Reconstruction on Trees and Low-Degree Polynomials

Frederic Koehler · Elchanan Mossel

Hall J #940

Keywords: [ lower bounds ] [ statistical query ] [ Belief Propagation ] [ Graphical Models ] [ polynomials ] [ computational and statistical gaps ] [ Theory ] [ kernel ]

[ Abstract ]
[ Paper [ OpenReview
Thu 1 Dec 2 p.m. PST — 4 p.m. PST

Abstract: The study of Markov processes and broadcasting on trees has deep connections to a variety of areas including statistical physics, graphical models, phylogenetic reconstruction, Markov Chain Monte Carlo, and community detection in random graphs. Notably, the celebrated Belief Propagation (BP) algorithm achieves Bayes-optimal performance for the reconstruction problem of predicting the value of the Markov process at the root of the tree from its values at the leaves.Recently, the analysis of low-degree polynomials has emerged as a valuable tool for predicting computational-to-statistical gaps. In this work, we investigate the performance of low-degree polynomials for the reconstruction problem on trees. Perhaps surprisingly, we show that there are simple tree models with $N$ leaves and bounded arity where (1) nontrivial reconstruction of the root value is possible with a simple polynomial time algorithm and with robustness to noise, but not with any polynomial of degree $N^{c}$ for $c > 0$ a constant depending only on the arity, and (2) when the tree is unknown and given multiple samples with correlated root assignments, nontrivial reconstruction of the root value is possible with a simple Statistical Query algorithm but not with any polynomial of degree $N^c$. These results clarify some of the limitations of low-degree polynomials vs. polynomial time algorithms for Bayesian estimation problems. They also complement recent work of Moitra, Mossel, and Sandon who studied the circuit complexity of Belief Propagation. As a consequence of our main result, we are able to prove a result of independent interest regarding the performance of RBF kernel ridge regression for learning to predict the root coloration: for some $c' > 0$ depending only on the arity, $\exp(N^{c'})$ many samples are needed for the kernel regression to obtain nontrivial correlation with the true regression function (BP). We pose related open questions about low-degree polynomials and the Kesten-Stigum threshold.

Chat is not available.