Skip to yearly menu bar Skip to main content


Search All 2022 Events
 

68 Results

<<   <   Page 6 of 6   >>   >
Poster
Tue 14:00 What You See is What You Get: Principled Deep Learning via Distributional Generalization
Bogdan Kulynych · Yao-Yuan Yang · Yaodong Yu · Jarosław Błasiok · Preetum Nakkiran
Poster
Thu 14:00 Sampling from Log-Concave Distributions with Infinity-Distance Guarantees
Oren Mangoubi · Nisheeth Vishnoi
Poster
Thu 9:00 Archimedes Meets Privacy: On Privately Estimating Quantiles in High Dimensions Under Minimal Assumptions
Omri Ben-Eliezer · Dan Mikulincer · Ilias Zadik
Poster
Thu 9:00 Near-Optimal Correlation Clustering with Privacy
Vincent Cohen-Addad · Chenglin Fan · Silvio Lattanzi · Slobodan Mitrovic · Ashkan Norouzi-Fard · Nikos Parotsidis · Jakub Tarnawski
Poster
Thu 9:00 Improved Differential Privacy for SGD via Optimal Private Linear Operators on Adaptive Streams
Sergey Denisov · H. Brendan McMahan · John Rush · Adam Smith · Abhradeep Guha Thakurta
Poster
Tue 14:00 Privacy Induces Robustness: Information-Computation Gaps and Sparse Mean Estimation
Kristian Georgiev · Samuel Hopkins
Poster
Thu 9:00 When Does Differentially Private Learning Not Suffer in High Dimensions?
Xuechen Li · Daogao Liu · Tatsunori Hashimoto · Huseyin A. Inan · Janardhan Kulkarni · Yin-Tat Lee · Abhradeep Guha Thakurta
Poster
Wed 9:00 A General Framework for Auditing Differentially Private Machine Learning
Fred Lu · Joseph Munoz · Maya Fuchs · Tyler LeBlond · Elliott Zaresky-Williams · Edward Raff · Francis Ferraro · Brian Testa