Abstract:

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Shay Vargaftik · Ran Ben-Basat · Amit Portnoy · Gal Mendelson · Yaniv Ben-Itzhak · Michael Mitzenmacher

We consider the problem where $n$ clients transmit $d$-dimensional real-valued vectors using $d(1+o(1))$ bits each, in a manner that allows the receiver to approximately reconstruct their mean. Such compression problems naturally arise in distributed and federated learning. We provide novel mathematical results and derive computationally efficient algorithms that are more accurate than previous compression techniques. We evaluate our methods on a collection of distributed and federated learning tasks, using a variety of datasets, and show a consistent improvement over the state of the art.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Ofir Lindenbaum · Uri Shaham · Erez Peterfreund · Jonathan Svirsky · Nicolas Casey · Yuval Kluger

Scientific observations may consist of a large number of variables (features). Selecting a subset of meaningful features is often crucial for identifying patterns hidden in the ambient space. In this paper, we present a method for unsupervised feature selection, and we demonstrate its advantage in clustering, a common unsupervised task. We propose a differentiable loss that combines a graph Laplacian-based score that favors low-frequency features with a gating mechanism for removing nuisance features. Our method improves upon the naive graph Laplacian score by replacing it with a gated variant computed on a subset of low-frequency features. We identify this subset by learning the parameters of continuously relaxed Bernoulli variables, which gate the entire feature space. We mathematically motivate the proposed approach and demonstrate that it is crucial to compute the graph Laplacian on the gated inputs rather than on the full feature set in the high noise regime. Using several real-world examples, we demonstrate the efficacy and advantage of the proposed approach over leading baselines.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Hermanni Hälvä · Sylvain Le Corff · Luc Lehéricy · Jonathan So · Yongjie Zhu · Elisabeth Gassiat · Aapo Hyvarinen

We introduce a new general identifiable framework for principled disentanglement referred to as Structured Nonlinear Independent Component Analysis (SNICA). Our contribution is to extend the identifiability theory of deep generative models for a very broad class of structured models. While previous works have shown identifiability for specific classes of time-series models, our theorems extend this to more general temporal structures as well as to models with more complex structures such as spatial dependencies. In particular, we establish the major result that identifiability for this framework holds even in the presence of noise of unknown distribution. Finally, as an example of our framework's flexibility, we introduce the first nonlinear ICA model for time-series that combines the following very useful properties: it accounts for both nonstationarity and autocorrelation in a fully unsupervised setting; performs dimensionality reduction; models hidden states; and enables principled estimation and inference by variational maximum-likelihood.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Salva Rühling Cachay · Benedikt Boecking · Artur Dubrawski

Aggregating multiple sources of weak supervision (WS) can ease the data-labeling bottleneck prevalent in many machine learning applications, by replacing the tedious manual collection of ground truth labels. Current state of the art approaches that do not use any labeled training data, however, require two separate modeling steps: Learning a probabilistic latent variable model based on the WS sources -- making assumptions that rarely hold in practice -- followed by downstream model training. Importantly, the first step of modeling does not consider the performance of the downstream model.To address these caveats we propose an end-to-end approach for directly learning the downstream model by maximizing its agreement with probabilistic labels generated by reparameterizing previous probabilistic posteriors with a neural network. Our results show improved performance over prior work in terms of end model performance on downstream test sets, as well as in terms of improved robustness to dependencies among weak supervision sources.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Prasad Gabbur · Manjot Bilkhu · Javier Movellan

We provide a probabilistic interpretation of attention and show that the standard dot-product attention in transformers is a special case of Maximum A Posteriori (MAP) inference. The proposed approach suggests the use of Expectation Maximization algorithms for on-line adaptation of key and value model parameters. This approach is useful for cases in which external agents, e.g., annotators, provide inference-time information about the correct values of some tokens, e.g., the semantic category of some pixels, and we need for this new information to propagate to other tokens in a principled manner. We illustrate the approach on an interactive semantic segmentation task in which annotators and models collaborate online to improve annotation efficiency. Using standard benchmarks, we observe that key adaptation boosts model performance ($\sim10\%$ mIoU) in the low feedback regime and value propagation improves model responsiveness in the high feedback regime. A PyTorch layer implementation of our probabilistic attention model is available here: https://github.com/apple/ml-probabilistic-attention.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Soon Hoe Lim · N. Benjamin Erichson · Liam Hodgkinson · Michael Mahoney

We provide a general framework for studying recurrent neural networks (RNNs) trained by injecting noise into hidden states. Specifically, we consider RNNs that can be viewed as discretizations of stochastic differential equations driven by input data. This framework allows us to study the implicit regularization effect of general noise injection schemes by deriving an approximate explicit regularizer in the small noise regime. We find that, under reasonable assumptions, this implicit regularization promotes flatter minima; it biases towards models with more stable dynamics; and, in classification tasks, it favors models with larger classification margin. Sufficient conditions for global stability are obtained, highlighting the phenomenon of stochastic stabilization, where noise injection can improve stability during training. Our theory is supported by empirical results which demonstrate that the RNNs have improved robustness with respect to various input perturbations.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Kento Nozawa · Issei Sato

Instance discriminative self-supervised representation learning has been attracted attention thanks to its unsupervised nature and informative feature representation for downstream tasks. In practice, it commonly uses a larger number of negative samples than the number of supervised classes. However, there is an inconsistency in the existing analysis; theoretically, a large number of negative samples degrade classification performance on a downstream supervised task, while empirically, they improve the performance. We provide a novel framework to analyze this empirical result regarding negative samples using the coupon collector's problem. Our bound can implicitly incorporate the supervised loss of the downstream task in the self-supervised loss by increasing the number of negative samples. We confirm that our proposed analysis holds on real-world benchmark datasets.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Po-An Wang · Ruo-Chun Tzeng · Alexandre Proutiere

We study the problem of active pure exploration with fixed confidence in generic stochastic bandit environments. The goal of the learner is to answer a query about the environment with a given level of certainty while minimizing her sampling budget. For this problem, instance-specific lower bounds on the expected sample complexity reveal the optimal proportions of arm draws an Oracle algorithm would apply. These proportions solve an optimization problem whose tractability strongly depends on the structural properties of the environment, but may be instrumental in the design of efficient learning algorithms. We devise Frank-Wolfe-based Sampling (FWS), a simple algorithm whose sample complexity matches the lower bounds for a wide class of pure exploration problems. The algorithm is computationally efficient as, to learn and track the optimal proportion of arm draws, it relies on a single iteration of Frank-Wolfe algorithm applied to the lower-bound optimization problem. We apply FWS to various pure exploration tasks, including best arm identification in unstructured, thresholded, linear, and Lipschitz bandits. Despite its simplicity, FWS is competitive compared to state-of-art algorithms.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Jiaming Liu · Salman Asif · Brendt Wohlberg · Ulugbek Kamilov

The plug-and-play priors (PnP) and regularization by denoising (RED) methods have become widely used for solving inverse problems by leveraging pre-trained deep denoisers as image priors. While the empirical imaging performance and the theoretical convergence properties of these algorithms have been widely investigated, their recovery properties have not previously been theoretically analyzed. We address this gap by showing how to establish theoretical recovery guarantees for PnP/RED by assuming that the solution of these methods lies near the fixed-points of a deep neural network. We also present numerical results comparing the recovery performance of PnP/RED in compressive sensing against that of recent compressive sensing algorithms based on generative models. Our numerical results suggest that PnP with a pre-trained artifact removal network provides significantly better results compared to the existing state-of-the-art methods.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Jin Xu · Hyunjik Kim · Thomas Rainforth · Yee Teh

Subsampling is used in convolutional neural networks (CNNs) in the form of pooling or strided convolutions, to reduce the spatial dimensions of feature maps and to allow the receptive fields to grow exponentially with depth. However, it is known that such subsampling operations are not translation equivariant, unlike convolutions that are translation equivariant. Here, we first introduce translation equivariant subsampling/upsampling layers that can be used to construct exact translation equivariant CNNs. We then generalise these layers beyond translations to general groups, thus proposing group equivariant subsampling/upsampling. We use these layers to construct group equivariant autoencoders (GAEs) that allow us to learn low-dimensional equivariant representations. We empirically verify on images that the representations are indeed equivariant to input translations and rotations, and thus generalise well to unseen positions and orientations. We further use GAEs in models that learn object-centric representations on multi-object datasets, and show improved data efficiency and decomposition compared to non-equivariant baselines.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Minghuan Liu · Hanye Zhao · Zhengyu Yang · Jian Shen · Weinan Zhang · Li Zhao · Tie-Yan Liu

Offline reinforcement learning (RL) tasks require the agent to learn from a pre-collected dataset with no further interactions with the environment. Despite the potential to surpass the behavioral policies, RL-based methods are generally impractical due to the training instability and bootstrapping the extrapolation errors, which always require careful hyperparameter tuning via online evaluation. In contrast, offline imitation learning (IL) has no such issues since it learns the policy directly without estimating the value function by bootstrapping. However, IL is usually limited in the capability of the behavioral policy and tends to learn a mediocre behavior from the dataset collected by the mixture of policies. In this paper, we aim to take advantage of IL but mitigate such a drawback. Observing that behavior cloning is able to imitate neighboring policies with less data, we propose \textit{Curriculum Offline Imitation Learning (COIL)}, which utilizes an experience picking strategy to make the agent imitate from adaptive neighboring policies with a higher return, and improves the current policy along curriculum stages. On continuous control benchmarks, we compare COIL against both imitation-based methods and RL-based methods, showing that COIL not only avoids just learning a mediocre behavior on mixed datasets but is also even competitive with state-of-the-art offline RL methods.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Miltiadis Kofinas · Naveen Nagaraja · Stratis Gavves

Modelling interactions is critical in learning complex dynamical systems, namely systems of interacting objects with highly non-linear and time-dependent behaviour. A large class of such systems can be formalized as $\textit{geometric graphs}$, $\textit{i.e.}$ graphs with nodes positioned in the Euclidean space given an $\textit{arbitrarily}$ chosen global coordinate system, for instance vehicles in a traffic scene. Notwithstanding the arbitrary global coordinate system, the governing dynamics of the respective dynamical systems are invariant to rotations and translations, also known as $\textit{Galilean invariance}$. As ignoring these invariances leads to worse generalization, in this work we propose local coordinate systems per node-object to induce roto-translation invariance to the geometric graph of the interacting dynamical system. Further, the local coordinate systems allow for a natural definition of anisotropic filtering in graph neural networks. Experiments in traffic scenes, 3D motion capture, and colliding particles demonstrate the proposed approach comfortably outperforms the recent state-of-the-art.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Preetam Nandy · Divya Venugopalan · Chun Lo · Shaunak Chatterjee

Two-sided marketplaces are standard business models of many online platforms (e.g., Amazon, Facebook, LinkedIn), wherein the platforms have consumers, buyers or content viewers on one side and producers, sellers or content-creators on the other. Consumer side measurement of the impact of a treatment variant can be done via simple online A/B testing. Producer side measurement is more challenging because the producer experience depends on the treatment assignment of the consumers. Existing approaches for producer side measurement are either based on graph cluster-based randomization or on certain treatment propagation assumptions. The former approach results in low-powered experiments as the producer-consumer network density increases and the latter approach lacks a strict notion of error control. In this paper, we propose (i) a quantification of the quality of a producer side experiment design, and (ii) a new experiment design mechanism that generates high-quality experiments based on this quantification. Our approach, called UniCoRn (Unifying Counterfactual Rankings), provides explicit control over the quality of the experiment and its computation cost. Further, we prove that our experiment design is optimal to the proposed design quality measure. Our approach is agnostic to the density of the producer-consumer network and does not rely on any treatment propagation assumption. Moreover, unlike the existing approaches, we do not need to know the underlying network in advance, making this widely applicable to the industrial setting where the underlying network is unknown and challenging to predict a priori due to its dynamic nature. We use simulations to validate our approach and compare it against existing methods. We also deployed UniCoRn in an edge recommendation application that serves tens of millions of members and billions of edge recommendations daily.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Frances Ding · Moritz Hardt · John Miller · Ludwig Schmidt

