Skip to yearly menu bar Skip to main content


Poster

Directional Smoothness and Gradient Methods: Convergence and Adaptivity

Aaron Mishkin · Ahmed Khaled · Yuanhao Wang · Aaron Defazio · Robert Gower

West Ballroom A-D #6007
[ ]
Thu 12 Dec 4:30 p.m. PST — 7:30 p.m. PST

Abstract: We develop new sub-optimality bounds for gradient descent (GD) that depend on the conditioning of the objective along the path of optimization, rather than on global, worst-case constants. Key to our proofs is directional smoothness, a measure of gradient variation that we use to develop upper-bounds on the objective. Minimizing these upper-bounds requires solving implicit equations to obtain a sequence of strongly adapted step-sizes; we show that these equations are straightforward to solve for convex quadratics and lead to new guarantees for two classical step-sizes. For general functions, we prove that the Polyak step-size and normalized GD obtain fast, path-dependent rates despite using no knowledge of the directional smoothness. Experiments on logistic regression show our convergence guarantees are tighter than the classical theory based on $L$-smoothness.

Live content is unavailable. Log in and register to view live content