Skip to yearly menu bar Skip to main content


TwiBot-22: Towards Graph-Based Twitter Bot Detection

Shangbin Feng · Zhaoxuan Tan · Herun Wan · Ningnan Wang · Zilong Chen · Binchi Zhang · Qinghua Zheng · Wenqian Zhang · Zhenyu Lei · Shujie Yang · Xinshun Feng · Qingyue Zhang · Hongrui Wang · Yuhan Liu · Yuyang Bai · Heng Wang · Zijian Cai · Yanbo Wang · Lijing Zheng · Zihan Ma · Jundong Li · Minnan Luo

Keywords: [ Twitter bot detection ] [ social network analysis ]


Twitter bot detection has become an increasingly important task to combat misinformation, facilitate social media moderation, and preserve the integrity of the online discourse. State-of-the-art bot detection methods generally leverage the graph structure of the Twitter network, and they exhibit promising performance when confronting novel Twitter bots that traditional methods fail to detect. However, very few of the existing Twitter bot detection datasets are graph-based, and even these few graph-based datasets suffer from limited dataset scale, incomplete graph structure, as well as low annotation quality. In fact, the lack of a large-scale graph-based Twitter bot detection benchmark that addresses these issues has seriously hindered the development and evaluation of novel graph-based bot detection approaches. In this paper, we propose TwiBot-22, a comprehensive graph-based Twitter bot detection benchmark that presents the largest dataset to date, provides diversified entities and relations on the Twitter network, and has considerably better annotation quality than existing datasets. In addition, we re-implement 35 representative Twitter bot detection baselines and evaluate them on 9 datasets, including TwiBot-22, to promote a fair comparison of model performance and a holistic understanding of research progress. To facilitate further research, we consolidate all implemented codes and datasets into the TwiBot-22 evaluation framework, where researchers could consistently evaluate new models and datasets. The TwiBot-22 Twitter bot detection benchmark and evaluation framework are publicly available at \url{}.

Chat is not available.