Although the fairness community has recognized the importance of data, researchers in the area primarily rely on UCI Adult when it comes to tabular data. Derived from a 1994 US Census survey, this dataset has appeared in hundreds of research papers where it served as the basis for the development and comparison of many algorithmic fairness interventions. We reconstruct a superset of the UCI Adult data from available US Census sources and reveal idiosyncrasies of the UCI Adult dataset that limit its external validity. Our primary contribution is a suite of new datasets derived from US Census surveys that extend the existing data ecosystem for research on fair machine learning. We create prediction tasks relating to income, employment, health, transportation, and housing. The data span multiple years and all states of the United States, allowing researchers to study temporal shift and geographic variation. We highlight a broad initial sweep of new empirical insights relating to trade-offs between fairness criteria, performance of algorithmic interventions, and the role of distribution shift based on our new datasets. Our findings inform ongoing debates, challenge some existing narratives, and point to future research directions.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Salar Fattahi · Andres Gomez

We study the problem of inferring time-varying Gaussian Markov random fields, where the underlying graphical model is both sparse and changes {sparsely} over time. Most of the existing methods for the inference of time-varying Markov random fields (MRFs) rely on the \textit{regularized maximum likelihood estimation} (MLE), that typically suffer from weak statistical guarantees and high computational time. Instead, we introduce a new class of constrained optimization problems for the inference of sparsely-changing Gaussian MRFs (GMRFs). The proposed optimization problem is formulated based on the exact $\ell_0$ regularization, and can be solved in near-linear time and memory. Moreover, we show that the proposed estimator enjoys a provably small estimation error. We derive sharp statistical guarantees in the high-dimensional regime, showing that such problems can be learned with as few as one sample per time period. Our proposed method is extremely efficient in practice: it can accurately estimate sparsely-changing GMRFs with more than 500 million variables in less than one hour.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Aodong Li · Alex Boyd · Padhraic Smyth · Stephan Mandt

We consider the problem of online learning in the presence of distribution shifts that occur at an unknown rate and of unknown intensity. We derive a new Bayesian online inference approach to simultaneously infer these distribution shifts and adapt the model to the detected changes by integrating ideas from change point detection, switching dynamical systems, and Bayesian online learning. Using a binary ‘change variable,’ we construct an informative prior such that--if a change is detected--the model partially erases the information of past model updates by tempering to facilitate adaptation to the new data distribution. Furthermore, the approach uses beam search to track multiple change-point hypotheses and selects the most probable one in hindsight. Our proposed method is model-agnostic, applicable in both supervised and unsupervised learning settings, suitable for an environment of concept drifts or covariate drifts, and yields improvements over state-of-the-art Bayesian online learning approaches.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

L. Elisa Celis · Anay Mehrotra · Nisheeth Vishnoi

We study fair classification in the presence of an omniscient adversary that, given an $\eta$, is allowed to choose an arbitrary $\eta$-fraction of the training samples and arbitrarily perturb their protected attributes. The motivation comes from settings in which protected attributes can be incorrect due to strategic misreporting, malicious actors, or errors in imputation; and prior approaches that make stochastic or independence assumptions on errors may not satisfy their guarantees in this adversarial setting. Our main contribution is an optimization framework to learn fair classifiers in this adversarial setting that comes with provable guarantees on accuracy and fairness. Our framework works with multiple and non-binary protected attributes, is designed for the large class of linear-fractional fairness metrics, and can also handle perturbations besides protected attributes. We prove near-tightness of our framework's guarantees for natural hypothesis classes: no algorithm can have significantly better accuracy and any algorithm with better fairness must have lower accuracy. Empirically, we evaluate the classifiers produced by our framework for statistical rate on real-world and synthetic datasets for a family of adversaries.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Aleksandr Beznosikov · Gesualdo Scutari · Alexander Rogozin · Alexander Gasnikov

We study solution methods for (strongly-)convex-(strongly)-concave Saddle-Point Problems (SPPs) over networks of two type--master/workers (thus centralized) architectures and mesh (thus decentralized) networks. The local functions at each node are assumed to be \textit{similar}, due to statistical data similarity or otherwise. We establish lower complexity bounds for a fairly general class of algorithms solving the SPP. We show that a given suboptimality $\epsilon>0$ is achieved over master/workers networks in $\Omega\big(\Delta\cdot \delta/\mu\cdot \log (1/\varepsilon)\big)$ rounds of communications, where $\delta>0$ measures the degree of similarity of the local functions, $\mu$ is their strong convexity constant, and $\Delta$ is the diameter of the network. The lower communication complexity bound over mesh networks reads $\Omega\big(1/{\sqrt{\rho}} \cdot {\delta}/{\mu}\cdot\log (1/\varepsilon)\big)$, where $\rho$ is the (normalized) eigengap of the gossip matrix used for the communication between neighbouring nodes. We then propose algorithms matching the lower bounds over either types of networks (up to log-factors). We assess the effectiveness of the proposed algorithms on a robust regression problem.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Souvik Kundu · Qirui Sun · Yao Fu · Massoud Pedram · Peter Beerel

Knowledge distillation (KD) has recently been identified as a method that can unintentionally leak private information regarding the details of a teacher model to an unauthorized student. Recent research in developing undistillable nasty teachers that can protect model confidentiality has gained significant attention. However, the level of protection these nasty models offer has been largely untested. In this paper, we show that transferring knowledge to a shallow sub-section of a student can largely reduce a teacher’s influence. By exploring the depth of the shallow subsection, we then present a distillation technique that enables a skeptical student model to learn even from a nasty teacher. To evaluate the efficacy of our skeptical students, we conducted experiments with several models with KD on both training data-available and data-free scenarios for various datasets. While distilling from nasty teachers, compared to the normal student models, skeptical students consistently provide superior classification performance of up to ∼59.5%. Moreover, similar to normal students, skeptical students maintain high classification accuracy when distilled from a normal teacher, showing their efficacy irrespective of the teacher being nasty or not. We believe the ability of skeptical students to largely diminish the KD-immunity of potentially nasty teachers will motivate the research community to create more robust mechanisms for model confidentiality. We have open-sourced the code at https://github.com/ksouvik52/Skeptical2021

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Bruno Loureiro · Gabriele Sicuro · Cedric Gerbelot · Alessandro Pacco · Florent Krzakala · Lenka Zdeborová

Generalised linear models for multi-class classification problems are one of the fundamental building blocks of modern machine learning tasks. In this manuscript, we characterise the learning of a mixture of $K$ Gaussians with generic means and covariances via empirical risk minimisation (ERM) with any convex loss and regularisation. In particular, we prove exact asymptotics characterising the ERM estimator in high-dimensions, extending several previous results about Gaussian mixture classification in the literature. We exemplify our result in two tasks of interest in statistical learning: a) classification for a mixture with sparse means, where we study the efficiency of $\ell_1$ penalty with respect to $\ell_2$; b) max-margin multi-class classification, where we characterise the phase transition on the existence of the multi-class logistic maximum likelihood estimator for $K>2$. Finally, we discuss how our theory can be applied beyond the scope of synthetic data, showing that in different cases Gaussian mixtures capture closely the learning curve of classification tasks in real data sets.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Mark Boss · Varun Jampani · Raphael Braun · Ce Liu · Jonathan Barron · Hendrik PA Lensch

Decomposing a scene into its shape, reflectance and illumination is a fundamental problem in computer vision and graphics. Neural approaches such as NeRF have achieved remarkable success in view synthesis, but do not explicitly perform decomposition and instead operate exclusively on radiance (the product of reflectance and illumination). Extensions to NeRF, such as NeRD, can perform decomposition but struggle to accurately recover detailed illumination, thereby significantly limiting realism. We propose a novel reflectance decomposition network that can estimate shape, BRDF, and per-image illumination given a set of object images captured under varying illumination. Our key technique is a novel illumination integration network called Neural-PIL that replaces a costly illumination integral operation in the rendering with a simple network query. In addition, we also learn deep low-dimensional priors on BRDF and illumination representations using novel smooth manifold auto-encoders. Our decompositions can result in considerably better BRDF and light estimates enabling more accurate novel view-synthesis and relighting compared to prior art. Project page: https://markboss.me/publication/2021-neural-pil/

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Michael Ryoo · AJ Piergiovanni · Anurag Arnab · Mostafa Dehghani · Anelia Angelova

In this paper, we introduce a novel visual representation learning which relies on a handful of adaptively learned tokens, and which is applicable to both image and video understanding tasks. Instead of relying on hand-designed splitting strategies to obtain visual tokens and processing a large number of densely sampled patches for attention, our approach learns to mine important tokens in visual data. This results in efficiently and effectively finding a few important visual tokens and enables modeling of pairwise attention between such tokens, over a longer temporal horizon for videos, or the spatial content in image frames. Our experiments demonstrate strong performance on several challenging benchmarks for video recognition tasks. Importantly, due to our tokens being adaptive, we accomplish competitive results at significantly reduced computational cost. We establish new state-of-the-arts on multiple video datasets, including Kinetics-400, Kinetics-600, Charades, and AViD.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Songyou Peng · Chiyu Jiang · Yiyi Liao · Michael Niemeyer · Marc Pollefeys · Andreas Geiger

In recent years, neural implicit representations gained popularity in 3D reconstruction due to their expressiveness and flexibility. However, the implicit nature of neural implicit representations results in slow inference times and requires careful initialization. In this paper, we revisit the classic yet ubiquitous point cloud representation and introduce a differentiable point-to-mesh layer using a differentiable formulation of Poisson Surface Reconstruction (PSR) which allows for a GPU-accelerated fast solution of the indicator function given an oriented point cloud. The differentiable PSR layer allows us to efficiently and differentiably bridge the explicit 3D point representation with the 3D mesh via the implicit indicator field, enabling end-to-end optimization of surface reconstruction metrics such as Chamfer distance. This duality between points and meshes hence allows us to represent shapes as oriented point clouds, which are explicit, lightweight and expressive. Compared to neural implicit representations, our Shape-As-Points (SAP) model is more interpretable, lightweight, and accelerates inference time by one order of magnitude. Compared to other explicit representations such as points, patches, and meshes, SAP produces topology-agnostic, watertight manifold surfaces. We demonstrate the effectiveness of SAP on the task of surface reconstruction from unoriented point clouds and learning-based reconstruction.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Tim G. J. Rudner · Vitchyr Pong · Rowan McAllister · Yarin Gal · Sergey Levine

While reinforcement learning algorithms provide automated acquisition of optimal policies, practical application of such methods requires a number of design decisions, such as manually designing reward functions that not only define the task, but also provide sufficient shaping to accomplish it. In this paper, we view reinforcement learning as inferring policies that achieve desired outcomes, rather than as a problem of maximizing rewards. To solve this inference problem, we establish a novel variational inference formulation that allows us to derive a well-shaped reward function which can be learned directly from environment interactions. From the corresponding variational objective, we also derive a new probabilistic Bellman backup operator and use it to develop an off-policy algorithm to solve goal-directed tasks. We empirically demonstrate that this method eliminates the need to hand-craft reward functions for a suite of diverse manipulation and locomotion tasks and leads to effective goal-directed behaviors.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Jeremy Seeman · Matthew Reimherr · Aleksandra Slavković

Implementations of the exponential mechanism in differential privacy often require sampling from intractable distributions. When approximate procedures like Markov chain Monte Carlo (MCMC) are used, the end result incurs costs to both privacy and accuracy. Existing work has examined these effects asymptotically, but implementable finite sample results are needed in practice so that users can specify privacy budgets in advance and implement samplers with exact privacy guarantees. In this paper, we use tools from ergodic theory and perfect simulation to design exact finite runtime sampling algorithms for the exponential mechanism by introducing an intermediate modified target distribution using artificial atoms. We propose an additional modification of this sampling algorithm that maintains its $\epsilon$-DP guarantee and has improved runtime at the cost of some utility. We then compare these methods in scenarios where we can explicitly calculate a $\delta$ cost (as in $(\epsilon, \delta)$-DP) incurred when using standard MCMC techniques. Much as there is a well known trade-off between privacy and utility, we demonstrate that there is also a trade-off between privacy guarantees and runtime.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Jakub Grudzien Kuba · Muning Wen · Linghui Meng · shangding gu · Haifeng Zhang · David Mguni · Jun Wang · Yaodong Yang

