Skip to yearly menu bar Skip to main content


Privacy Induces Robustness: Information-Computation Gaps and Sparse Mean Estimation

Kristian Georgiev · Samuel Hopkins

Hall J (level 1) #616

Keywords: [ differential privacy ] [ Learning Theory ] [ Information-computation gaps ] [ high-dimensional statistics ] [ sum-of-squares method ] [ sparse mean estimation ] [ computational complexity of statistics ] [ robustness ]


We establish a simple connection between robust and differentially-private algorithms: private mechanisms which perform well with very high probability are automatically robust in the sense that they retain accuracy even if a constant fraction of the samples they receive are adversarially corrupted. Since optimal mechanisms typically achieve these high success probabilities, our results imply that optimal private mechanisms for many basic statistics problems are robust. We investigate the consequences of this observation for both algorithms and computational complexity across different statistical problems. Assuming the Brennan-Bresler secret-leakage planted clique conjecture, we demonstrate a fundamental tradeoff between computational efficiency, privacy leakage, and success probability for sparse mean estimation. Private algorithms which match this tradeoff are not yet known -- we achieve that (up to polylogarithmic factors) in a polynomially-large range of parameters via theSum-of-Squares method.To establish an information-computation gap for sparse mean estimation, we also design new (exponential-time) mechanisms using fewer samples than efficient algorithms must use. Finally, we give evidence for privacy-induced information-computation gaps for several other statistics and learning problems, including PAC learning parity functions and estimation of the mean of a multivariate Gaussian.

Chat is not available.