Skip to yearly menu bar Skip to main content


Search All 2022 Events
 

30 Results

<<   <   Page 1 of 3   >   >>
Poster
Wed 14:00 Robust Imitation via Mirror Descent Inverse Reinforcement Learning
Dong-Sig Han · Hyunseo Kim · Hyundo Lee · JeHwan Ryu · Byoung-Tak Zhang
Workshop
Scalable Gaussian Process Hyperparameter Optimization via Coverage Regularization
Killian Wood · Alec Dunton · Amanda Muyskens · Benjamin Priest
Poster
Thu 14:00 Reinforcement Learning in a Birth and Death Process: Breaking the Dependence on the State Space
Jonatha Anselmi · Bruno Gaujal · Louis-Sébastien Rebuffi
Poster
Tue 14:00 Anchor-Changing Regularized Natural Policy Gradient for Multi-Objective Reinforcement Learning
Ruida Zhou · Tao Liu · Dileep Kalathil · P. R. Kumar · Chao Tian
Workshop
Towards A Unified Policy Abstraction Theory and Representation Learning Approach in Markov Decision Processes
Min Zhang · Hongyao Tang · Jianye Hao · YAN ZHENG
Poster
Asymptotically Unbiased Instance-wise Regularized Partial AUC Optimization: Theory and Algorithm
HuiYang Shao · Qianqian Xu · Zhiyong Yang · Shilong Bao · Qingming Huang
Poster
Thu 14:00 Bayesian Risk Markov Decision Processes
Yifan Lin · Yuxuan Ren · Enlu Zhou
Poster
Tue 14:00 Planning to the Information Horizon of BAMDPs via Epistemic State Abstraction
Dilip Arumugam · Satinder Singh
Workshop
Finding Safe Zones of Markov Decision Processes Policies
Lee Cohen · Yishay Mansour · Michal Moshkovitz
Workshop
Finding Safe Zones of Markov Decision Processes Policies
Michal Moshkovitz · Lee Cohen · Yishay Mansour
Workshop
A Simple Hypergraph Kernel Convolution based on Discounted Markov Diffusion Process
Fuyang Li · Jiying Zhang · Xi Xiao · bin zhang · Dijun Luo
Poster
Wed 14:00 Hardness in Markov Decision Processes: Theory and Practice
Michelangelo Conserva · Paulo Rauber