Policy gradient (PG) methods are popular reinforcement learning (RL) methods where a baseline is often applied to reduce the variance of gradient estimates. In multi-agent RL (MARL), although the PG theorem can be naturally extended, the effectiveness of multi-agent PG (MAPG) methods degrades as the variance of gradient estimates increases rapidly with the number of agents. In this paper, we offer a rigorous analysis of MAPG methods by, firstly, quantifying the contributions of the number of agents and agents' explorations to the variance of MAPG estimators. Based on this analysis, we derive the optimal baseline (OB) that achieves the minimal variance. In comparison to the OB, we measure the excess variance of existing MARL algorithms such as vanilla MAPG and COMA. Considering using deep neural networks, we also propose a surrogate version of OB, which can be seamlessly plugged into any existing PG methods in MARL. On benchmarks of Multi-Agent MuJoCo and StarCraft challenges, our OB technique effectively stabilises training and improves the performance of multi-agent PPO and COMA algorithms by a significant margin. Code is released at \url{https://github.com/morning9393/Optimal-Baseline-for-Multi-agent-Policy-Gradients}.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Can Qin · Handong Zhao · Lichen Wang · Huan Wang · Yulun Zhang · Yun Fu

Graph Similarity Computation (GSC) is essential to wide-ranging graph applications such as retrieval, plagiarism/anomaly detection, etc. The exact computation of graph similarity, e.g., Graph Edit Distance (GED), is an NP-hard problem that cannot be exactly solved within an adequate time given large graphs. Thanks to the strong representation power of graph neural network (GNN), a variety of GNN-based inexact methods emerged. To capture the subtle difference across graphs, the key success is designing the dense interaction with features fusion at the early stage, which, however, is a trade-off between speed and accuracy. For slow learning of graph similarity, this paper proposes a novel early-fusion approach by designing a co-attention-based feature fusion network on multilevel GNN features. To further improve the speed without much accuracy drop, we introduce an efficient GSC solution by distilling the knowledge from the slow early-fusion model to the student one for fast inference. Such a student model also enables the offline collection of individual graph embeddings, speeding up the inference time in orders. To address the instability through knowledge transfer, we decompose the dynamic joint embedding into the static pseudo individual ones for precise teacher-student alignment. The experimental analysis on the real-world datasets demonstrates the superiority of our approach over the state-of-the-art methods on both accuracy and efficiency. Particularly, we speed up the prior art by more than 10x on the benchmark AIDS data.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Jinshuo Dong · Weijie Su · Linjun Zhang

Perhaps the single most important use case for differential privacy is to privately answer numerical queries, which is usually achieved by adding noise to the answer vector. The central question is, therefore, to understand which noise distribution optimizes the privacy-accuracy trade-off, especially when the dimension of the answer vector is high. Accordingly, an extensive literature has been dedicated to the question and the upper and lower bounds have been successfully matched up to constant factors (Bun et al.,2018; Steinke & Ullman, 2017). In this paper, we take a novel approach to address this important optimality question. We first demonstrate an intriguing central limit theorem phenomenon in the high-dimensional regime. More precisely, we prove that a mechanism is approximately Gaussian Differentially Private (Dong et al., 2021) if the added noise satisfies certain conditions. In particular, densities proportional to $\mathrm{e}^{-\|x\|_p^\alpha}$, where $\|x\|_p$ is the standard $\ell_p$-norm, satisfies the conditions. Taking this perspective, we make use of the Cramer--Rao inequality and show an "uncertainty principle"-style result: the product of privacy parameter and the $\ell_2$-loss of the mechanism is lower bounded by the dimension. Furthermore, the Gaussian mechanism achieves the constant-sharp optimal privacy-accuracy trade-off among all such noises. Our findings are corroborated by numerical experiments.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Othmane Marfoq · Giovanni Neglia · Aurélien Bellet · Laetitia Kameni · Richard Vidal

The increasing size of data generated by smartphones and IoT devices motivated the development of Federated Learning (FL), a framework for on-device collaborative training of machine learning models. First efforts in FL focused on learning a single global model with good average performance across clients, but the global model may be arbitrarily bad for a given client, due to the inherent heterogeneity of local data distributions. Federated multi-task learning (MTL) approaches can learn personalized models by formulating an opportune penalized optimization problem. The penalization term can capture complex relations among personalized models, but eschews clear statistical assumptions about local data distributions. In this work, we propose to study federated MTL under the flexible assumption that each local data distribution is a mixture of unknown underlying distributions. This assumption encompasses most of the existing personalized FL approaches and leads to federated EM-like algorithms for both client-server and fully decentralized settings. Moreover, it provides a principled way to serve personalized models to clients not seen at training time. The algorithms' convergence is analyzed through a novel federated surrogate optimization framework, which can be of general interest. Experimental results on FL benchmarks show that our approach provides models with higher accuracy and fairness than state-of-the-art methods.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Walter Gerych · Thomas Hartvigsen · Luke Buquicchio · Emmanuel Agu · Elke A. Rundensteiner

Exact multi-label classification is the task of assigning each datapoint a set of class labels such that the assigned set exactly matches the ground truth. Optimizing for exact multi-label classification is important in domains where missing a single label can be especially costly, such as in object detection for autonomous vehicles or symptom classification for disease diagnosis. Recurrent Classifier Chains (RCCs), a recurrent neural network extension of ensemble-based classifier chains, are the state-of-the-art exact multi-label classification method for maximizing subset accuracy. However, RCCs iteratively predict classes with an unprincipled ordering, and therefore indiscriminately condition class probabilities. These disadvantages make RCCs prone to predicting inaccurate label sets. In this work we propose Recurrent Bayesian Classifier Chains (RBCCs), which learn a Bayesian network of class dependencies and leverage this network in order to condition the prediction of child nodes only on their parents. By conditioning predictions in this way, we perform principled and non-noisy class prediction. We demonstrate the effectiveness of our RBCC method on a variety of real-world multi-label datasets, where we routinely outperform the state of the art methods for exact multi-label classification.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Martijn Gösgens · Anton Zhiyanov · Aleksey Tikhonov · Liudmila Prokhorenkova

Several performance measures can be used for evaluating classification results: accuracy, F-measure, and many others. Can we say that some of them are better than others, or, ideally, choose one measure that is best in all situations? To answer this question, we conduct a systematic analysis of classification performance measures: we formally define a list of desirable properties and theoretically analyze which measures satisfy which properties. We also prove an impossibility theorem: some desirable properties cannot be simultaneously satisfied. Finally, we propose a new family of measures satisfying all desirable properties except one. This family includes the Matthews Correlation Coefficient and a so-called Symmetric Balanced Accuracy that was not previously used in classification literature. We believe that our systematic approach gives an important tool to practitioners for adequately evaluating classification results.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Tao Liu · Ruida Zhou · Dileep Kalathil · P. R. Kumar · Chao Tian

We address the issue of safety in reinforcement learning. We pose the problem in an episodic framework of a constrained Markov decision process. Existing results have shown that it is possible to achieve a reward regret of $\tilde{\mathcal{O}}(\sqrt{K})$ while allowing an $\tilde{\mathcal{O}}(\sqrt{K})$ constraint violation in $K$ episodes. A critical question that arises is whether it is possible to keep the constraint violation even smaller. We show that when a strictly safe policy is known, then one can confine the system to zero constraint violation with arbitrarily high probability while keeping the reward regret of order $\tilde{\mathcal{O}}(\sqrt{K})$. The algorithm which does so employs the principle of optimistic pessimism in the face of uncertainty to achieve safe exploration. When no strictly safe policy is known, though one is known to exist, then it is possible to restrict the system to bounded constraint violation with arbitrarily high probability. This is shown to be realized by a primal-dual algorithm with an optimistic primal estimate and a pessimistic dual update.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Michael Gimelfarb · Andre Barreto · Scott Sanner · Chi-Guhn Lee

Sample efficiency and risk-awareness are central to the development of practical reinforcement learning (RL) for complex decision-making. The former can be addressed by transfer learning, while the latter by optimizing some utility function of the return. However, the problem of transferring skills in a risk-aware manner is not well-understood. In this paper, we address the problem of transferring policies between tasks in a common domain that differ only in their reward functions, in which risk is measured by the variance of reward streams. Our approach begins by extending the idea of generalized policy improvement to maximize entropic utilities, thus extending the dynamic programming's policy improvement operation to sets of policies \emph{and} levels of risk-aversion. Next, we extend the idea of successor features (SF), a value function representation that decouples the environment dynamics from the rewards, to capture the variance of returns. Our resulting risk-aware successor features (RaSF) integrate seamlessly within the RL framework, inherit the superior task generalization ability of SFs, while incorporating risk into the decision-making. Experiments on a discrete navigation domain and control of a simulated robotic arm demonstrate the ability of RaSFs to outperform alternative methods including SFs, when taking the risk of the learned policies into account.

We develop scalable methods for producing conformal Bayesian predictive intervals with finite sample calibration guarantees. Bayesian posterior predictive distributions, $p(y \mid x)$, characterize subjective beliefs on outcomes of interest, $y$, conditional on predictors, $x$. Bayesian prediction is well-calibrated when the model is true, but the predictive intervals may exhibit poor empirical coverage when the model is misspecified, under the so called ${\cal{M}}$-open perspective. In contrast, conformal inference provides finite sample frequentist guarantees on predictive confidence intervals without the requirement of model fidelity. Using 'add-one-in' importance sampling, we show that conformal Bayesian predictive intervals are efficiently obtained from re-weighted posterior samples of model parameters. Our approach contrasts with existing conformal methods that require expensive refitting of models or data-splitting to achieve computational efficiency. We demonstrate the utility on a range of examples including extensions to partially exchangeable settings such as hierarchical models.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Harshavardhan Kamarthi · Lingkai Kong · Alexander Rodriguez · Chao Zhang · B. Aditya Prakash

Accurate and trustworthy epidemic forecasting is an important problem for public health planning and disease mitigation. Most existing epidemic forecasting models disregard uncertainty quantification, resulting in mis-calibrated predictions. Recent works in deep neural models for uncertainty-aware time-series forecasting also have several limitations; e.g., it is difficult to specify proper priors in Bayesian NNs, while methods like deep ensembling can be computationally expensive. In this paper, we propose to use neural functional processes to fill this gap. We model epidemic time-series with a probabilistic generative process and propose a functional neural process model called EpiFNP, which directly models the probability distribution of the forecast value in a non-parametric way. In EpiFNP, we use a dynamic stochastic correlation graph to model the correlations between sequences, and design different stochastic latent variables to capture functional uncertainty from different perspectives. Our experiments in a real-time flu forecasting setting show that EpiFNP significantly outperforms state-of-the-art models in both accuracy and calibration metrics, up to 2.5x in accuracy and 2.4x in calibration. Additionally, as EpiFNP learns the relations between the current season and similar patterns of historical seasons, it enables interpretable forecasts. Beyond epidemic forecasting, EpiFNP can be of independent interest for advancing uncertainty quantification in deep sequential models for predictive analytics.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Alaaeldin Ali · Hugo Touvron · Mathilde Caron · Piotr Bojanowski · Matthijs Douze · Armand Joulin · Ivan Laptev · Natalia Neverova · Gabriel Synnaeve · Jakob Verbeek · Herve Jegou

Following their success in natural language processing, transformers have recently shown much promise for computer vision. The self-attention operation underlying transformers yields global interactions between all tokens ,i.e. words or image patches, and enables flexible modelling of image data beyond the local interactions of convolutions. This flexibility, however, comes with a quadratic complexity in time and memory, hindering application to long sequences and high-resolution images. We propose a “transposed” version of self-attention that operates across feature channels rather than tokens, where the interactions are based on the cross-covariance matrix between keys and queries. The resulting cross-covariance attention (XCA) has linear complexity in the number of tokens, and allows efficient processing of high-resolution images.Our cross-covariance image transformer (XCiT) is built upon XCA. It combines the accuracy of conventional transformers with the scalability of convolutional architectures. We validate the effectiveness and generality of XCiT by reporting excellent results on multiple vision benchmarks, including image classification and self-supervised feature learning on ImageNet-1k, object detection and instance segmentation on COCO, and semantic segmentation on ADE20k.We will opensource our code and trained models to reproduce the reported results.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Enrique Fita Sanmartin · Sebastian Damrich · Fred Hamprecht

