Skip to yearly menu bar Skip to main content


Search All 2023 Events
 

19 Results

<<   <   Page 1 of 2   >   >>
Workshop
Revisiting the noise Model of SGD
Barak Battash · Ofir Lindenbaum
Workshop
The Noise Geometry of Stochastic Gradient Descent: A Quantitative and Analytical Characterization
Mingze Wang · Lei Wu
Workshop
Noise-adaptive (Accelerated) Stochastic Heavy-Ball Momentum
Anh Dang · Reza Babanezhad Harikandeh · Sharan Vaswani
Poster
Thu 8:45 Stability and Generalization of the Decentralized Stochastic Gradient Descent Ascent Algorithm
Miaoxi Zhu · Li Shen · Bo Du · Dacheng Tao
Poster
Thu 8:45 Stochastic Collapse: How Gradient Noise Attracts SGD Dynamics Towards Simpler Subnetworks
Feng Chen · Daniel Kunin · Atsushi Yamamura · Surya Ganguli
Poster
Wed 8:45 Implicit Bias of (Stochastic) Gradient Descent for Rank-1 Linear Neural Network
Bochen Lyu · Zhanxing Zhu
Poster
Wed 15:00 Variance-Reduced Gradient Estimation via Noise-Reuse in Online Evolution Strategies
Oscar Li · James Harrison · Jascha Sohl-Dickstein · Virginia Smith · Luke Metz
Workshop
Benign Oscillation of Stochastic Gradient Descent with Large Learning Rate
Miao Lu · Beining Wu · Xiaodong Yang · Difan Zou
Poster
Tue 15:15 Convergence of mean-field Langevin dynamics: time-space discretization, stochastic gradient, and variance reduction
Taiji Suzuki · Denny Wu · Atsushi Nitanda
Workshop
Sat 9:25 Enhancing Low-Precision Sampling via Stochastic Gradient Hamiltonian Monte Carlo
Ziyi Wang · Yujie Chen · Ruqi Zhang · Qifan Song
Workshop
A Predicting Clipping Asynchronous Stochastic Gradient Descent Method in Distributed Learning
Haoxiang Wang · Zhanhong Jiang · Chao Liu · Soumik Sarkar · Dongxiang Jiang · Young Lee
Poster
Tue 15:15 Uniform-in-Time Wasserstein Stability Bounds for (Noisy) Stochastic Gradient Descent
Lingjiong Zhu · Mert Gurbuzbalaban · Anant Raj · Umut Simsekli