videos compressed using older standards, such as AVC. In this paper, we present a new benchmark for video-quality metrics that evaluates video compression. It is based on a new dataset consisting of about 2,500 streams encoded using different standards, including AVC, HEVC, AV1, VP9, and VVC. Subjective scores were collected using crowdsourced pairwise comparisons. The list of evaluated metrics includes recent ones based on machine learning and neural networks. The results demonstrate that new no-reference metrics exhibit high correlation with subjective quality and approach the capability of top full-reference metrics.
[ Hall J ]

Named Entity Recognition and Disambiguation (NERD) systems are foundational for information retrieval, question answering, event detection, and other natural language processing (NLP) applications. We introduce TweetNERD, a dataset of 340K+ Tweets across 2010-2021, for benchmarking NERD systems on Tweets. This is the largest and most temporally diverse open sourced dataset benchmark for NERD on Tweets and can be used to facilitate research in this area. We describe evaluation setup with TweetNERD for three NERD tasks: Named Entity Recognition (NER), Entity Linking with True Spans (EL), and End to End Entity Linking (End2End); and provide performance of existing publicly available methods on specific TweetNERD splits. TweetNERD is available at: https://doi.org/10.5281/zenodo.6617192 under Creative Commons Attribution 4.0 International (CC BY 4.0) license. Check out more details at https://github.com/twitter-research/TweetNERD.
[ Hall J ]

Training and evaluating language models increasingly requires the construction of meta-datasets -- diverse collections of curated data with clear provenance. Natural language prompting has recently lead to improved zero-shot generalization by transforming existing, supervised datasets into a variety of novel instruction tuning tasks, highlighting the benefits of meta-dataset curation. While successful in general-domain text, translating these data-centric approaches to biomedical language modeling remains challenging, as labeled biomedical datasets are significantly underrepresented in popular data hubs. To address this challenge, we introduce BigBio a community library of 126+ biomedical NLP datasets, currently covering 13 task categories and 10+ languages. BigBio facilitates reproducible meta-dataset curation via programmatic access to datasets and their metadata, and is compatible with current platforms for prompt engineering and end-to-end few/zero shot language model evaluation. We discuss our process for task schema harmonization, data auditing, contribution guidelines, and outline two illustrative use cases: zero-shot evaluation of biomedical prompts and large-scale, multi-task learning. BigBio is an ongoing community effort and is available at https://github.com/bigscience-workshop/biomedical
[ Hall J ]
In recent years, deep generative models have attracted increasing interest due to their capacity to model complex distributions. Among those models, variational autoencoders have gained popularity as they have proven both to be computationally efficient and yield impressive results in multiple fields. Following this breakthrough, extensive research has been done in order to improve the original publication, resulting in a variety of different VAE models in response to different tasks. In this paper we present \textbf{Pythae}, a versatile \textit{open-source} Python library providing both a \textit{unified implementation} and a dedicated framework allowing \textit{straightforward}, \emph{reproducible} and \textit{reliable} use of generative autoencoder models. We then propose to use this library to perform a case study benchmark where we present and compare 19 generative autoencoder models representative of some of the main improvements on downstream tasks such as image reconstruction, generation, classification, clustering and interpolation. The open-source library can be found at \url{https://github.com/clementchadebec/benchmark_VAE}.
[ Hall J ]

Among United Nations' 17 Sustainable Development Goals (SDGs), we highlight SDG 8 on Decent Work and Economic Growth. Specifically, we consider how to achieve subgoal 8.8, "protect labour rights and promote safe working environments for all workers [...]", in light of poor health, safety and environment (HSE) conditions being a widespread problem at workplaces. In EU alone, it is estimated that more than 4000 deaths occur each year due to poor working conditions. To handle the problem and achieve SDG 8, governmental agencies conduct labour inspections and it is therefore essential that these are carried out efficiently. Current research suggests that machine learning (ML) can be used to improve labour inspections, for instance by selecting organisations for inspections more effectively. However, the research in this area is very limited, in part due to a lack of publicly available data. Consequently, we introduce a new dataset called the Labour Inspection Checklists Dataset (LICD), which we have made publicly available. LICD consists of 63634 instances where each instance is an inspection conducted by the Norwegian Labour Inspection Authority. LICD has 577 features and labels. The dataset provides several ML research opportunities; we discuss two demonstration experiments. One experiment deals with the problem …
[ Hall J ]

