Poster
|
Tue 14:00
|
Reinforcement Learning with Logarithmic Regret and Policy Switches
Grigoris Velegkas · Zhuoran Yang · Amin Karbasi
|
|
Poster
|
|
Trustworthy Monte Carlo
Juha Harviainen · Mikko Koivisto · Petteri Kaski
|
|
Poster
|
Thu 9:00
|
Statistically Meaningful Approximation: a Case Study on Approximating Turing Machines with Transformers
Colin Wei · Yining Chen · Tengyu Ma
|
|
Poster
|
|
On the role of overparameterization in off-policy Temporal Difference learning with linear function approximation
Valentin Thomas
|
|
Poster
|
Tue 9:00
|
A Multilabel Classification Framework for Approximate Nearest Neighbor Search
Ville Hyvönen · Elias Jääsaari · Teemu Roos
|
|
Poster
|
Tue 14:00
|
Theory and Approximate Solvers for Branched Optimal Transport with Multiple Sources
Peter Lippmann · Enrique Fita Sanmartín · Fred Hamprecht
|
|
Poster
|
Thu 14:00
|
Generic bounds on the approximation error for physics-informed (and) operator learning
Tim De Ryck · Siddhartha Mishra
|
|
Poster
|
Tue 9:00
|
Instance-Dependent Near-Optimal Policy Identification in Linear MDPs via Online Experiment Design
Andrew Wagenmaker · Kevin Jamieson
|
|
Poster
|
Thu 14:00
|
Fair Rank Aggregation
Diptarka Chakraborty · Syamantak Das · Arindam Khan · Aditya Subramanian
|
|
Poster
|
Thu 14:00
|
Provably Efficient Model-Free Constrained RL with Linear Function Approximation
Arnob Ghosh · Xingyu Zhou · Ness Shroff
|
|
Poster
|
Tue 9:00
|
A general approximation lower bound in Lp norm, with applications to feed-forward neural networks
El Mehdi Achour · Armand Foucault · Sébastien Gerchinovitz · François Malgouyres
|
|
Workshop
|
|
Benefits of Overparameterized Convolutional Residual Networks: Function Approximation under Smoothness Constraint
Hao Liu · Minshuo Chen · Siawpeng Er · Wenjing Liao · Tong Zhang · Tuo Zhao
|
|