Skip to yearly menu bar Skip to main content


Search All 2024 Events
 

75 Results

<<   <   Page 6 of 7   >   >>
Poster
Thu 16:30 Stochastic Zeroth-Order Optimization under Strongly Convexity and Lipschitz Hessian: Minimax Sample Complexity
Qian Yu · Yining Wang · Baihe Huang · Qi Lei · Jason Lee
Poster
Thu 16:30 Improved Regret for Bandit Convex Optimization with Delayed Feedback
Yuanyu Wan · Chang Yao · Mingli Song · Lijun Zhang
Poster
Thu 11:00 SLowcalSGD : Slow Query Points Improve Local-SGD for Stochastic Convex Optimization
Tehila Dahan · Kfir Y. Levy
Poster
Fri 11:00 Online Convex Optimisation: The Optimal Switching Regret for all Segmentations Simultaneously
Stephen Pasteris · Chris Hicks · Vasilios Mavroudis · Mark Herbster
Poster
Wed 16:30 Semidefinite Relaxations of the Gromov-Wasserstein Distance
Junyu Chen · Binh T. Nguyen · Shang Koh · Yong Sheng Soh
Workshop
Sun 9:30 Talk 1: *On the Inherent Privacy of Two Point Zeroth Order Projected Gradient Descent* and Talk 2: *The Dimension Strikes Back with Gradients: Generalization of Gradient Methods in Stochastic Convex Optimization*
Devansh Gupta · Matan Schliserman
Poster
Thu 11:00 Amortized Eigendecomposition for Neural Networks
Tianbo Li · Zekun Shi · Jiaxi Zhao · Min Lin
Poster
Thu 16:30 Directional Smoothness and Gradient Methods: Convergence and Adaptivity
Aaron Mishkin · Ahmed Khaled · Yuanhao Wang · Aaron Defazio · Robert Gower
Poster
Fri 11:00 CRONOS: Enhancing Deep Learning with Scalable GPU Accelerated Convex Neural Networks
Miria Feng · Zachary Frangella · Mert Pilanci
Poster
Faster Accelerated First-order Methods for Convex Optimization with Strongly Convex Function Constraints
zhenwei lin · Qi Deng
Poster
Noisy Dual Mirror Descent: A Near Optimal Algorithm for Jointly-DP Convex Resource Allocation
Du Chen · Geoffrey A. Chua
Poster
Thu 16:30 Inexact Augmented Lagrangian Methods for Conic Optimization: Quadratic Growth and Linear Convergence
Feng-Yi Liao · Lijun Ding · Yang Zheng