Skip to yearly menu bar Skip to main content


Search All 2024 Events
 

166 Results

<<   <   Page 3 of 14   >   >>
Poster
Fri 16:30 I Don't Know: Explicit Modeling of Uncertainty with an [IDK] Token
Roi Cohen · Konstantin Dobler · Eden Biran · Gerard de Melo
Poster
Fri 16:30 Lookback Prophet Inequalities
Ziyad Benomar · Dorian Baudry · Vianney Perchet
Poster
Wed 11:00 Credal Deep Ensembles for Uncertainty Quantification
Kaizheng Wang · Fabio Cuzzolin · Shireen Kudukkil Manchingal - · Keivan Shariatmadar · David Moens · Hans Hallez
Poster
Fri 11:00 Kernel Language Entropy: Fine-grained Uncertainty Quantification for LLMs from Semantic Similarities
Alexander Nikitin · Jannik Kossen · Yarin Gal · Pekka Marttinen
Poster
Fri 16:30 Score-based generative models are provably robust: an uncertainty quantification perspective
Nikiforos Mimikos-Stamatopoulos · Benjamin Zhang · Markos Katsoulakis
Poster
Thu 16:30 Generative Adversarial Model-Based Optimization via Source Critic Regularization
Michael Yao · Yimeng Zeng · Hamsa Bastani · Jacob Gardner · James Gee · Osbert Bastani
Poster
Thu 16:30 Q-Distribution guided Q-learning for offline reinforcement learning: Uncertainty penalized Q-value via consistency model
Jing Zhang · Linjiajie Fang · Kexin SHI · Wenjia Wang · Bingyi Jing
Poster
Fri 11:00 Sample-efficient Bayesian Optimisation Using Known Invariances
Theodore Brown · Alexandru Cioba · Ilija Bogunovic
Poster
Wed 16:30 Semantic Density: Uncertainty Quantification for Large Language Models through Confidence Measurement in Semantic Space
Xin Qiu · Risto Miikkulainen
Poster
Fri 11:00 Quantifying Aleatoric Uncertainty of the Treatment Effect: A Novel Orthogonal Learner
Valentyn Melnychuk · Stefan Feuerriegel · Mihaela van der Schaar
Poster
Combining Statistical Depth and Fermat Distance for Uncertainty Quantification
Hai Vy Nguyen · Fabrice Gamboa · Reda CHHAIBI · Sixin Zhang · Serge Gratton · Thierry Giaccone
Poster
Wed 16:30 Decision-Focused Learning with Directional Gradients
Michael Huang · Vishal Gupta