Anchor-Changing Regularized Natural Policy Gradient for Multi-Objective Reinforcement Learning
Ruida Zhou · Tao Liu · Dileep Kalathil · P. R. Kumar · Chao Tian
Keywords:
policy optimization
Constrained Markov Decision Process
Multi-Objective Markov Decision Process
2022 Poster
Abstract
We study policy optimization for Markov decision processes (MDPs) with multiple reward value functions, which are to be jointly optimized according to given criteria such as proportional fairness (smooth concave scalarization), hard constraints (constrained MDP), and max-min trade-off. We propose an Anchor-changing Regularized Natural Policy Gradient (ARNPG) framework, which can systematically incorporate ideas from well-performing first-order methods into the design of policy optimization algorithms for multi-objective MDP problems. Theoretically, the designed algorithms based on the ARNPG framework achieve $\tilde{O}(1/T)$ global convergence with exact gradients. Empirically, the ARNPG-guided algorithms also demonstrate superior performance compared to some existing policy gradient-based approaches in both exact gradients and sample-based scenarios.
Video
Chat is not available.
Successful Page Load