Skip to yearly menu bar Skip to main content


Poster

Distributionally Robust Optimization via Ball Oracle Acceleration

Yair Carmon · Danielle Hausler

Hall J (level 1) #837

Keywords: [ Theory ] [ accelerated methods ] [ entropy regularization ] [ Convex Optimization ] [ algorithm design ] [ multilevel monte-carlo ] [ Oracle complexity ] [ Distributionally Robust Optimization ] [ Monteiro-Svaiter acceleration ]


Abstract: We develop and analyze algorithms for distributionally robust optimization (DRO) of convex losses. In particular, we consider group-structured and bounded f-divergence uncertainty sets. Our approach relies on an accelerated method that queries a ball optimization oracle, i.e., a subroutine that minimizes the objective within a small ball around the query point. Our main contribution is efficient implementations of this oracle for DRO objectives. For DRO with N non-smooth loss functions, the resulting algorithms find an ϵ-accurate solution with O~(Nϵ2/3+ϵ2) first-order oracle queries to individual loss functions. Compared to existing algorithms for this problem, we improve complexity by a factor of up to ϵ4/3.

Chat is not available.