Poster
|
Tue 9:00
|
Approximate Euclidean lengths and distances beyond Johnson-Lindenstrauss
Aleksandros Sobczyk · Mathieu Luisier
|
|
Poster
|
Wed 9:00
|
Invariance Learning in Deep Neural Networks with Differentiable Laplace Approximations
Alexander Immer · Tycho van der Ouderaa · Gunnar Rätsch · Vincent Fortuin · Mark van der Wilk
|
|
Poster
|
Wed 14:00
|
A Single-timescale Analysis for Stochastic Approximation with Multiple Coupled Sequences
Han Shen · Tianyi Chen
|
|
Poster
|
|
Chromatic Correlation Clustering, Revisited
Qing Xiu · Kai Han · Jing Tang · Shuang Cui · He Huang
|
|
Poster
|
Tue 9:00
|
Instance-Dependent Near-Optimal Policy Identification in Linear MDPs via Online Experiment Design
Andrew Wagenmaker · Kevin Jamieson
|
|
Poster
|
Thu 14:00
|
Efficient Dataset Distillation using Random Feature Approximation
Noel Loo · Ramin Hasani · Alexander Amini · Daniela Rus
|
|
Poster
|
Wed 9:00
|
Subspace clustering in high-dimensions: Phase transitions & Statistical-to-Computational gap
Luca Pesce · Bruno Loureiro · Florent Krzakala · Lenka Zdeborová
|
|
Poster
|
Tue 14:00
|
Which Explanation Should I Choose? A Function Approximation Perspective to Characterizing Post Hoc Explanations
Tessa Han · Suraj Srinivas · Himabindu Lakkaraju
|
|
Poster
|
Thu 9:00
|
Theoretically Provable Spiking Neural Networks
Shao-Qun Zhang · Zhi-Hua Zhou
|
|
Poster
|
Thu 9:00
|
Recruitment Strategies That Take a Chance
Gregory Kehne · Ariel Procaccia · Jingyan Wang
|
|
Poster
|
Tue 14:00
|
Theory and Approximate Solvers for Branched Optimal Transport with Multiple Sources
Peter Lippmann · Enrique Fita Sanmartín · Fred Hamprecht
|
|
Poster
|
Thu 9:00
|
On the Approximation of Cooperative Heterogeneous Multi-Agent Reinforcement Learning (MARL) using Mean Field Control (MFC)
Washim Mondal · Mridul Agarwal · Vaneet Aggarwal · Satish Ukkusuri
|
|