Poster
|
Tue 14:00
|
Quantum Speedups of Optimizing Approximately Convex Functions with Applications to Logarithmic Regret Stochastic Convex Bandits
Tongyang Li · Ruizhe Zhang
|
|
Poster
|
Tue 14:00
|
Reinforcement Learning with Logarithmic Regret and Policy Switches
Grigoris Velegkas · Zhuoran Yang · Amin Karbasi
|
|
Poster
|
Thu 14:00
|
Efficient and Near-Optimal Smoothed Online Learning for Generalized Linear Functions
Adam Block · Max Simchowitz
|
|
Poster
|
|
On the role of overparameterization in off-policy Temporal Difference learning with linear function approximation
Valentin Thomas
|
|
Poster
|
Thu 14:00
|
First-Order Algorithms for Min-Max Optimization in Geodesic Metric Spaces
Michael Jordan · Tianyi Lin · Emmanouil-Vasileios Vlatakis-Gkaragkounis
|
|
Poster
|
Tue 14:00
|
Frank-Wolfe-based Algorithms for Approximating Tyler's M-estimator
Lior Danon · Dan Garber
|
|
Workshop
|
Fri 12:15
|
Low Rank Approximation for Faster Convex Optimization
Madeleine Udell
|
|
Poster
|
Tue 9:00
|
Safety Guarantees for Neural Network Dynamic Systems via Stochastic Barrier Functions
Rayan Mazouz · Karan Muvvala · Akash Ratheesh Babu · Luca Laurenti · Morteza Lahijanian
|
|
Poster
|
Wed 14:00
|
Decomposable Non-Smooth Convex Optimization with Nearly-Linear Gradient Oracle Complexity
Sally Dong · Haotian Jiang · Yin Tat Lee · Swati Padmanabhan · Guanghao Ye
|
|
Poster
|
Tue 14:00
|
A Statistical Online Inference Approach in Averaged Stochastic Approximation
Chuhan Xie · Zhihua Zhang
|
|
Poster
|
Tue 9:00
|
Instance-Dependent Near-Optimal Policy Identification in Linear MDPs via Online Experiment Design
Andrew Wagenmaker · Kevin Jamieson
|
|
Workshop
|
|
A General Framework for Sample-Efficient Function Approximation in Reinforcement Learning
Zixiang Chen · Chris Junchi Li · Angela Yuan · Quanquan Gu · Michael Jordan
|
|