[ Hall J ]

[ Hall J ]
Modern biomedical studies often collect multi-view data, that is, multiple types of data measured on the same set of objects. A popular model in high-dimensional multi-view data analysis is to decompose each view’s data matrix into a low-rank common-source matrix generated by latent factors common across all data views, a low-rank distinctive-source matrix corresponding to each view, and an additive noise matrix. We propose a novel decomposition method for this model, called decomposition-based generalized canonical correlation analysis (D-GCCA). The D-GCCA rigorously defines the decomposition on the L2 space of random variables in contrast to the Euclidean dot product space used by most existing methods, thereby being able to provide the estimation consistency for the low-rank matrix recovery. Moreover, to well calibrate common latent factors, we impose a desirable orthogonality constraint on distinctive latent factors. Existing methods, however, inadequately consider such orthogonality and may thus suffer from substantial loss of undetected common-source variation. Our D-GCCA takes one step further than generalized canonical correlation analysis by separating common and distinctive components among canonical variables, while enjoying an appealing interpretation from the perspective of principal component analysis. Furthermore, we propose to use the variable-level proportion of signal variance explained by common or distinctive …
[ Hall J ]

[ Hall J ]

This work aims to reproduce Lang et al.'s StylEx which proposes a novel approach to explain how a classifier makes its decision. They claim that StylEx creates a post-hoc counterfactual explanation whose principal attributes correspond to properties that are intuitive to humans. The paper boasts a large range of real-world practicality. However, StylEx proves difficult to reproduce due to its time complexity and holes in the information provided. This paper tries to fill in these holes by: i) re-implementation of StylEx in a different framework, ii) creating a low resource training benchmark.
[ Hall J ]

Scope of Reproducibility The authors of the paper, which we reproduced, introduce a method that is claimed to improve the isotropy (a measure of uniformity) of the space of Contextual Word Representations (CWRs), outputted by models such as BERT or GPT-2. As a result, the method would mitigate the problem of very high correlation between arbitrary embeddings of such models. Additionally, the method is claimed to remove some syntactic information embedded in CWRs, resulting in better performance on semantic NLP tasks. To verify these claims, we reproduce all experiments described in the paper. Methodology We used the authors' Python implementation of the proposed cluster-based method, which we verified against our own implementation based on the description in the paper. We re-implemented the global method based on the paper from Mu and Viswanath, which the cluster-based method was primarily compared with. Additionally, we re-implemented all of the experiments based on descriptions in the paper and our communication with the authors. Results We found that the cluster-based method does indeed consistently noticeably increase the isotropy of a set of CWRs over the global method. However, when it comes to semantic tasks, we found that the cluster-based method performs better than the global …
[ Hall J ]

