Skip to yearly menu bar Skip to main content


Search All 2024 Events
 

144 Results

<<   <   Page 12 of 12   >>   >
Workshop
Efficiently Learning at Test-Time: Active Fine-Tuning of LLMs
Jonas Hübotter · Sascha Bongni · Ido Hakimi · Andreas Krause
Workshop
Meta-Learned Bayesian Optimization for Energy Yield in Inertial Confinement Fusion
Vineet Gundecha · Ricardo Luna Gutierrez · Sahand Ghorbanpour · Desik Rengarajan · Rahman Ejaz · Varchas Gopalaswamy · Riccardo Betti · Soumyendu Sarkar
Workshop
The Power of LLM-Generated Synthetic Data for Stance Detection in Online Political Discussions
Stefan Sylvius Wagner · Maike Behrendt · Marc Ziegele · Stefan Harmeling
Workshop
Joint Learning for Visual Reconstruction from the Brain Activity: Hierarchical Representation of Image Perception with EEG-Vision Transformer
Ali Ackbari · Kosar Arani · Tony Muhammad Yousefnezhad · Maryam Mirian · Emad Arasteh
Poster
Wed 11:00 Dual-Perspective Activation: Efficient Channel Denoising via Joint Forward-Backward Criterion for Artificial Neural Networks
Tian Qiu · Chenchao Gao · Zunlei Feng · Jie Lei · Bingde Hu · Xingen Wang · Yi Gao · Mingli Song
Poster
Wed 11:00 Active learning of neural population dynamics using two-photon holographic optogenetics
Andrew Wagenmaker · Lu Mi · Marton Rozsa · Matthew Bull · Karel Svoboda · Kayvon Daie · Matthew Golub · Kevin Jamieson
Workshop
Comparing Bottom-Up and Top-Down Steering Approaches on In-Context Learning Tasks
Madeline Brumley · Joe Kwon · David Krueger · Dmitrii Krasheninnikov · Usman Anwar
Workshop
Gradient-free variational learning with conditional mixture networks
Conor Heins · Hao Wu · Dimitrije Markovic · Alexander Tschantz · Jeff Beck · Christopher L Buckley
Poster
Thu 11:00 Muscles in Time: Learning to Understand Human Motion In-Depth by Simulating Muscle Activations
David Schneider · Simon Reiß · Marco Kugler · Alexander Jaus · Kunyu Peng · Susanne Sutschet · M. Saquib Sarfraz · Sven Matthiesen · Rainer Stiefelhagen
Workshop
Amortizing intractable inference in diffusion models for Bayesian inverse problems
Siddarth Venkatraman · Moksh Jain · Luca Scimeca · Minsu Kim · Marcin Sendera · Mohsin Hasan · Luke Rowe · Sarthak Mittal · Pablo Lemos · Emmanuel Bengio · Alexandre Adam · Jarrid Rector-Brooks · Yashar Hezaveh · Laurence Perreault-Levasseur · Yoshua Bengio · Glen Berseth · Nikolay Malkin
Workshop
Had enough of experts? Elicitation and evaluation of Bayesian priors from large language models
David Antony Selby · Kai Spriestersbach · Yuichiro Iwashita · Dennis Bappert · Archana Warrier · Sumantrak Mukherjee · Muhammad Asim · Koichi Kise · Sebastian Vollmer
Workshop
Drift-Resilient TabPFN: In-Context Learning Temporal Distribution Shifts on Tabular Data
David Schnurr · Kai Helli · Noah Hollmann · Samuel Müller · Frank Hutter