Skip to yearly menu bar Skip to main content


Search All 2022 Events
 

80 Results

<<   <   Page 3 of 7   >   >>
Poster
Thu 9:00 A Fast Post-Training Pruning Framework for Transformers
Woosuk Kwon · Sehoon Kim · Michael Mahoney · Joseph Hassoun · Kurt Keutzer · Amir Gholami
Poster
Thu 9:00 Lower Bounds on Randomly Preconditioned Lasso via Robust Sparse Designs
Jonathan Kelner · Frederic Koehler · Raghu Meka · Dhruv Rohatgi
Poster
Thu 14:00 Robust Binary Models by Pruning Randomly-initialized Networks
Chen Liu · Ziqi Zhao · Sabine Süsstrunk · Mathieu Salzmann
Poster
Thu 14:00 Model Preserving Compression for Neural Networks
Jerry Chee · Megan Flynn (née Renz) · Anil Damle · Christopher De Sa
Poster
Tue 9:00 Fine-tuning Language Models over Slow Networks using Activation Quantization with Guarantees
Jue WANG · Binhang Yuan · Luka Rimanic · Yongjun He · Tri Dao · Beidi Chen · Christopher Ré · Ce Zhang
Poster
Thu 14:00 Learning Options via Compression
Yiding Jiang · Evan Liu · Benjamin Eysenbach · J. Zico Kolter · Chelsea Finn
Poster
A Win-win Deal: Towards Sparse and Robust Pre-trained Language Models
Yuanxin Liu · Fandong Meng · Zheng Lin · Jiangnan Li · Peng Fu · Yanan Cao · Weiping Wang · Jie Zhou
Poster
Tue 14:00 BEER: Fast O(1/T)O(1/T) Rate for Decentralized Nonconvex Optimization with Communication Compression
Haoyu Zhao · Boyue Li · Zhize Li · Peter Richtarik · Yuejie Chi
Poster
Tue 14:00 PAC-Bayes Compression Bounds So Tight That They Can Explain Generalization
Sanae Lotfi · Marc Finzi · Sanyam Kapoor · Andres Potapczynski · Micah Goldblum · Andrew Wilson
Poster
Thu 14:00 Variance Reduced ProxSkip: Algorithm, Theory and Application to Federated Learning
Grigory Malinovsky · Kai Yi · Peter Richtarik
Poster
Thu 9:00 Optimal Brain Compression: A Framework for Accurate Post-Training Quantization and Pruning
Elias Frantar · Dan Alistarh
Tutorial
Mon 14:00 Data Compression with Machine Learning
Karen Ullrich · Yibo Yang · Stephan Mandt