Skip to yearly menu bar Skip to main content


Degradation-Aware Unfolding Half-Shuffle Transformer for Spectral Compressive Imaging

Yuanhao Cai · Jing Lin · Haoqian Wang · Xin Yuan · Henghui Ding · Yulun Zhang · Radu Timofte · Luc V Gool

Hall J (level 1) #141

Keywords: [ Image restoration ] [ Applications ] [ Snapshot Compressive Imaging ] [ Low-level Vision ] [ Computer Vision ] [ Hyperspectral Image Reconstruction ]


In coded aperture snapshot spectral compressive imaging (CASSI) systems, hyperspectral image (HSI) reconstruction methods are employed to recover the spatial-spectral signal from a compressed measurement. Among these algorithms, deep unfolding methods demonstrate promising performance but suffer from two issues. Firstly, they do not estimate the degradation patterns and ill-posedness degree from CASSI to guide the iterative learning. Secondly, they are mainly CNN-based, showing limitations in capturing long-range dependencies. In this paper, we propose a principled Degradation-Aware Unfolding Framework (DAUF) that estimates parameters from the compressed image and physical mask, and then uses these parameters to control each iteration. Moreover, we customize a novel Half-Shuffle Transformer (HST) that simultaneously captures local contents and non-local dependencies. By plugging HST into DAUF, we establish the first Transformer-based deep unfolding method, Degradation-Aware Unfolding Half-Shuffle Transformer (DAUHST), for HSI reconstruction. Experiments show that DAUHST surpasses state-of-the-art methods while requiring cheaper computational and memory costs. Code and models are publicly available at

Chat is not available.