firstbacksecondback
65 Results
Workshop
|
Discovering ordinary differential equations that govern time-series Sören Becker · Michal Klein · Alexander Neitz · Giambattista Parascandolo · Niki Kilbertus |
||
Workshop
|
Fri 4:00 |
The Symbiosis of Deep Learning and Differential Equations II Michael Poli · Winnie Xu · Estefany Kelly Buchanan · Maryam Hosseini · Luca Celotti · Martin Magill · Ermal Rrapaj · Qiyao Wei · Stefano Massaroli · Patrick Kidger · Archis Joglekar · Animesh Garg · David Duvenaud |
|
Workshop
|
Differentiable Neural Computers with Memory Demon Ari Azarafrooz |
||
Poster
|
Wed 14:00 |
Meta-Auto-Decoder for Solving Parametric Partial Differential Equations Xiang Huang · Zhanhong Ye · Hongsheng Liu · Shi Ji · Zidong Wang · Kang Yang · Yang Li · Min Wang · Haotian CHU · Fan Yu · Bei Hua · Lei Chen · Bin Dong |
|
Poster
|
Thu 9:00 |
PDEBench: An Extensive Benchmark for Scientific Machine Learning Makoto Takamoto · Timothy Praditia · Raphael Leiteritz · Daniel MacKinlay · Francesco Alesiani · Dirk Pflüger · Mathias Niepert |
|
Poster
|
Wed 14:00 |
Score-Based Generative Models Detect Manifolds Jakiw Pidstrigach |
|
Poster
|
Tue 14:00 |
Fast Mixing of Stochastic Gradient Descent with Normalization and Weight Decay Zhiyuan Li · Tianhao Wang · Dingli Yu |
|
Poster
|
Wed 14:00 |
Learning interacting dynamical systems with latent Gaussian process ODEs Çağatay Yıldız · Melih Kandemir · Barbara Rakitsch |
|
Workshop
|
Continuous PDE Dynamics Forecasting with Implicit Neural Representations Yuan Yin · Matthieu Kirchmeyer · Jean-Yves Franceschi · Alain Rakotomamonjy · Patrick Gallinari |
||
Poster
|
Wed 14:00 |
AirfRANS: High Fidelity Computational Fluid Dynamics Dataset for Approximating Reynolds-Averaged Navier–Stokes Solutions Florent Bonnet · Jocelyn Mazari · Paola Cinnella · Patrick Gallinari |
|
Workshop
|
Physics-Guided Discovery of Highly Nonlinear Parametric Partial Differential Equations Yingtao Luo · Qiang Liu · Yuntian Chen · Wenbo Hu · TIAN TIAN · Jun Zhu |
||
Workshop
|
PDE-GCN: Novel Architectures for Graph Neural Networks Motivated by Partial Differential Equations Moshe Eliasof · Eldad Haber · Eran Treister |