The Probabilistic Watershed is a semi-supervised learning algorithm applied on undirected graphs. Given a set of labeled nodes (seeds), it defines a Gibbs probability distribution over all possible spanning forests disconnecting the seeds. It calculates, for every node, the probability of sampling a forest connecting a certain seed with the considered node. We propose the "Directed Probabilistic Watershed", an extension of the Probabilistic Watershed algorithm to directed graphs. Building on the Probabilistic Watershed, we apply the Matrix Tree Theorem for directed graphs and define a Gibbs probability distribution over all incoming directed forests rooted at the seeds. Similar to the undirected case, this turns out to be equivalent to the Directed Random Walker. Furthermore, we show that in the limit case in which the Gibbs distribution has infinitely low temperature, the labeling of the Directed Probabilistic Watershed is equal to the one induced by the incoming directed forest of minimum cost. Finally, for illustration, we compare the empirical performance of the proposed method with other semi-supervised segmentation methods for directed graphs.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Sarah Müller · Alexander von Rohr · Sebastian Trimpe

Reinforcement learning (RL) aims to find an optimal policy by interaction with an environment. Consequently, learning complex behavior requires a vast number of samples, which can be prohibitive in practice. Nevertheless, instead of systematically reasoning and actively choosing informative samples, policy gradients for local search are often obtained from random perturbations. These random samples yield high variance estimates and hence are sub-optimal in terms of sample complexity. Actively selecting informative samples is at the core of Bayesian optimization, which constructs a probabilistic surrogate of the objective from past samples to reason about informative subsequent ones. In this paper, we propose to join both worlds. We develop an algorithm utilizing a probabilistic model of the objective function and its gradient. Based on the model, the algorithm decides where to query a noisy zeroth-order oracle to improve the gradient estimates. The resulting algorithm is a novel type of policy search method, which we compare to existing black-box algorithms. The comparison reveals improved sample complexity and reduced variance in extensive empirical evaluations on synthetic objectives. Further, we highlight the benefits of active sampling on popular RL benchmarks.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Ekaterina Lobacheva · Maxim Kodryan · Nadezhda Chirkova · Andrey Malinin · Dmitry Vetrov

Training neural networks with batch normalization and weight decay has become a common practice in recent years. In this work, we show that their combined use may result in a surprising periodic behavior of optimization dynamics: the training process regularly exhibits destabilizations that, however, do not lead to complete divergence but cause a new period of training. We rigorously investigate the mechanism underlying the discovered periodic behavior from both empirical and theoretical points of view and analyze the conditions in which it occurs in practice. We also demonstrate that periodic behavior can be regarded as a generalization of two previously opposing perspectives on training with batch normalization and weight decay, namely the equilibrium presumption and the instability presumption.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Runtian Zhai · Chen Dan · Arun Suggala · J. Zico Kolter · Pradeep Ravikumar

Many modern machine learning tasks require models with high tail performance, i.e. high performance over the worst-off samples in the dataset. This problem has been widely studied in fields such as algorithmic fairness, class imbalance, and risk-sensitive decision making. A popular approach to maximize the model's tail performance is to minimize the CVaR (Conditional Value at Risk) loss, which computes the average risk over the tails of the loss. However, for classification tasks where models are evaluated by the zero-one loss, we show that if the classifiers are deterministic, then the minimizer of the average zero-one loss also minimizes the CVaR zero-one loss, suggesting that CVaR loss minimization is not helpful without additional assumptions. We circumvent this negative result by minimizing the CVaR loss over randomized classifiers, for which the minimizers of the average zero-one loss and the CVaR zero-one loss are no longer the same, so minimizing the latter can lead to better tail performance. To learn such randomized classifiers, we propose the Boosted CVaR Classification framework which is motivated by a direct relationship between CVaR and a classical boosting algorithm called LPBoost. Based on this framework, we design an algorithm called $\alpha$-AdaLPBoost. We empirically evaluate our proposed algorithm on four benchmark datasets and show that it achieves higher tail performance than deterministic model training methods.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Lin Guan · Mudit Verma · Sihang Guo · Ruohan Zhang · Subbarao Kambhampati

Human explanation (e.g., in terms of feature importance) has been recently used to extend the communication channel between human and agent in interactive machine learning. Under this setting, human trainers provide not only the ground truth but also some form of explanation. However, this kind of human guidance was only investigated in supervised learning tasks, and it remains unclear how to best incorporate this type of human knowledge into deep reinforcement learning. In this paper, we present the first study of using human visual explanations in human-in-the-loop reinforcement learning (HIRL). We focus on the task of learning from feedback, in which the human trainer not only gives binary evaluative "good" or "bad" feedback for queried state-action pairs, but also provides a visual explanation by annotating relevant features in images. We propose EXPAND (EXPlanation AugmeNted feeDback) to encourage the model to encode task-relevant features through a context-aware data augmentation that only perturbs irrelevant features in human salient information. We choose five tasks, namely Pixel-Taxi and four Atari games, to evaluate the performance and sample efficiency of this approach. We show that our method significantly outperforms methods leveraging human explanation that are adapted from supervised learning, and Human-in-the-loop RL baselines that only utilize evaluative feedback.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Elias Ramzi · Nicolas THOME · Clément Rambour · Nicolas Audebert · Xavier Bitot

In image retrieval, standard evaluation metrics rely on score ranking, e.g. average precision (AP). In this paper, we introduce a method for robust and decomposable average precision (ROADMAP) addressing two major challenges for end-to-end training of deep neural networks with AP: non-differentiability and non-decomposability.Firstly, we propose a new differentiable approximation of the rank function, which provides an upper bound of the AP loss and ensures robust training. Secondly, we design a simple yet effective loss function to reduce the decomposability gap between the AP in the whole training set and its averaged batch approximation, for which we provide theoretical guarantees.Extensive experiments conducted on three image retrieval datasets show that ROADMAP outperforms several recent AP approximation methods and highlight the importance of our two contributions. Finally, using ROADMAP for training deep models yields very good performances, outperforming state-of-the-art results on the three datasets.Code and instructions to reproduce our results will be made publicly available at https://github.com/elias-ramzi/ROADMAP.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Reid McIlroy-Young · Russell Wang · Siddhartha Sen · Jon Kleinberg · Ashton Anderson

The advent of machine learning models that surpass human decision-making ability in complex domains has initiated a movement towards building AI systems that interact with humans. Many building blocks are essential for this activity, with a central one being the algorithmic characterization of human behavior. While much of the existing work focuses on aggregate human behavior, an important long-range goal is to develop behavioral models that specialize to individual people and can differentiate among them.To formalize this process, we study the problem of behavioral stylometry, in which the task is to identify a decision-maker from their decisions alone. We present a transformer-based approach to behavioral stylometry in the context of chess, where one attempts to identify the player who played a set of games. Our method operates in a few-shot classification framework, and can correctly identify a player from among thousands of candidate players with 98% accuracy given only 100 labeled games. Even when trained on amateur play, our method generalises to out-of-distribution samples of Grandmaster players, despite the dramatic differences between amateur and world-class players. Finally, we consider more broadly what our resulting embeddings reveal about human style in chess, as well as the potential ethical implications of powerful methods for identifying individuals from behavioral data.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Ali Hashemi · Yijing Gao · Chang Cai · Sanjay Ghosh · Klaus-Robert Müller · Srikantan Nagarajan · Stefan Haufe

Several problems in neuroimaging and beyond require inference on the parameters of multi-task sparse hierarchical regression models. Examples include M/EEG inverse problems, neural encoding models for task-based fMRI analyses, and climate science. In these domains, both the model parameters to be inferred and the measurement noise may exhibit a complex spatio-temporal structure. Existing work either neglects the temporal structure or leads to computationally demanding inference schemes. Overcoming these limitations, we devise a novel flexible hierarchical Bayesian framework within which the spatio-temporal dynamics of model parameters and noise are modeled to have Kronecker product covariance structure. Inference in our framework is based on majorization-minimization optimization and has guaranteed convergence properties. Our highly efficient algorithms exploit the intrinsic Riemannian geometry of temporal autocovariance matrices. For stationary dynamics described by Toeplitz matrices, the theory of circulant embeddings is employed. We prove convex bounding properties and derive update rules of the resulting algorithms. On both synthetic and real neural data from M/EEG, we demonstrate that our methods lead to improved performance.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Sebastian Zeng · Florian Graf · Christoph Hofer · Roland Kwitt

The problem of (point) forecasting univariate time series is considered. Most approaches, ranging from traditional statistical methods to recent learning-based techniques with neural networks, directly operate on raw time series observations. As an extension, we study whether local topological properties, as captured via persistent homology, can serve as a reliable signal that provides complementary information for learning to forecast. To this end, we propose topological attention, which allows attending to local topological features within a time horizon of historical data. Our approach easily integrates into existing end-to-end trainable forecasting models, such as N-BEATS, and, in combination with the latter exhibits state-of-the-art performance on the large-scale M4 benchmark dataset of 100,000 diverse time series from different domains. Ablation experiments, as well as a comparison to recent techniques in a setting where only a single time series is available for training, corroborate the beneficial nature of including local topological information through an attention mechanism.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Dweep Trivedi · Jesse Zhang · Shao-Hua Sun · Joseph Lim

Recently, deep reinforcement learning (DRL) methods have achieved impressive performance on tasks in a variety of domains. However, neural network policies produced with DRL methods are not human-interpretable and often have difficulty generalizing to novel scenarios. To address these issues, prior works explore learning programmatic policies that are more interpretable and structured for generalization. Yet, these works either employ limited policy representations (e.g. decision trees, state machines, or predefined program templates) or require stronger supervision (e.g. input/output state pairs or expert demonstrations). We present a framework that instead learns to synthesize a program, which details the procedure to solve a task in a flexible and expressive manner, solely from reward signals. To alleviate the difficulty of learning to compose programs to induce the desired agent behavior from scratch, we propose to first learn a program embedding space that continuously parameterizes diverse behaviors in an unsupervised manner and then search over the learned program embedding space to yield a program that maximizes the return for a given task. Experimental results demonstrate that the proposed framework not only learns to reliably synthesize task-solving programs but also outperforms DRL and program synthesis baselines while producing interpretable and more generalizable policies. We also justify the necessity of the proposed two-stage learning scheme as well as analyze various methods for learning the program embedding. Website at https://clvrai.com/leaps.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

OSCAR HERNAN MADRID PADILLA · Yi Yu · Alessandro Rinaldo

We study piece-wise constant signals corrupted by additive Gaussian noise over a $d$-dimensional lattice. Data of this form naturally arise in a host of applications, and the tasks of signal detection or testing, de-noising and estimation have been studied extensively in the statistical and signal processing literature. In this paper we consider instead the problem of partition recovery, i.e.~of estimating the partition of the lattice induced by the constancy regions of the unknown signal, using the computationally-efficient dyadic classification and regression tree (DCART) methodology proposed by \citep{donoho1997cart}. We prove that, under appropriate regularity conditions on the shape of the partition elements, a DCART-based procedure consistently estimates the underlying partition at a rate of order $\sigma^2 k^* \log (N)/\kappa^2$, where $k^*$ is the minimal number of rectangular sub-graphs obtained using recursive dyadic partitions supporting the signal partition, $\sigma^2$ is the noise variance, $\kappa$ is the minimal magnitude of the signal difference among contiguous elements of the partition and $N$ is the size of the lattice. Furthermore, under stronger assumptions, our method attains a sharper estimation error of order $\sigma^2\log(N)/\kappa^2$, independent of $k^*$, which we show to be minimax rate optimal. Our theoretical guarantees further extend to the partition estimator based on the optimal regression tree estimator (ORT) of \cite{chatterjee2019adaptive} and to the one obtained through an NP-hard exhaustive search method. We corroborate our theoretical findings and the effectiveness of DCART for partition recovery in simulations.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Stefanos Leonardos · Georgios Piliouras · Kelly Spendlove