We evaluate the following claims related to fairness-based objective functions presented in the original work: (1) For the four objective functions, the success rate in the worst-off neighborhood increases monotonically with respect to the overall success rate. (2) The proposed objective functions do not lead to a higher income for the lowest-earning drivers, nor a higher total income, compared to a request-maximizing objective function. (3) The driver-side fairness objective can outperform a request-maximizing objective in terms of overall success rate and success rate in the worst-off neighborhood. We evaluate the claims by the original authors by (a) replicating their experiments, (b) testing for sensitivity to a different value estimator, (c) examining sensitivity to changes in the preprocessing method, and (d) testing for generalizability by applying their method to a different dataset. We reproduced the first claim since we observed the same monotonic increase of the success rate in the worst-off neighborhood with respect to the overall success rate. The second claim we did not reproduce, since we found that the driver-side fairness objective function obtains a higher income for the lowest-earning drivers than the request-maximizing objective function. We reproduced the third claim, since the driver-side objective function performs best in …
Social: Haben, The Deafblind Woman Who Conquered Harvard Law Thu 1 Dec 06:00 p.m.
We’d love to come together for an un-bookclub at NeurIPS 2022. We’ve been learning a lot in the cross-continental book club out of the book Haben: The Deafblind Woman Who Conquered Harvard Law.
We’d love to give you the gift of connection, conversation, and reflection the author and disability rights lawyer Haben Girma gave us. We ask participants to watch Haben's powerful talk at the US National Book Festival in preparation.
Join us for a discussion on accessibility and intersectionality, and the roles and responsibilities of the machine learning research community in building a world where disabled people thrive.
Sign-up form
Social: K-Pop in NeurIPS Thu 1 Dec 06:00 p.m.
Korean wave (aka K-wave or Hanryu) has become popular and familiar with global people. In particular, K-pop such as Butter and Gangnam-style and artists such as BTS and Blackpink are greatly loved by many global people around the world. We'd like to welcome researchers who love K-pop in NeurIPS to our social "K-pop in NeurIPS". We'd like to gather together and share our favorite K-pop, artists, and our special experiences related to K-pop. We expect that our Social would be an opportunity for researchers in NeurIPS around the world to become more intimate.
Social: Negotiation Workshop: Feel More Confident Negotiating Your Next Offer in AI Thu 1 Dec 06:00 p.m.
"Join the team at Rora and 81cents, to get the tools, information, and data you need to negotiate your next offer in AI more confidently.
Some of the topics we'll cover in a 1.5 hr. period (with 1/2 an hour for Q&A) are:
- Understanding the fundamentals of compensation in tech (particularly around equity, bonus structures, etc.)
- How to get over your fears of negotiating
- How to decide which company / offer is right for you
- How to negotiate without counter offers and without knowing ""market value""
- How to respond to pushback from recruiters and other guilt tripping / lowballing /pressure tactics
- How to avoid having an offer rescinded
- How to negotiate deadline of an offer
- Walking through a timeline of the negotiation process for a new offer"
Social: Open Mic Night Thu 1 Dec 06:00 p.m.
"Machine learning is a field without ongoing feuds, without heterogeneity of thought, without competing opinions, and without uncertainty over where the field is and where it is going. We all know this. We all use the same tools, have the same opinion about which libraries are the best, and what tools are best for tracking at train time. Yet, in this social event, we aim to find that rare soul in the AI/ML community with a primarily technical opinion that goes against the status quo, to give them a stage, and to curate engagement with an audience of NeurIPS members. Is symbolic reasoning dead? Who knows – but this discussion sure won’t be. Our goal here is to encourage a lively discussion, while ensuring that the speakers adhere to the NeurIPS Code of Conduct; in particular, by keeping the discussion respectful and professional.
The first half-hour of this social will be a reception, during which the organizers will pass around a sign-up for topics and for participants. We will ensure that the mic is accessible to everyone who wishes to participate, and we will aim for a diverse range of ideas, perspectives, and demographics. Then, we will have several rounds of open mic debates and response. The winners of each debate -- chosen by the audience -- will have eternal bragging rights."
Social: Interdisciplinary ML Mixer Thu 1 Dec 06:00 p.m.
Given the many disciplines that encompass ML/DL, it is important that we as researchers better understand academics with differing backgrounds than our own to produce valued contributions. In this in-person 2-hour social, we pair participants together based on differing levels of experience in related disciplines of ML/DL. These pairings would be determined by having participants write their domain of experience on a nametag, then asking participants to find and chat with another person with differing experience. For example, suppose Researcher A identifies as being highly experienced in Neuroscience but has little to no experience in Semi-Supervised Learning. Researcher A could then be paired with Researcher B, who has a great background in Semi-Supervised Learning but has had no exposure to Neuroscience. These interactions could allow us to form better connections across disciplines and build a better understanding of the vast landscape of ML/DL.
If you attended our social, please fill out this feedback form: https://forms.gle/TE8oKwdYCDhxLjpk6