Skip to yearly menu bar Skip to main content


Spending Thinking Time Wisely: Accelerating MCTS with Virtual Expansions

Weirui Ye · Pieter Abbeel · Yang Gao

Hall J (level 1) #804

Keywords: [ Computer Go ] [ acceleration ] [ Adaptive ] [ Reinforcement Learning ] [ Monte-Carlo Tree Search ]

Abstract: One of the most important AI research questions is to trade off computation versus performance since ``perfect rationality" exists in theory but is impossible to achieve in practice. Recently, Monte-Carlo tree search (MCTS) has attracted considerable attention due to the significant performance improvement in various challenging domains. However, the expensive time cost during search severely restricts its scope for applications. This paper proposes the Virtual MCTS (V-MCTS), a variant of MCTS that spends more search time on harder states and less search time on simpler states adaptively. We give theoretical bounds of the proposed method and evaluate the performance and computations on $9 \times 9$ Go board games and Atari games. Experiments show that our method can achieve comparable performances to the original search algorithm while requiring less than $50\%$ search time on average. We believe that this approach is a viable alternative for tasks under limited time and resources. The code is available at \url{}.

Chat is not available.