firstbacksecondback
80 Results
Poster
|
Thu 9:00 |
A Fast Post-Training Pruning Framework for Transformers Woosuk Kwon · Sehoon Kim · Michael Mahoney · Joseph Hassoun · Kurt Keutzer · Amir Gholami |
|
Poster
|
Thu 9:00 |
Lower Bounds on Randomly Preconditioned Lasso via Robust Sparse Designs Jonathan Kelner · Frederic Koehler · Raghu Meka · Dhruv Rohatgi |
|
Poster
|
Thu 14:00 |
Robust Binary Models by Pruning Randomly-initialized Networks Chen Liu · Ziqi Zhao · Sabine Süsstrunk · Mathieu Salzmann |
|
Poster
|
Thu 14:00 |
Model Preserving Compression for Neural Networks Jerry Chee · Megan Flynn (née Renz) · Anil Damle · Christopher De Sa |
|
Poster
|
Tue 9:00 |
Fine-tuning Language Models over Slow Networks using Activation Quantization with Guarantees Jue WANG · Binhang Yuan · Luka Rimanic · Yongjun He · Tri Dao · Beidi Chen · Christopher Ré · Ce Zhang |
|
Poster
|
Thu 14:00 |
Learning Options via Compression Yiding Jiang · Evan Liu · Benjamin Eysenbach · J. Zico Kolter · Chelsea Finn |
|
Poster
|
A Win-win Deal: Towards Sparse and Robust Pre-trained Language Models Yuanxin Liu · Fandong Meng · Zheng Lin · Jiangnan Li · Peng Fu · Yanan Cao · Weiping Wang · Jie Zhou |
||
Poster
|
Tue 14:00 |
BEER: Fast O(1/T)O(1/T) Rate for Decentralized Nonconvex Optimization with Communication Compression Haoyu Zhao · Boyue Li · Zhize Li · Peter Richtarik · Yuejie Chi |
|
Poster
|
Tue 14:00 |
PAC-Bayes Compression Bounds So Tight That They Can Explain Generalization Sanae Lotfi · Marc Finzi · Sanyam Kapoor · Andres Potapczynski · Micah Goldblum · Andrew Wilson |
|
Poster
|
Thu 14:00 |
Variance Reduced ProxSkip: Algorithm, Theory and Application to Federated Learning Grigory Malinovsky · Kai Yi · Peter Richtarik |
|
Poster
|
Thu 9:00 |
Optimal Brain Compression: A Framework for Accurate Post-Training Quantization and Pruning Elias Frantar · Dan Alistarh |
|
Tutorial
|
Mon 14:00 |
Data Compression with Machine Learning Karen Ullrich · Yibo Yang · Stephan Mandt |