The interplay between exploration and exploitation in competitive multi-agent learning is still far from being well understood. Motivated by this, we study smooth Q-learning, a prototypical learning model that explicitly captures the balance between game rewards and exploration costs. We show that Q-learning always converges to the unique quantal-response equilibrium (QRE), the standard solution concept for games under bounded rationality, in weighted zero-sum polymatrix games with heterogeneous learning agents using positive exploration rates. Complementing recent results about convergence in weighted potential games [16,34], we show that fast convergence of Q-learning in competitive settings obtains regardless of the number of agents and without any need for parameter fine-tuning. As showcased by our experiments in network zero-sum games, these theoretical results provide the necessary guarantees for an algorithmic approach to the currently open problem of equilibrium selection in competitive multi-agent settings.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Rajat Talak · Siyi Hu · Lisa Peng · Luca Carlone

Graph Neural Networks (GNNs) have emerged as a flexible and powerful approach for learning over graphs. Despite this success, existing GNNs are constrained by their local message-passing architecture and are provably limited in their expressive power. In this work, we propose a new GNN architecture – the Neural Tree. The neural tree architecture does not perform message passing on the input graph, but on a tree-structured graph, called the H-tree, that is constructed from the input graph. Nodes in the H-tree correspond to subgraphs in the input graph, and they are reorganized in a hierarchical manner such that the parent of a node in the H-tree always corresponds to a larger subgraph in the input graph. We show that the neural tree architecture can approximate any smooth probability distribution function over an undirected graph. We also prove that the number of parameters needed to achieve an $\epsilon$-approximation of the distribution function is exponential in the treewidth of the input graph, but linear in its size. We prove that any continuous G-invariant/equivariant function can be approximated by a nonlinear combination of such probability distribution functions over G. We apply the neural tree to semi-supervised node classification in 3D scene graphs, and show that these theoretical properties translate into significant gains in prediction accuracy, over the more traditional GNN architectures. We also show the applicability of the neural tree architecture to citation networks with large treewidth, by using a graph sub-sampling technique.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Kishan K C · Rui Li · MohammadMahdi Gilany

Dropout regularization methods prune a neural network's pre-determined backbone structure to avoid overfitting. However, a deep model still tends to be poorly calibrated with high confidence on incorrect predictions. We propose a unified Bayesian model selection method to jointly infer the most plausible network depth warranted by data, and perform dropout regularization simultaneously. In particular, to infer network depth we define a beta process over the number of hidden layers which allows it to go to infinity. Layer-wise activation probabilities induced by the beta process modulate neuron activation via binary vectors of a conjugate Bernoulli process. Experiments across domains show that by adapting network depth and dropout regularization to data, our method achieves superior performance comparing to state-of-the-art methods with well-calibrated uncertainty estimates. In continual learning, our method enables neural networks to dynamically evolve their depths to accommodate incrementally available data beyond their initial structures, and alleviate catastrophic forgetting.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Sijun Tan · Jibang Wu · Xiaohui Bei · Haifeng Xu

Peer review systems such as conference paper review often suffer from the issue of miscalibration. Previous works on peer review calibration usually only use the ordinal information or assume simplistic reviewer scoring functions such as linear functions. In practice, applications like academic conferences often rely on manual methods, such as open discussions, to mitigate miscalibration. It remains an important question to develop algorithms that can handle different types of miscalibrations based on available prior knowledge. In this paper, we propose a flexible framework, namely \emph{least square calibration} (LSC), for selecting top candidates from peer ratings. Our framework provably performs perfect calibration from noiseless linear scoring functions under mild assumptions, yet also provides competitive calibration results when the scoring function is from broader classes beyond linear functions and with arbitrary noise. On our synthetic dataset, we empirically demonstrate that our algorithm consistently outperforms the baseline which select top papers based on the highest average ratings.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Menachem Adelman · Kfir Levy · Ido Hakimi · Mark Silberstein

We propose a novel technique for faster deep neural network training which systematically applies sample-based approximation to the constituent tensor operations, i.e., matrix multiplications and convolutions. We introduce new sampling techniques, study their theoretical properties, and prove that they provide the same convergence guarantees when applied to SGD training. We apply approximate tensor operations to single and multi-node training of MLP and CNN networks on MNIST, CIFAR-10 and ImageNet datasets. We demonstrate up to 66% reduction in the amount of computations and communication, and up to 1.37x faster training time while maintaining negligible or no impact on the final test accuracy.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Sai Praneeth Karimireddy · Martin Jaggi · Satyen Kale · Mehryar Mohri · Sashank Reddi · Sebastian Stich · Ananda Theertha Suresh

Federated learning (FL) is a challenging setting for optimization due to the heterogeneity of the data across different clients which gives rise to the client drift phenomenon. In fact, obtaining an algorithm for FL which is uniformly better than simple centralized training has been a major open problem thus far. In this work, we propose a general algorithmic framework, Mime, which i) mitigates client drift and ii) adapts arbitrary centralized optimization algorithms such as momentum and Adam to the cross-device federated learning setting. Mime uses a combination of control-variates and server-level statistics (e.g. momentum) at every client-update step to ensure that each local update mimics that of the centralized method run on iid data. We prove a reduction result showing that Mime can translate the convergence of a generic algorithm in the centralized setting into convergence in the federated setting. Further, we show that when combined with momentum based variance reduction, Mime is provably faster than any centralized method--the first such result. We also perform a thorough experimental exploration of Mime's performance on real world datasets.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Haonan Yu · Wei Xu · Haichao Zhang

We present temporally abstract actor-critic (TAAC), a simple but effective off-policy RL algorithm that incorporates closed-loop temporal abstraction into the actor-critic framework. TAAC adds a second-stage binary policy to choose between the previous action and a new action output by an actor. Crucially, its "act-or-repeat" decision hinges on the actually sampled action instead of the expected behavior of the actor. This post-acting switching scheme let the overall policy make more informed decisions. TAAC has two important features: a) persistent exploration, and b) a new compare-through Q operator for multi-step TD backup, specially tailored to the action repetition scenario. We demonstrate TAAC's advantages over several strong baselines across 14 continuous control tasks. Our surprising finding reveals that while achieving top performance, TAAC is able to "mine" a significant number of repeated actions with the trained policy even on continuous tasks whose problem structures on the surface seem to repel action repetition. This suggests that aside from encouraging persistent exploration, action repetition can find its place in a good policy behavior. Code is available at https://github.com/hnyu/taac.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Mina Ghadimi Atigh · Martin Keller-Ressel · Pascal Mettes

Hyperbolic space has become a popular choice of manifold for representation learning of various datatypes from tree-like structures and text to graphs. Building on the success of deep learning with prototypes in Euclidean and hyperspherical spaces, a few recent works have proposed hyperbolic prototypes for classification. Such approaches enable effective learning in low-dimensional output spaces and can exploit hierarchical relations amongst classes, but require privileged information about class labels to position the hyperbolic prototypes. In this work, we propose Hyperbolic Busemann Learning. The main idea behind our approach is to position prototypes on the ideal boundary of the Poincar\'{e} ball, which does not require prior label knowledge. To be able to compute proximities to ideal prototypes, we introduce the penalised Busemann loss. We provide theory supporting the use of ideal prototypes and the proposed loss by proving its equivalence to logistic regression in the one-dimensional case. Empirically, we show that our approach provides a natural interpretation of classification confidence, while outperforming recent hyperspherical and hyperbolic prototype approaches.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Maria Tsimpoukelli · Jacob L Menick · Serkan Cabi · S. M. Ali Eslami · Oriol Vinyals · Felix Hill

When trained at sufficient scale, auto-regressive language models exhibit the notable ability to learn a new language task after being prompted with just a few examples. Here, we present a simple, yet effective, approach for transferring this few-shot learning ability to a multimodal setting (vision and language). Using aligned image and caption data, we train a vision encoder to represent each image as a sequence of continuous embeddings, such that a pre-trained, frozen language model presented with this prefix generates the appropriate caption. The resulting system is a multimodal few-shot learner, with the surprising ability to learn a variety of new tasks when conditioned on examples, represented as a sequence of any number of interleaved image and text embeddings. We demonstrate that it can rapidly learn words for new objects and novel visual categories, do visual question-answering with only a handful of examples, and make use of outside knowledge, by measuring a single model on a variety of established and new benchmarks.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Chengshuai Shi · Haifeng Xu · Wei Xiong · Cong Shen

Incentivized exploration in multi-armed bandits (MAB) has witnessed increasing interests and many progresses in recent years, where a principal offers bonuses to agents to do explorations on her behalf. However, almost all existing studies are confined to temporary myopic agents. In this work, we break this barrier and study incentivized exploration with multiple and long-term strategic agents, who have more complicated behaviors that often appear in real-world applications. An important observation of this work is that strategic agents' intrinsic needs of learning benefit (instead of harming) the principal's explorations by providing "free pulls". Moreover, it turns out that increasing the population of agents significantly lowers the principal's burden of incentivizing. The key and somewhat surprising insight revealed from our results is that when there are sufficiently many learning agents involved, the exploration process of the principal can be (almost) free. Our main results are built upon three novel components which may be of independent interest: (1) a simple yet provably effective incentive-provision strategy; (2) a carefully crafted best arm identification algorithm for rewards aggregated under unequal confidences; (3) a high-probability finite-time lower bound of UCB algorithms. Experimental results are provided to complement the theoretical analysis.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Tomas Geffner · Justin Domke

Given an unnormalized target distribution we want to obtain approximate samples from it and a tight lower bound on its (log) normalization constant log Z. Annealed Importance Sampling (AIS) with Hamiltonian MCMC is a powerful method that can be used to do this. Its main drawback is that it uses non-differentiable transition kernels, which makes tuning its many parameters hard. We propose a framework to use an AIS-like procedure with Uncorrected Hamiltonian MCMC, called Uncorrected Hamiltonian Annealing. Our method leads to tight and differentiable lower bounds on log Z. We show empirically that our method yields better performances than other competing approaches, and that the ability to tune its parameters using reparameterization gradients may lead to large performance improvements.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Rui Huang · Andrew Geng · Yixuan Li

Detecting out-of-distribution (OOD) data has become a critical component in ensuring the safe deployment of machine learning models in the real world. Existing OOD detection approaches primarily rely on the output or feature space for deriving OOD scores, while largely overlooking information from the gradient space. In this paper, we present GradNorm, a simple and effective approach for detecting OOD inputs by utilizing information extracted from the gradient space. GradNorm directly employs the vector norm of gradients, backpropagated from the KL divergence between the softmax output and a uniform probability distribution. Our key idea is that the magnitude of gradients is higher for in-distribution (ID) data than that for OOD data, making it informative for OOD detection. GradNorm demonstrates superior performance, reducing the average FPR95 by up to 16.33% compared to the previous best method.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Terrance Liu · Giuseppe Vietri · Steven Wu

We study private synthetic data generation for query release, where the goal is to construct a sanitized version of a sensitive dataset, subject to differential privacy, that approximately preserves the answers to a large collection of statistical queries. We first present an algorithmic framework that unifies a long line of iterative algorithms in the literature. Under this framework, we propose two new methods. The first method, private entropy projection (PEP), can be viewed as an advanced variant of MWEM that adaptively reuses past query measurements to boost accuracy. Our second method, generative networks with the exponential mechanism (GEM), circumvents computational bottlenecks in algorithms such as MWEM and PEP by optimizing over generative models parameterized by neural networks, which capture a rich family of distributions while enabling fast gradient-based optimization. We demonstrate that PEP and GEM empirically outperform existing algorithms. Furthermore, we show that GEM nicely incorporates prior information from public data while overcoming limitations of PMW^Pub, the existing state-of-the-art method that also leverages public data.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Clement Gehring · Kenji Kawaguchi · Jiaoyang Huang · Leslie Kaelbling

Estimating the per-state expected cumulative rewards is a critical aspect of reinforcement learning approaches, however the experience is obtained, but standard deep neural-network function-approximation methods are often inefficient in this setting. An alternative approach, exemplified by value iteration networks, is to learn transition and reward models of a latent Markov decision process whose value predictions fit the data. This approach has been shown empirically to converge faster to a more robust solution in many cases, but there has been little theoretical study of this phenomenon. In this paper, we explore such implicit representations of value functions via theory and focused experimentation. We prove that, for a linear parametrization, gradient descent converges to global optima despite non-linearity and non-convexity introduced by the implicit representation. Furthermore, we derive convergence rates for both cases which allow us to identify conditions under which stochastic gradient descent (SGD) with this implicit representation converges substantially faster than its explicit counterpart. Finally, we provide empirical results in some simple domains that illustrate the theoretical findings.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Shahd Safarani · Arne Nix · Konstantin Willeke · Santiago Cadena · Kelli Restivo · George Denfield · Andreas Tolias · Fabian Sinz

