Skip to yearly menu bar Skip to main content


Search All 2022 Events
 

70 Results

<<   <   Page 1 of 6   >   >>
Workshop
Forecasting labels under distribution-shift for machine-guided sequence design
Lauren B Wheelock · Stephen Malina · Jeffrey Gerold · Sam Sinai
Workshop
Class-wise Domain Generalization: A Novel Framework for Evaluating Distributional Shift
Sarath Sivaprasad · Akshay Goindani · Mario Fritz · Vineet Gandhi
Poster
Tue 14:00 Self-Supervised Aggregation of Diverse Experts for Test-Agnostic Long-Tailed Recognition
Yifan Zhang · Bryan Hooi · Lanqing Hong · Jiashi Feng
Workshop
Inferring Class Label Distribution of Training Data from Classifiers: An Accuracy-Augmented Meta-Classifier Attack
Raksha Ramakrishna · György Dán
Poster
Thu 14:00 Scalable Distributional Robustness in a Class of Non-Convex Optimization with Guarantees
Avinandan Bose · Arunesh Sinha · Tien Mai
Workshop
Tailored Overlap for Learning Under Distribution Shift
David Bruns-Smith · Alexander D'Amour · Avi Feller · Steve Yadlowsky
Workshop
Engineering Uncertainty Representations to Monitor Distribution Shifts
Thomas Bonnier · Benjamin Bosch
Poster
Tue 14:00 Agreement-on-the-line: Predicting the Performance of Neural Networks under Distribution Shift
Christina Baek · Yiding Jiang · Aditi Raghunathan · J. Zico Kolter
Poster
Tue 14:00 Unsupervised Causal Generative Understanding of Images
Titas Anciukevicius · Patrick Fox-Roberts · Edward Rosten · Paul Henderson
Poster
Thu 14:00 Generalization Bounds with Minimal Dependency on Hypothesis Class via Distributionally Robust Optimization
Yibo Zeng · Henry Lam
Poster
RankFeat: Rank-1 Feature Removal for Out-of-distribution Detection
Yue Song · Nicu Sebe · Wei Wang
Poster
Thu 14:00 Diverse Weight Averaging for Out-of-Distribution Generalization
Alexandre Rame · Matthieu Kirchmeyer · Thibaud Rahier · Alain Rakotomamonjy · Patrick Gallinari · Matthieu Cord