On the Theoretical Properties of Noise Correlation in Stochastic Optimization

Aurelien Lucchi · Frank Proske · Antonio Orvieto · Francis Bach · Hans Kersting

Hall J #725

Keywords: [ Noise injection ] [ Stochastic Optimization ] [ Fractional Brownian Motion ]

[ Abstract ]
[ Paper [ Poster [ OpenReview
Wed 30 Nov 9 a.m. PST — 11 a.m. PST


Studying the properties of stochastic noise to optimize complex non-convex functions has been an active area of research in the field of machine learning. Prior work~\citep{zhou2019pgd, wei2019noise} has shown that the noise of stochastic gradient descent improves optimization by overcoming undesirable obstacles in the landscape. Moreover, injecting artificial Gaussian noise has become a popular idea to quickly escape saddle points. Indeed, in the absence of reliable gradient information, the noise is used to explore the landscape, but it is unclear what type of noise is optimal in terms of exploration ability. In order to narrow this gap in our knowledge, we study a general type of continuous-time non-Markovian process, based on fractional Brownian motion, that allows for the increments of the process to be correlated. This generalizes processes based on Brownian motion, such as the Ornstein-Uhlenbeck process. We demonstrate how to discretize such processes which gives rise to the new algorithm ``fPGD''. This method is a generalization of the known algorithms PGD and Anti-PGD~\citep{orvieto2022anti}. We study the properties of fPGD both theoretically and empirically, demonstrating that it possesses exploration abilities that, in some cases, are favorable over PGD and Anti-PGD. These results open the field to novel ways to exploit noise for training machine learning models.

Chat is not available.