Deep neural networks set the state-of-the-art across many tasks in computer vision, but their generalization ability to simple image distortions is surprisingly fragile. In contrast, the mammalian visual system is robust to a wide range of perturbations. Recent work suggests that this generalization ability can be explained by useful inductive biases encoded in the representations of visual stimuli throughout the visual cortex. Here, we successfully leveraged these inductive biases with a multi-task learning approach: we jointly trained a deep network to perform image classification and to predict neural activity in macaque primary visual cortex (V1) in response to the same natural stimuli. We measured the out-of-distribution generalization abilities of our resulting network by testing its robustness to common image distortions. We found that co-training on monkey V1 data indeed leads to increased robustness despite the absence of those distortions during training. Additionally, we showed that our network's robustness is often very close to that of an Oracle network where parts of the architecture are directly trained on noisy images. Our results also demonstrated that the network's representations become more brain-like as their robustness improves. Using a novel constrained reconstruction analysis, we investigated what makes our brain-regularized network more robust. We found that our monkey co-trained network is more sensitive to content than noise when compared to a Baseline network that we trained for image classification alone. Using DeepGaze-predicted saliency maps for ImageNet images, we found that the monkey co-trained network tends to be more sensitive to salient regions in a scene, reminiscent of existing theories on the role of V1 in the detection of object borders and bottom-up saliency. Overall, our work expands the promising research avenue of transferring inductive biases from biological to artificial neural networks on the representational level, and provides a novel analysis of the effects of our transfer.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Miguel Lazaro-Gredilla · Antoine Dedieu · Dileep George

Perturb-and-MAP offers an elegant approach to approximately sample from a energy-based model (EBM) by computing the maximum-a-posteriori (MAP) configuration of a perturbed version of the model. Sampling in turn enables learning. However, this line of research has been hindered by the general intractability of the MAP computation. Very few works venture outside tractable models, and when they do, they use linear programming approaches, which as we will show, have several limitations. In this work we present perturb-and-max-product (PMP), a parallel and scalable mechanism for sampling and learning in discrete EBMs. Models can be arbitrary as long as they are built using tractable factors. We show that (a) for Ising models, PMP is orders of magnitude faster than Gibbs and Gibbs-with-Gradients (GWG) at learning and generating samples of similar or better quality; (b) PMP is able to learn and sample from RBMs; (c) in a large, entangled graphical model in which Gibbs and GWG fail to mix, PMP succeeds.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Jonathan Chang · Masatoshi Uehara · Dhruv Sreenivas · Rahul Kidambi · Wen Sun

This paper studies offline Imitation Learning (IL) where an agent learns to imitate an expert demonstrator without additional online environment interactions. Instead, the learner is presented with a static offline dataset of state-action-next state triples from a potentially less proficient behavior policy. We introduce Model-based IL from Offline data (MILO): an algorithmic framework that utilizes the static dataset to solve the offline IL problem efficiently both in theory and in practice. In theory, even if the behavior policy is highly sub-optimal compared to the expert, we show that as long as the data from the behavior policy provides sufficient coverage on the expert state-action traces (and with no necessity for a global coverage over the entire state-action space), MILO can provably combat the covariate shift issue in IL. Complementing our theory results, we also demonstrate that a practical implementation of our approach mitigates covariate shift on benchmark MuJoCo continuous control tasks. We demonstrate that with behavior policies whose performances are less than half of that of the expert, MILO still successfully imitates with an extremely low number of expert state-action pairs while traditional offline IL methods such as behavior cloning (BC) fail completely. Source code is provided at https://github.com/jdchang1/milo.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Xiao Jin · Pin-Yu Chen · Chia-Yi Hsu · Chia-Mu Yu · Tianyi Chen

Recent studies show that private training data can be leaked through the gradients sharing mechanism deployed in distributed machine learning systems, such as federated learning (FL). Increasing batch size to complicate data recovery is often viewed as a promising defense strategy against data leakage. In this paper, we revisit this defense premise and propose an advanced data leakage attack with theoretical justification to efficiently recover batch data from the shared aggregated gradients. We name our proposed method as catastrophic data leakage in vertical federated learning (CAFE). Comparing to existing data leakage attacks, our extensive experimental results on vertical FL settings demonstrate the effectiveness of CAFE to perform large-batch data leakage attack with improved data recovery quality. We also propose a practical countermeasure to mitigate CAFE. Our results suggest that private data participated in standard FL, especially the vertical case, have a high risk of being leaked from the training gradients. Our analysis implies unprecedented and practical data leakage risks in those learning settings. The code of our work is available at https://github.com/DeRafael/CAFE.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Marc Rigter · Bruno Lacerda · Nick Hawes

In this work, we address risk-averse Bayes-adaptive reinforcement learning. We pose the problem of optimising the conditional value at risk (CVaR) of the total return in Bayes-adaptive Markov decision processes (MDPs). We show that a policy optimising CVaR in this setting is risk-averse to both the epistemic uncertainty due to the prior distribution over MDPs, and the aleatoric uncertainty due to the inherent stochasticity of MDPs. We reformulate the problem as a two-player stochastic game and propose an approximate algorithm based on Monte Carlo tree search and Bayesian optimisation. Our experiments demonstrate that our approach significantly outperforms baseline approaches for this problem.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Koby Bibas · Meir Feder · Tal Hassner

Detecting out-of-distribution (OOD) samples is vital for developing machine learning based models for critical safety systems. Common approaches for OOD detection assume access to some OOD samples during training which may not be available in a real-life scenario. Instead, we utilize the {\em predictive normalized maximum likelihood} (pNML) learner, in which no assumptions are made on the tested input. We derive an explicit expression of the pNML and its generalization error, denoted as the regret, for a single layer neural network (NN). We show that this learner generalizes well when (i) the test vector resides in a subspace spanned by the eigenvectors associated with the large eigenvalues of the empirical correlation matrix of the training data, or (ii) the test sample is far from the decision boundary. Furthermore, we describe how to efficiently apply the derived pNML regret to any pretrained deep NN, by employing the explicit pNML for the last layer, followed by the softmax function. Applying the derived regret to deep NN requires neither additional tunable parameters nor extra data. We extensively evaluate our approach on 74 OOD detection benchmarks using DenseNet-100, ResNet-34, and WideResNet-40 models trained with CIFAR-100, CIFAR-10, SVHN, and ImageNet-30 showing a significant improvement of up to 15.6% over recent leading methods.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Mohammad Pezeshki · Oumar Kaba · Yoshua Bengio · Aaron Courville · Doina Precup · Guillaume Lajoie

We identify and formalize a fundamental gradient descent phenomenon resulting in a learning proclivity in over-parameterized neural networks. Gradient Starvation arises when cross-entropy loss is minimized by capturing only a subset of features relevant for the task, despite the presence of other predictive features that fail to be discovered. This work provides a theoretical explanation for the emergence of such feature imbalance in neural networks. Using tools from Dynamical Systems theory, we identify simple properties of learning dynamics during gradient descent that lead to this imbalance, and prove that such a situation can be expected given certain statistical structure in training data. Based on our proposed formalism, we develop guarantees for a novel regularization method aimed at decoupling feature learning dynamics, improving accuracy and robustness in cases hindered by gradient starvation. We illustrate our findings with simple and real-world out-of-distribution (OOD) generalization experiments.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Kate Donahue · Jon Kleinberg

Federated learning is a distributed learning paradigm where multiple agents, each only with access to local data, jointly learn a global model. There has recently been an explosion of research aiming not only to improve the accuracy rates of federated learning, but also provide certain guarantees around social good properties such as total error. One branch of this research has taken a game-theoretic approach, and in particular, prior work has viewed federated learning as a hedonic game, where error-minimizing players arrange themselves into federating coalitions. This past work proves the existence of stable coalition partitions, but leaves open a wide range of questions, including how far from optimal these stable solutions are. In this work, we motivate and define a notion of optimality given by the average error rates among federating agents (players). First, we provide and prove the correctness of an efficient algorithm to calculate an optimal (error minimizing) arrangement of players. Next, we analyze the relationship between the stability and optimality of an arrangement. First, we show that for some regions of parameter space, all stable arrangements are optimal (Price of Anarchy equal to 1). However, we show this is not true for all settings: there exist examples of stable arrangements with higher cost than optimal (Price of Anarchy greater than 1). Finally, we give the first constant-factor bound on the performance gap between stability and optimality, proving that the total error of the worst stable solution can be no higher than 9 times the total error of an optimal solution (Price of Anarchy bound of 9).

Private data analysis suffers a costly curse of dimensionality. However, the data often has an underlying low-dimensional structure. For example, when optimizing via gradient descent, the gradients often lie in or near a low-dimensional subspace. If that low-dimensional structure can be identified, then we can avoid paying (in terms of privacy or accuracy) for the high ambient dimension. We present differentially private algorithms that take input data sampled from a low-dimensional linear subspace (possibly with a small amount of error) and output that subspace (or an approximation to it). These algorithms can serve as a pre-processing step for other procedures.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Taebum Kim · Eunji Jeong · Geon-Woo Kim · Yunmo Koo · Sehoon Kim · Gyeongin Yu · Byung-Gon Chun

Imperative programming allows users to implement their deep neural networks (DNNs) easily and has become an essential part of recent deep learning (DL) frameworks. Recently, several systems have been proposed to combine the usability of imperative programming with the optimized performance of symbolic graph execution. Such systems convert imperative Python DL programs to optimized symbolic graphs and execute them. However, they cannot fully support the usability of imperative programming. For example, if an imperative DL program contains a Python feature with no corresponding symbolic representation (e.g., third-party library calls or unsupported dynamic control flows) they fail to execute the program. To overcome this limitation, we propose Terra, an imperative-symbolic co-execution system that can handle any imperative DL programs while achieving the optimized performance of symbolic graph execution. To achieve this, Terra builds a symbolic graph by decoupling DL operations from Python features. Then, Terra conducts the imperative execution to support all Python features, while delegating the decoupled operations to the symbolic execution. We evaluated Terra’s performance improvement and coverage with ten imperative DL programs for several DNN architectures. The results show that Terra can speed up the execution of all ten imperative DL programs, whereas AutoGraph, one of the state-of-the-art systems, fails to execute five of them.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Benjamin Chamberlain · James Rowbottom · Davide Eynard · Francesco Di Giovanni · Xiaowen Dong · Michael Bronstein

We propose a novel class of graph neural networks based on the discretized Beltrami flow, a non-Euclidean diffusion PDE. In our model, node features are supplemented with positional encodings derived from the graph topology and jointly evolved by the Beltrami flow, producing simultaneously continuous feature learning, topology evolution. The resulting model generalizes many popular graph neural networks and achieves state-of-the-art results on several benchmarks.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Isaac Gibbs · Emmanuel Candes

We develop methods for forming prediction sets in an online setting where the data generating distribution is allowed to vary over time in an unknown fashion. Our framework builds on ideas from conformal inference to provide a general wrapper that can be combined with any black box method that produces point predictions of the unseen label or estimated quantiles of its distribution. While previous conformal inference methods rely on the assumption that the data are exchangeable, our adaptive approach provably achieves the desired coverage frequency over long-time intervals irrespective of the true data generating process. We accomplish this by modelling the distribution shift as a learning problem in a single parameter whose optimal value is varying over time and must be continuously re-estimated. We test our method, adaptive conformal inference, on two real world datasets and find that its predictions are robust to visible and significant distribution shifts.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Lassi Meronen · Martin Trapp · Arno Solin

