Poster
|
Fri 16:30
|
Non-geodesically-convex optimization in the Wasserstein space
Hoang Phuc Hau Luu · Hanlin Yu · Bernardo Williams · Petrus Mikkola · Marcelo Hartmann · Kai Puolamäki · Arto Klami
|
|
Poster
|
Fri 11:00
|
Quantum Algorithms for Non-smooth Non-convex Optimization
Chengchang Liu · Chaowen Guan · Jianhao He · John C. S. Lui
|
|
Poster
|
Thu 11:00
|
On Convergence of Adam for Stochastic Optimization under Relaxed Assumptions
Yusu Hong · Junhong Lin
|
|
Poster
|
Thu 16:30
|
Optimization Can Learn Johnson Lindenstrauss Embeddings
Nikos Tsikouras · Constantine Caramanis · Christos Tzamos
|
|
Poster
|
Thu 11:00
|
Ordered Momentum for Asynchronous SGD
Chang-Wei Shi · Yi-Rui Yang · Wu-Jun Li
|
|
Poster
|
Fri 16:30
|
Adaptive Variance Reduction for Stochastic Optimization under Weaker Assumptions
Wei Jiang · Sifan Yang · Yibo Wang · Lijun Zhang
|
|
Poster
|
Wed 16:30
|
Efficient Sign-Based Optimization: Accelerating Convergence via Variance Reduction
Wei Jiang · Sifan Yang · Wenhao Yang · Lijun Zhang
|
|
Workshop
|
|
Intuitive Analysis of the Quantization based Optimization : From establishing a SDE to Quantum Mechanical Perspective
Jinwuk Seok · Changsik Cho
|
|
Workshop
|
|
Adversarial Training Can Provably Improve Robustness: Theoretical Analysis of Feature Learning Process Under Structured Data
Binghui Li · Yuanzhi Li
|
|
Poster
|
Thu 11:00
|
Quantitative Convergences of Lie Group Momentum Optimizers
Lingkai Kong · Molei Tao
|
|
Poster
|
Wed 16:30
|
A Globally Optimal Portfolio for m-Sparse Sharpe Ratio Maximization
Yizun Lin · Zhao-Rong Lai · Cheng Li
|
|
Poster
|
|
Learnability of high-dimensional targets by two-parameter models and gradient flow
Dmitry Yarotsky
|
|