Skip to yearly menu bar Skip to main content


Poster

Dual-discriminative Graph Neural Network for Imbalanced Graph-level Anomaly Detection

GE ZHANG · Zhenyu Yang · Jia Wu · Jian Yang · Shan Xue · Hao Peng · Jianlin Su · Chuan Zhou · Quan Z. Sheng · Leman Akoglu · Charu Aggarwal

Hall J (level 1) #629

Keywords: [ Imbalanced data ] [ Graph-level Anomaly Detection ] [ graph neural networks ]


Abstract:

Graph-level anomaly detection aims to distinguish anomalous graphs in a graph dataset from normal graphs. Anomalous graphs represent a very few but essential patterns in the real world. The anomalous property of a graph may be referable to its anomalous attributes of particular nodes and anomalous substructures that refer to a subset of nodes and edges in the graph. In addition, due to the imbalance nature of anomaly problem, anomalous information will be diluted by normal graphs with overwhelming quantities. Various anomaly notions in the attributes and/or substructures and the imbalance nature together make detecting anomalous graphs a non-trivial task. In this paper, we propose a graph neural network for graph-level anomaly detection, namely iGAD. Specifically, an anomalous graph attribute-aware graph convolution and an anomalous graph substructure-aware deep Random Walk Kernel (deep RWK) are welded into a graph neural network to achieve the dual-discriminative ability on anomalous attributes and substructures. Deep RWK in iGAD makes up for the deficiency of graph convolution in distinguishing structural information caused by the simple neighborhood aggregation mechanism. Further, we propose a Point Mutual Information (PMI)-based loss function to target the problems caused by imbalance distributions. PMI-based loss function enables iGAD to capture essential correlation between input graphs and their anomalous/normal properties. We evaluate iGAD on four real-world graph datasets. Extensive experiments demonstrate the superiority of iGAD on the graph-level anomaly detection task.

Chat is not available.