Skip to yearly menu bar Skip to main content


Search All 2024 Events
 

125 Results

<<   <   Page 1 of 11   >   >>
Workshop
Protecting Users From Themselves: Safeguarding Contextual Privacy in Interactions with Conversational Agents
Kieleh Ngong Ivoline Clarisse · Swanand Kadhe · Hao Wang · Keerthiram Murugesan · Justin D Weisz · Amit Dhurandhar · Karthikeyan Natesan Ramamurthy
Workshop
IncogniText: Privacy-enhancing Conditional Text Anonymization via LLM-based Private Attribute Randomization
Ahmed Frikha · Nassim Walha · Krishna Nakka · Ricardo Mendes · Xue Jiang · Xuebing Zhou
Affinity Event
Armadillo: Robust Secure Aggregation for Federated Learning with Input Validation
Yiping Ma · Yue Guo · Harish Karthikeyan · Antigoni Polychroniadou
Workshop
Privacy-Preserving Large Language Model Inference via GPU-Accelerated Fully Homomorphic Encryption
Leo de Castro · Antigoni Polychroniadou · Daniel Escudero
Workshop
Unified Lookup Tables: Privacy-Preserving Foundation Models
Nikita Janakarajan · Irina Morales · Marvin Alberts · Andrea Giovannini · Matteo Manica · Antonio Foncubierta-Rodriguez
Workshop
Sun 12:00 Federated Learning with Quantum Computing and Fully Homomorphic Encryption: A Novel Computing Paradigm Shift in Privacy-Preserving ML
Siddhant Dutta · Pavana Karanth · Pedro Maciel Xavier · Iago de Freitas · Nouhaila Innan · Sadok Ben Yahia · Muhammad Shafique · David Bernal Neira
Affinity Event
OPA: One-shot Private Aggregation with Single Client Interaction and its Applications to Federated Learning
Harish Karthikeyan · Antigoni Polychroniadou
Affinity Event
Towards Privacy-Preserving Medical Imaging: Federated Learning with Differential Privacy and Secure Aggregation Using a Modified ResNet Architecture
Mohamad Haj Fares · Ahmed Mohamed Saad Emam Saad
Poster
Fri 11:00 DreamClear: High-Capacity Real-World Image Restoration with Privacy-Safe Dataset Curation
Yuang Ai · Xiaoqiang Zhou · Huaibo Huang · Xiaotian Han · Zhengyu Chen · Quanzeng You · Hongxia Yang
Tutorial
Tue 13:30 PrivacyML: Meaningful Privacy-Preserving Machine Learning and How To Evaluate AI Privacy
Mimee Xu · Dmitrii Usynin · Fazl Barez
Poster
Nimbus: Secure and Efficient Two-Party Inference for Transformers
Zhengyi Li · Kang Yang · Jin Tan · Wen-jie Lu · Haoqi Wu · Xiao Wang · Yu Yu · Derun Zhao · Yancheng Zheng · Minyi Guo · Jingwen Leng
Poster
Wed 16:30 DataStealing: Steal Data from Diffusion Models in Federated Learning with Multiple Trojans
Yuan Gan · Jiaxu Miao · Yi Yang