Poster
|
|
"Lossless" Compression of Deep Neural Networks: A High-dimensional Neural Tangent Kernel Approach
lingyu gu · Yongqi Du · yuan zhang · Di Xie · Shiliang Pu · Robert Qiu · Zhenyu Liao
|
|
Poster
|
Thu 14:00
|
D-GCCA: Decomposition-based Generalized Canonical Correlation Analysis for Multi-view High-dimensional Data
Hai Shu · Zhe Qu · Hongtu Zhu
|
|
Poster
|
|
Information bottleneck theory of high-dimensional regression: relevancy, efficiency and optimality
Vudtiwat Ngampruetikorn · David Schwab
|
|
Poster
|
Thu 14:00
|
DGD^2: A Linearly Convergent Distributed Algorithm For High-dimensional Statistical Recovery
Marie Maros · Gesualdo Scutari
|
|
Poster
|
Thu 9:00
|
Learning Individualized Treatment Rules with Many Treatments: A Supervised Clustering Approach Using Adaptive Fusion
Haixu Ma · Donglin Zeng · Yufeng Liu
|
|
Poster
|
Thu 9:00
|
Archimedes Meets Privacy: On Privately Estimating Quantiles in High Dimensions Under Minimal Assumptions
Omri Ben-Eliezer · Dan Mikulincer · Ilias Zadik
|
|
Poster
|
Tue 14:00
|
Privacy Induces Robustness: Information-Computation Gaps and Sparse Mean Estimation
Kristian Georgiev · Samuel Hopkins
|
|
Poster
|
Thu 14:00
|
A Non-Asymptotic Moreau Envelope Theory for High-Dimensional Generalized Linear Models
Lijia Zhou · Frederic Koehler · Pragya Sur · Danica J. Sutherland · Nati Srebro
|
|
Poster
|
Tue 9:00
|
Outlier-Robust Sparse Estimation via Non-Convex Optimization
Yu Cheng · Ilias Diakonikolas · Rong Ge · Shivam Gupta · Daniel Kane · Mahdi Soltanolkotabi
|
|
Poster
|
Thu 9:00
|
High-dimensional Asymptotics of Feature Learning: How One Gradient Step Improves the Representation
Jimmy Ba · Murat Erdogdu · Taiji Suzuki · Zhichao Wang · Denny Wu · Greg Yang
|
|
Workshop
|
|
LSGANs with Gradient Regularizers are Smooth High-dimensional Interpolators
Siddarth Asokan · Chandra Seelamantula
|
|
Poster
|
Tue 14:00
|
Multi-layer State Evolution Under Random Convolutional Design
Max Daniels · Cedric Gerbelot · Florent Krzakala · Lenka Zdeborová
|
|