Neural network models are known to reinforce hidden data biases, making them unreliable and difficult to interpret. We seek to build models that `know what they do not know' by introducing inductive biases in the function space. We show that periodic activation functions in Bayesian neural networks establish a connection between the prior on the network weights and translation-invariant, stationary Gaussian process priors. Furthermore, we show that this link goes beyond sinusoidal (Fourier) activations by also covering triangular wave and periodic ReLU activation functions. In a series of experiments, we show that periodic activation functions obtain comparable performance for in-domain data and capture sensitivity to perturbed inputs in deep neural networks for out-of-domain detection.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Connor Holmes · Minjia Zhang · Yuxiong He · Bo Wu

Natural Language Processing (NLP) has recently achieved great success by using huge pre-trained Transformer networks. However, these models often contain hundreds of millions or even billions of parameters, bringing challenges to online deployment due to latency constraints. Recently, hardware manufacturers have introduced dedicated hardware for NxM sparsity to provide the flexibility of unstructured pruning with the runtime efficiency of structured approaches. NxM sparsity permits arbitrarily selecting M parameters to retain from a contiguous group of N in the dense representation. However, due to the extremely high complexity of pre-trained models, the standard sparse fine-tuning techniques often fail to generalize well on downstream tasks, which have limited data resources. To address such an issue in a principled manner, we introduce a new learning framework, called NxMTransformer, to induce NxM semi-structured sparsity on pretrained language models for natural language understanding to obtain better performance. In particular, we propose to formulate the NxM sparsity as a constrained optimization problem and use Alternating Direction Method of Multipliers (ADMM) to optimize the downstream tasks while taking the underlying hardware constraints into consideration. ADMM decomposes the NxM sparsification problem into two sub-problems that can be solved sequentially, generating sparsified Transformer networks that achieve high accuracy while being able to effectively execute on newly released hardware. We apply our approach to a wide range of NLP tasks, and our proposed method is able to achieve 1.7 points higher accuracy in GLUE score than current best practices. Moreover, we perform detailed analysis on our approach and shed light on how ADMM affects fine-tuning accuracy for downstream tasks. Finally, we illustrate how NxMTransformer achieves additional performance improvement with knowledge distillation based methods.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Roshni Sahoo · Shengjia Zhao · Alyssa Chen · Stefano Ermon

Decision makers rely on probabilistic forecasts to predict the loss of different decision rules before deployment. When the forecasted probabilities match the true frequencies, predicted losses will be accurate. Although perfect forecasts are typically impossible, probabilities can be calibrated to match the true frequencies on average. However, we find that this \textit{average} notion of calibration, which is typically used in practice, does not necessarily guarantee accurate decision loss prediction. Specifically in the regression setting, the loss of threshold decisions, which are decisions based on whether the forecasted outcome falls above or below a cutoff, might not be predicted accurately. We propose a stronger notion of calibration called threshold calibration, which is exactly the condition required to ensure that decision loss is predicted accurately for threshold decisions. We provide an efficient algorithm which takes an uncalibrated forecaster as input and provably outputs a threshold-calibrated forecaster. Our procedure allows downstream decision makers to confidently estimate the loss of any threshold decision under any threshold loss function. Empirically, threshold calibration improves decision loss prediction without compromising on the quality of the decisions in two real-world settings: hospital scheduling decisions and resource allocation decisions.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Minqi Jiang · Michael Dennis · Jack Parker-Holder · Jakob Foerster · Edward Grefenstette · Tim Rocktäschel

Deep reinforcement learning (RL) agents may successfully generalize to new settings if trained on an appropriately diverse set of environment and task configurations. Unsupervised Environment Design (UED) is a promising self-supervised RL paradigm, wherein the free parameters of an underspecified environment are automatically adapted during training to the agent's capabilities, leading to the emergence of diverse training environments. Here, we cast Prioritized Level Replay (PLR), an empirically successful but theoretically unmotivated method that selectively samples randomly-generated training levels, as UED. We argue that by curating completely random levels, PLR, too, can generate novel and complex levels for effective training. This insight reveals a natural class of UED methods we call Dual Curriculum Design (DCD). Crucially, DCD includes both PLR and a popular UED algorithm, PAIRED, as special cases and inherits similar theoretical guarantees. This connection allows us to develop novel theory for PLR, providing a version with a robustness guarantee at Nash equilibria. Furthermore, our theory suggests a highly counterintuitive improvement to PLR: by stopping the agent from updating its policy on uncurated levels (training on less data), we can improve the convergence to Nash equilibria. Indeed, our experiments confirm that our new method, PLR$^{\perp}$, obtains better results on a suite of out-of-distribution, zero-shot transfer tasks, in addition to demonstrating that PLR$^{\perp}$ improves the performance of PAIRED, from which it inherited its theoretical framework.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Shai Feldman · Stephen Bates · Yaniv Romano

We develop a method to generate prediction intervals that have a user-specified coverage level across all regions of feature-space, a property called conditional coverage. A typical approach to this task is to estimate the conditional quantiles with quantile regression---it is well-known that this leads to correct coverage in the large-sample limit, although it may not be accurate in finite samples. We find in experiments that traditional quantile regression can have poor conditional coverage. To remedy this, we modify the loss function to promote independence between the size of the intervals and the indicator of a miscoverage event. For the true conditional quantiles, these two quantities are independent (orthogonal), so the modified loss function continues to be valid. Moreover, we empirically show that the modified loss function leads to improved conditional coverage, as evaluated by several metrics. We also introduce two new metrics that check conditional coverage by looking at the strength of the dependence between the interval size and the indicator of miscoverage.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Liwang Zhu · Qi Bao · Zhongzhi Zhang

Individual's opinions are fundamentally shaped and evolved by their interactions with other people, and social phenomena such as disagreement and polarization are now tightly woven into daily life. The quantification and optimization of these concepts have been the subject of much recent research behind a wealth of high-impact data mining applications. In particular, researchers have addressed the question of how such concepts can be optimized by influencing the opinion of a small number of individuals or by designing the network from scratch.Here, rather than a “design-from-scratch” approach or altering the initial opinion, we study the optimization problem of recommending $k$ new links to minimize the sum of polarization and disagreement in a social network with $n$ nodes and $m$ edges. We show that our objective function of this combinatorial optimization problem is not submodular, although it is monotone. We propose a simple greedy algorithm with a constant-factor approximation that solves the problem in cubic running time, and we provide theoretical analysis of the approximation guarantee for the algorithm. To overcome the computation challenge for large networks, we also provide a fast algorithm with computation complexity $\Otil (mk\eps^{-2})$ for any $\eps>0$, where the $\Otil (\cdot)$ notation suppresses the ${\rm poly} (\log n)$ factors. Extensive experiments on real datasets demonstrate both the efficiency and effectiveness of our algorithms.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Uri Sherman · Tomer Koren · Yishay Mansour

We study online convex optimization in the random order model, recently proposed by Garber et al. (2020), where the loss functions may be chosen by an adversary, but are then presented to the online algorithm in a uniformly random order. Focusing on the scenario where the cumulative loss function is (strongly) convex, yet individual loss functions are smooth but might be non-convex, we give algorithms that achieve the optimal bounds and significantly outperform the results of Garber et al. (2020), completely removing the dimension dependence and improve their scaling with respect to the strong convexity parameter. Our analysis relies on novel connections between algorithmic stability and generalization for sampling without-replacement analogous to those studied in the with-replacement i.i.d. setting, as well as on a refined average stability analysis of stochastic gradient descent.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Zahra Ghodsi · Nandan Kumar Jha · Brandon Reagen · Siddharth Garg

The simultaneous rise of machine learning as a service and concerns over user privacy have increasingly motivated the need for private inference (PI). While recent work demonstrates PI is possible using cryptographic primitives, the computational overheads render it impractical. State-of-art deep networks are inadequate in this context because the source of slowdown in PI stems from the ReLU operations whereas optimizations for plaintext inference focus on reducing FLOPs. In this paper we re-think ReLU computations and propose optimizations for PI tailored to properties of neural networks. Specifically, we reformulate ReLU as an approximate sign test and introduce a novel truncation method for the sign test that significantly reduces the cost per ReLU. These optimizations result in a specific type of stochastic ReLU. The key observation is that the stochastic fault behavior is well suited for the fault-tolerant properties of neural network inference. Thus, we provide significant savings without impacting accuracy. We collectively call the optimizations Circa and demonstrate improvements of up to 4.7$\times$ storage and 3$\times$ runtime over baseline implementations; we further show that Circa can be used on top of recent PI optimizations to obtain 1.8$\times$ additional speedup.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Mark Herbster · Stephen Pasteris · Fabio Vitale · Massimiliano Pontil

We consider running multiple instances of multi-armed bandit (MAB) problems in parallel. A main motivation for this study are online recommendation systems, in which each of $N$ users is associated with a MAB problem and the goal is to exploit users' similarity in order to learn users' preferences to $K$ items more efficiently. We consider the adversarial MAB setting, whereby an adversary is free to choose which user and which loss to present to the learner during the learning process. Users are in a social network and the learner is aided by a-priori knowledge of the strengths of the social links between all pairs of users. It is assumed that if the social link between two users is strong then they tend to share the same action. The regret is measured relative to an arbitrary function which maps users to actions. The smoothness of the function is captured by a resistance-based dispersion measure $\Psi$. We present two learning algorithms, GABA-I and GABA-II, which exploit the network structure to bias towards functions of low $\Psi$ values. We show that GABA-I has an expected regret bound of $\mathcal{O}(\sqrt{\ln(NK/\Psi)\Psi KT})$ and per-trial time complexity of $\mathcal{O}(K\ln(N))$, whilst GABA-II has a weaker $\mathcal{O}(\sqrt{\ln(N/\Psi)\ln(NK/\Psi)\Psi KT})$ regret, but a better $\mathcal{O}(\ln(K)\ln(N))$ per-trial time complexity. We highlight improvements of both algorithms over running independent standard MABs across users.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Emmanouil-Vasileios Vlatakis-Gkaragkounis · Lampros Flokas · Georgios Piliouras

Many recent AI architectures are inspired by zero-sum games, however, the behavior of their dynamics is still not well understood. Inspired by this, we study standard gradient descent ascent (GDA) dynamics in a specific class of non-convex non-concave zero-sum games, that we call hidden zero-sum games. In this class, players control the inputs of smooth but possibly non-linear functions whose outputs are being applied as inputs to a convex-concave game. Unlike general zero-sum games, these games have a well-defined notion of solution; outcomes that implement the von-Neumann equilibrium of the ``hidden" convex-concave game. We provide conditions under which vanilla GDA provably converges not merely to local Nash, but the actual von-Neumann solution. If the hidden game lacks strict convexity properties, GDA may fail to converge to any equilibrium, however, by applying standard regularization techniques we can prove convergence to a von-Neumann solution of a slightly perturbed zero-sum game. Our convergence results are non-local despite working in the setting of non-convex non-concave games. Critically, under proper assumptions we combine the Center-Stable Manifold Theorem along with novel type of initialization dependent Lyapunov functions to prove that almost all initial conditions converge to the solution. Finally, we discuss diverse applications of our framework ranging from generative adversarial networks to evolutionary biology.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Nima Dehmamy · Robin Walters · Yanchen Liu · Dashun Wang · Rose Yu

Existing equivariant neural networks require prior knowledge of the symmetry group and discretization for continuous groups. We propose to work with Lie algebras (infinitesimal generators) instead of Lie groups. Our model, the Lie algebra convolutional network (L-conv) can automatically discover symmetries and does not require discretization of the group. We show that L-conv can serve as a building block to construct any group equivariant feedforward architecture. Both CNNs and Graph Convolutional Networks can be expressed as L-conv with appropriate groups. We discover direct connections between L-conv and physics: (1) group invariant loss generalizes field theory (2) Euler-Lagrange equation measures the robustness, and (3) equivariance leads to conservation laws and Noether current. These connections open up new avenues for designing more general equivariant networks and applying them to important problems in physical sciences.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Manel Baradad Jurjo · Jonas Wulff · Tongzhou Wang · Phillip Isola · Antonio Torralba

