The Role of Meta-learning for Few-shot Learning

Eleni Triantafillou

Moderator: Salomey Osei

[ Abstract ]
Mon 5 Dec 2 a.m. PST — 4:30 a.m. PST


While deep learning has driven impressive progress, one of the toughest remaining challenges is generalization beyond the training distribution. Few-shot learning is an area of research that aims to address this, by striving to build models that can learn new concepts rapidly in a more "human-like" way. While many influential few-shot learning methods were based on meta-learning, recent progress has been made by simpler transfer learning algorithms, and it has been suggested in fact that few-shot learning might be an emergent property of large-scale models. In this talk, I will give an overview of the evolution of few-shot learning methods and benchmarks from my point of view, and discuss the evolving role of meta-learning for this problem. I will discuss lessons learned from using larger and more diverse benchmarks for evaluation and trade-offs between different approaches, closing with a discussion about open questions.

Link to slides: https://drive.google.com/file/d/1ZIULjhFjyNqjSS10p-5CDaqgzlrZcaGD/view?usp=sharing

Chat is not available.