Poster
|
Wed 14:00
|
Robust Imitation via Mirror Descent Inverse Reinforcement Learning
Dong-Sig Han · Hyunseo Kim · Hyundo Lee · JeHwan Ryu · Byoung-Tak Zhang
|
|
Workshop
|
|
Scalable Gaussian Process Hyperparameter Optimization via Coverage Regularization
Killian Wood · Alec Dunton · Amanda Muyskens · Benjamin Priest
|
|
Poster
|
Thu 14:00
|
Reinforcement Learning in a Birth and Death Process: Breaking the Dependence on the State Space
Jonatha Anselmi · Bruno Gaujal · Louis-Sébastien Rebuffi
|
|
Poster
|
Tue 14:00
|
Anchor-Changing Regularized Natural Policy Gradient for Multi-Objective Reinforcement Learning
Ruida Zhou · Tao Liu · Dileep Kalathil · P. R. Kumar · Chao Tian
|
|
Workshop
|
|
Towards A Unified Policy Abstraction Theory and Representation Learning Approach in Markov Decision Processes
Min Zhang · Hongyao Tang · Jianye Hao · YAN ZHENG
|
|
Poster
|
|
Asymptotically Unbiased Instance-wise Regularized Partial AUC Optimization: Theory and Algorithm
HuiYang Shao · Qianqian Xu · Zhiyong Yang · Shilong Bao · Qingming Huang
|
|
Poster
|
Thu 14:00
|
Bayesian Risk Markov Decision Processes
Yifan Lin · Yuxuan Ren · Enlu Zhou
|
|
Poster
|
Tue 14:00
|
Planning to the Information Horizon of BAMDPs via Epistemic State Abstraction
Dilip Arumugam · Satinder Singh
|
|
Workshop
|
|
Finding Safe Zones of Markov Decision Processes Policies
Lee Cohen · Yishay Mansour · Michal Moshkovitz
|
|
Workshop
|
|
Finding Safe Zones of Markov Decision Processes Policies
Michal Moshkovitz · Lee Cohen · Yishay Mansour
|
|
Workshop
|
|
A Simple Hypergraph Kernel Convolution based on Discounted Markov Diffusion Process
Fuyang Li · Jiying Zhang · Xi Xiao · bin zhang · Dijun Luo
|
|
Poster
|
Wed 14:00
|
Hardness in Markov Decision Processes: Theory and Practice
Michelangelo Conserva · Paulo Rauber
|
|