firstbacksecondback
37 Results
Workshop
|
Semi-Supervised Cross-Consistency Contrastive Learning for Nuclei Segmentation in Histology Images Raja Muhammad Saad Bashir · Talha Qaiser · Shan Raza · Nasir Rajpoot |
||
Poster
|
Wed 14:00 |
Class-Aware Adversarial Transformers for Medical Image Segmentation Chenyu You · Ruihan Zhao · Fenglin Liu · Siyuan Dong · Sandeep Chinchali · Ufuk Topcu · Lawrence Staib · James Duncan |
|
Workshop
|
How do 3D image segmentation networks behave across the context versus foreground ratio trade-off? Amith Kamath · Yannick Suter · Suhang You · Michael Mueller · Jonas Willmann · Nicolaus Andratschke · Mauricio Reyes |
||
Poster
|
Wed 9:00 |
Promising or Elusive? Unsupervised Object Segmentation from Real-world Single Images Yafei YANG · Bo Yang |
|
Affinity Workshop
|
Stronger is not better: Better Augmentations in Contrastive Learning for Medical Image Segmentation Azeez Idris · Abdurahman Ali Mohammed · Samuel Fanijo |
||
Poster
|
SAPA: Similarity-Aware Point Affiliation for Feature Upsampling Hao Lu · Wenze Liu · Zixuan Ye · Hongtao Fu · Yuliang Liu · Zhiguo Cao |
||
Workshop
|
UniverSeg: Universal Medical Image Segmentation Victor Butoi · Jose Javier Gonzalez Ortiz · Tianyu Ma · John Guttag · Mert Sabuncu · Adrian Dalca |
||
Affinity Workshop
|
Image Segmentation of Radio Interferometric Images Using Deep Neural Networks Ramadimetse Sydil Kupa · Marcellin Atemkeng · Kshitij Thorat · Oleg Smirnov |
||
Workshop
|
Proposal of a topology-aware method to segment 3D plant tissues images. Minh On · Nicolas Boutry · Jonathan Fabrizio |
||
Poster
|
Wed 9:00 |
Focal Modulation Networks Jianwei Yang · Chunyuan Li · Xiyang Dai · Jianfeng Gao |
|
Workshop
|
Modeling Hierarchical Topological Structure in Scientific Images with Graph Neural Networks Samuel Leventhal · Attila Gyulassy · Valerio Pascucci · Mark Heimann |
||
Affinity Workshop
|
Weakly Supervised Medical Image Segmentation with Soft Labels and Noise Robust Loss Banafshe Felfeliyan · Abhilash Rakkunedeth · Jacob Jaremko · Janet Ronsky |