Poster
|
Thu 14:00
|
Memorization and Optimization in Deep Neural Networks with Minimum Over-parameterization
Simone Bombari · Mohammad Hossein Amani · Marco Mondelli
|
|
Poster
|
Thu 9:00
|
Accelerating SGD for Highly Ill-Conditioned Huge-Scale Online Matrix Completion
Jialun Zhang · Hong-Ming Chiu · Richard Y Zhang
|
|
Poster
|
Wed 9:00
|
Constrained Langevin Algorithms with L-mixing External Random Variables
Yuping Zheng · Andrew Lamperski
|
|
Poster
|
Wed 9:00
|
Revisit last-iterate convergence of mSGD under milder requirement on step size
ruinan Jin · Xingkang He · Lang Chen · Difei Cheng · Vijay Gupta
|
|
Workshop
|
|
Generalization of Decentralized Gradient Descent with Separable Data
Hossein Taheri · Christos Thrampoulidis
|
|
Poster
|
Thu 14:00
|
On the Interpretability of Regularisation for Neural Networks Through Model Gradient Similarity
Vincent Szolnoky · Viktor Andersson · Balazs Kulcsar · Rebecka Jörnsten
|
|
Poster
|
Tue 9:00
|
Learning single-index models with shallow neural networks
Alberto Bietti · Joan Bruna · Clayton Sanford · Min Jae Song
|
|
Poster
|
Wed 14:00
|
Sampling in Constrained Domains with Orthogonal-Space Variational Gradient Descent
Ruqi Zhang · Qiang Liu · Xin Tong
|
|
Poster
|
Thu 9:00
|
Thinking Outside the Ball: Optimal Learning with Gradient Descent for Generalized Linear Stochastic Convex Optimization
Idan Amir · Roi Livni · Nati Srebro
|
|
Poster
|
Wed 14:00
|
The alignment property of SGD noise and how it helps select flat minima: A stability analysis
Lei Wu · Mingze Wang · Weijie Su
|
|
Poster
|
Wed 14:00
|
Stochastic Multiple Target Sampling Gradient Descent
Hoang Phan · Ngoc Tran · Trung Le · Toan Tran · Nhat Ho · Dinh Phung
|
|
Poster
|
Tue 14:00
|
Understanding the Generalization Benefit of Normalization Layers: Sharpness Reduction
Kaifeng Lyu · Zhiyuan Li · Sanjeev Arora
|
|