Skip to yearly menu bar Skip to main content


Poster

Misspecified Phase Retrieval with Generative Priors

Zhaoqiang Liu · Xinshao Wang · Jiulong Liu

Keywords: [ single index model ] [ generative priors ] [ near-optimal statistical rate ] [ Phase retrieval ] [ Model misspecification ]


Abstract: In this paper, we study phase retrieval under model misspecification and generative priors. In particular, we aim to estimate an nn-dimensional signal xx from mm i.i.d.~realizations of the single index model y=f(aTx)y=f(aTx), where ff is an unknown and possibly random nonlinear link function and aRnaRn is a standard Gaussian vector. We make the assumption Cov[y,(aTx)2]0Cov[y,(aTx)2]0, which corresponds to the misspecified phase retrieval problem. In addition, the underlying signal xx is assumed to lie in the range of an LL-Lipschitz continuous generative model with bounded kk-dimensional inputs. We propose a two-step approach, for which the first step plays the role of spectral initialization and the second step refines the estimated vector produced by the first step iteratively. We show that both steps enjoy a statistical rate of order (klogL)(logm)/m(klogL)(logm)/m under suitable conditions. Experiments on image datasets are performed to demonstrate that our approach performs on par with or even significantly outperforms several competing methods.

Chat is not available.