firstbacksecondback
12 Results
Poster
|
Thu 14:00 |
Signal Processing for Implicit Neural Representations Dejia Xu · Peihao Wang · Yifan Jiang · Zhiwen Fan · Zhangyang Wang |
|
Workshop
|
Improved Marginal Unbiased Score Expansion (MUSE) via Implicit Differentiation Marius Millea |
||
Workshop
|
Scaling up and Stabilizing Differentiable Planning with Implicit Differentiation Linfeng Zhao · Huazhe Xu · Lawson Wong |
||
Poster
|
Tue 14:00 |
Object Representations as Fixed Points: Training Iterative Refinement Algorithms with Implicit Differentiation Michael Chang · Tom Griffiths · Sergey Levine |
|
Poster
|
Wed 9:00 |
The Curse of Unrolling: Rate of Differentiating Through Optimization Damien Scieur · Gauthier Gidel · Quentin Bertrand · Fabian Pedregosa |
|
Poster
|
Meta-Reward-Net: Implicitly Differentiable Reward Learning for Preference-based Reinforcement Learning Runze Liu · Fengshuo Bai · Yali Du · Yaodong Yang |
||
Workshop
|
Continuous PDE Dynamics Forecasting with Implicit Neural Representations Yuan Yin · Matthieu Kirchmeyer · Jean-Yves Franceschi · Alain Rakotomamonjy · Patrick Gallinari |
||
Poster
|
Wed 9:00 |
Self-Similarity Priors: Neural Collages as Differentiable Fractal Representations Michael Poli · Winnie Xu · Stefano Massaroli · Chenlin Meng · Kuno Kim · Stefano Ermon |
|
Poster
|
Tue 14:00 |
Holomorphic Equilibrium Propagation Computes Exact Gradients Through Finite Size Oscillations Axel Laborieux · Friedemann Zenke |
|
Poster
|
Thu 14:00 |
Efficient and Modular Implicit Differentiation Mathieu Blondel · Quentin Berthet · Marco Cuturi · Roy Frostig · Stephan Hoyer · Felipe Llinares-Lopez · Fabian Pedregosa · Jean-Philippe Vert |
|
Poster
|
Tue 9:00 |
Theseus: A Library for Differentiable Nonlinear Optimization Luis Pineda · Taosha Fan · Maurizio Monge · Shobha Venkataraman · Paloma Sodhi · Ricky T. Q. Chen · Joseph Ortiz · Daniel DeTone · Austin Wang · Stuart Anderson · Jing Dong · Brandon Amos · Mustafa Mukadam |
|
Poster
|
Tue 9:00 |
Myriad: a real-world testbed to bridge trajectory optimization and deep learning Nikolaus Howe · Simon Dufort-Labbé · Nitarshan Rajkumar · Pierre-Luc Bacon |