Current vision systems are trained on huge datasets, and these datasets come with costs: curation is expensive, they inherit human biases, and there are concerns over privacy and usage rights. To counter these costs, interest has surged in learning from cheaper data sources, such as unlabeled images. In this paper we go a step further and ask if we can do away with real image datasets entirely, instead learning from procedural noise processes. We investigate a suite of image generation models that produce images from simple random processes. These are then used as training data for a visual representation learner with a contrastive loss. In particular, we study statistical image models, randomly initialized deep generative models, and procedural graphics models.Our findings show that it is important for the noise to capture certain structural properties of real data but that good performance can be achieved even with processes that are far from realistic. We also find that diversity is a key property to learn good representations.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Maksim Velikanov · Dmitry Yarotsky

Current theoretical results on optimization trajectories of neural networks trained by gradient descent typically have the form of rigorous but potentially loose bounds on the loss values. In the present work we take a different approach and show that the learning trajectory of a wide network in a lazy training regime can be characterized by an explicit asymptotic at large training times. Specifically, the leading term in the asymptotic expansion of the loss behaves as a power law $L(t) \sim C t^{-\xi}$ with exponent $\xi$ expressed only through the data dimension, the smoothness of the activation function, and the class of function being approximated. Our results are based on spectral analysis of the integral operator representing the linearized evolution of a large network trained on the expected loss. Importantly, the techniques we employ do not require a specific form of the data distribution, for example Gaussian, thus making our findings sufficiently universal.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Hongyu Gong · Yun Tang · Juan Pino · Xian Li

Multi-head attention has each of the attention heads collect salient information from different parts of an input sequence, making it a powerful mechanism for sequence modeling. Multilingual and multi-domain learning are common scenarios for sequence modeling, where the key challenge is to maximize positive transfer and mitigate negative interference across languages and domains. In this paper, we find that non-selective attention sharing is sub-optimal for achieving good generalization across all languages and domains. We further propose attention sharing strategies to facilitate parameter sharing and specialization in multilingual and multi-domain sequence modeling. Our approach automatically learns shared and specialized attention heads for different languages and domains. Evaluated in various tasks including speech recognition, text-to-text and speech-to-text translation, the proposed attention sharing strategies consistently bring gains to sequence models built upon multi-head attention. For speech-to-text translation, our approach yields an average of $+2.0$ BLEU over $13$ language directions in multilingual setting and $+2.0$ BLEU over $3$ domains in multi-domain setting.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Yulun Zhang · Huan Wang · Can Qin · Yun Fu

Lightweight image super-resolution (SR) networks have obtained promising results with moderate model size. Many SR methods have focused on designing lightweight architectures, which neglect to further reduce the redundancy of network parameters. On the other hand, model compression techniques, like neural architecture search and knowledge distillation, typically consume considerable memory and computation resources. In contrast, network pruning is a cheap and effective model compression technique. However, it is hard to be applied to SR networks directly, because filter pruning for residual blocks is well-known tricky. To address the above issues, we propose aligned structured sparsity learning (ASSL), which introduces a weight normalization layer and applies $L_2$ regularization to the scale parameters for sparsity. To align the pruned locations across different layers, we propose a \emph{sparsity structure alignment} penalty term, which minimizes the norm of soft mask gram matrix. We apply aligned structured sparsity learning strategy to train efficient image SR network, named as ASSLN, with smaller model size and lower computation than state-of-the-art methods. We conduct extensive comparisons with lightweight SR networks. Our ASSLN achieves superior performance gains over recent methods quantitatively and visually.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Sungjin Im · Ravi Kumar · Mahshid Montazer Qaem · Manish Purohit

There has been recent interest in using machine-learned predictions to improve the worst-case guarantees of online algorithms. In this paper we continue this line of work by studying the online knapsack problem, but with very weak predictions: in the form of knowing an upper and lower bound for the number of items of each value. We systematically derive online algorithms that attain the best possible competitive ratio for any fixed prediction; we also extend the results to more general settings such as generalized one-way trading and two-stage online knapsack. Our work shows that even seemingly weak predictions can be utilized effectively to provably improve the performance of online algorithms.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Foivos Alimisis · Peter Davies · Bart Vandereycken · Dan Alistarh

We study efficient distributed algorithms for the fundamental problem of principal component analysis and leading eigenvector computation on the sphere, when the data are randomly distributed among a set of computational nodes. We propose a new quantized variant of Riemannian gradient descent to solve this problem, and prove that the algorithm converges with high probability under a set of necessary spherical-convexity properties. We give bounds on the number of bits transmitted by the algorithm under common initialization schemes, and investigate the dependency on the problem dimension in each case.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Keith Battocchi · Eleanor Dillon · Maggie Hei · Greg Lewis · Miruna Oprescu · Vasilis Syrgkanis

Policy makers often need to estimate the long-term effects of novel treatments, while only having historical data of older treatment options. We propose a surrogate-based approach using a long-term dataset where only past treatments were administered and a short-term dataset where novel treatments have been administered. Our approach generalizes previous surrogate-style methods, allowing for continuous treatments and serially-correlated treatment policies while maintaining consistency and root-n asymptotically normal estimates under a Markovian assumption on the data and the observational policy. Using a semi-synthetic dataset on customer incentives from a major corporation, we evaluate the performance of our method and discuss solutions to practical challenges when deploying our methodology.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Yunhui Long · Boxin Wang · Zhuolin Yang · Bhavya Kailkhura · Aston Zhang · Carl Gunter · Bo Li

Recent advances in machine learning have largely benefited from the massive accessible training data. However, large-scale data sharing has raised great privacy concerns. In this work, we propose a novel privacy-preserving data Generative model based on the PATE framework (G-PATE), aiming to train a scalable differentially private data generator that preserves high generated data utility. Our approach leverages generative adversarial nets to generate data, combined with private aggregation among different discriminators to ensure strong privacy guarantees. Compared to existing approaches, G-PATE significantly improves the use of privacy budgets. In particular, we train a student data generator with an ensemble of teacher discriminators and propose a novel private gradient aggregation mechanism to ensure differential privacy on all information that flows from teacher discriminators to the student generator. In addition, with random projection and gradient discretization, the proposed gradient aggregation mechanism is able to effectively deal with high-dimensional gradient vectors. Theoretically, we prove that G-PATE ensures differential privacy for the data generator. Empirically, we demonstrate the superiority of G-PATE over prior work through extensive experiments. We show that G-PATE is the first work being able to generate high-dimensional image data with high data utility under limited privacy budgets ($\varepsilon \le 1$). Our code is available at https://github.com/AI-secure/G-PATE.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Nataly Brukhim · Elad Hazan · Shay Moran · Indraneel Mukherjee · Robert Schapire

Boosting is an algorithmic approach which is based on the idea of combining weak and moderately inaccurate hypotheses to a strong and accurate one. In this work we study multiclass boosting with a possibly large number of classes or categories. Multiclass boosting can be formulated in various ways. Here, we focus on an especially natural formulation in which the weak hypotheses are assumed to belong to an ''easy-to-learn'' base class, and the weak learner is an agnostic PAC learner for that class with respect to the standard classification loss. This is in contrast with other, more complicated losses as have often been considered in the past. The goal of the overall boosting algorithm is then to learn a combination of weak hypotheses by repeatedly calling the weak learner.We study the resources required for boosting, especially how theydepend on the number of classes $k$, for both the booster and weak learner.We find that the boosting algorithm itself only requires $O(\log k)$samples, as we show by analyzing a variant of AdaBoost for oursetting. In stark contrast, assuming typical limits on the number of weak-learner calls,we prove that the number of samples required by a weak learner is at least polynomial in $k$, exponentially more than thenumber of samples needed by the booster.Alternatively, we prove that the weak learner's accuracy parametermust be smaller than an inverse polynomial in $k$, showing that the returned weakhypotheses must be nearly the best in their class when $k$ is large.We also prove a trade-off between number of oracle calls and theresources required of the weak learner, meaning that the fewer calls to theweak learner the more that is demanded on each call.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

A. Feder Cooper · Yucheng Lu · Jessica Forde · Christopher De Sa

Recent empirical work shows that inconsistent results based on choice of hyperparameter optimization (HPO) configuration are a widespread problem in ML research. When comparing two algorithms J and K searching one subspace can yield the conclusion that J outperforms K, whereas searching another can entail the opposite. In short, the way we choose hyperparameters can deceive us. We provide a theoretical complement to this prior work, arguing that, to avoid such deception, the process of drawing conclusions from HPO should be made more rigorous. We call this process epistemic hyperparameter optimization (EHPO), and put forth a logical framework to capture its semantics and how it can lead to inconsistent conclusions about performance. Our framework enables us to prove EHPO methods that are guaranteed to be defended against deception, given bounded compute time budget t. We demonstrate our framework's utility by proving and empirically validating a defended variant of random search.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Adeline Fermanian · Pierre Marion · Jean-Philippe Vert · Gérard Biau

Building on the interpretation of a recurrent neural network (RNN) as a continuous-time neural differential equation, we show, under appropriate conditions, that the solution of a RNN can be viewed as a linear function of a specific feature set of the input sequence, known as the signature. This connection allows us to frame a RNN as a kernel method in a suitable reproducing kernel Hilbert space. As a consequence, we obtain theoretical guarantees on generalization and stability for a large class of recurrent networks. Our results are illustrated on simulated datasets.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Ilias Diakonikolas · Daniel Kane · Ankit Pensia · Thanasis Pittas · Alistair Stewart

We study the problem of list-decodable linear regression, where an adversary can corrupt a majority of the examples. Specifically, we are given a set $T$ of labeled examples $(x, y) \in \mathbb{R}^d \times \mathbb{R}$ and a parameter $0< \alpha <1/2$ such that an $\alpha$-fraction of the points in $T$ are i.i.d. samples from a linear regression model with Gaussian covariates, and the remaining $(1-\alpha)$-fraction of the points are drawn from an arbitrary noise distribution. The goal is to output a small list of hypothesis vectors such that at least one of them is close to the target regression vector. Our main result is a Statistical Query (SQ) lower bound of $d^{\mathrm{poly}(1/\alpha)}$ for this problem. Our SQ lower bound qualitatively matches the performance of previously developed algorithms, providing evidence that current upper bounds for this task are nearly best possible.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Ziwei Xu · Xudong Shen · Yongkang Wong · Mohan Kankanhalli

We propose the Motion Capsule Autoencoder (MCAE), which addresses a key challenge in the unsupervised learning of motion representations: transformation invariance. MCAE models motion in a two-level hierarchy. In the lower level, a spatio-temporal motion signal is divided into short, local, and semantic-agnostic snippets. In the higher level, the snippets are aggregated to form full-length semantic-aware segments. For both levels, we represent motion with a set of learned transformation invariant templates and the corresponding geometric transformations by using capsule autoencoders of a novel design. This leads to a robust and efficient encoding of viewpoint changes. MCAE is evaluated on a novel Trajectory20 motion dataset and various real-world skeleton-based human action datasets. Notably, it achieves better results than baselines on Trajectory20 with considerably fewer parameters and state-of-the-art performance on the unsupervised skeleton-based action recognition task.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Niladri Chatterji · Aldo Pacchiano · Peter Bartlett · Michael Jordan

We study a theory of reinforcement learning (RL) in which the learner receives binary feedback only once at the end of an episode. While this is an extreme test case for theory, it is also arguably more representative of real-world applications than the traditional requirement in RL practice that the learner receive feedback at every time step. Indeed, in many real-world applications of reinforcement learning, such as self-driving cars and robotics, it is easier to evaluate whether a learner's complete trajectory was either `good'' or`

bad,'' but harder to provide a reward signal at each step. To show that learning is possible in this more challenging setting, we study the case where trajectory labels are generated by an unknown parametric model, and provide a statistically and computationally efficient algorithm that achieves sublinear regret.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Tom Berrett · Yi Yu

We study online change point detection problems under the constraint of local differential privacy (LDP) where, in particular, the statistician does not have access to the raw data. As a concrete problem, we study a multivariate nonparametric regression problem. At each time point $t$, the raw data are assumed to be of the form $(X_t, Y_t)$, where $X_t$ is a $d$-dimensional feature vector and $Y_t$ is a response variable. Our primary aim is to detect changes in the regression function $m_t(x)=\mathbb{E}(Y_t |X_t=x)$ as soon as the change occurs. We provide algorithms which respect the LDP constraint, which control the false alarm probability, and which detect changes with a minimal (minimax rate-optimal) delay. To quantify the cost of privacy, we also present the optimal rate in the benchmark, non-private setting. These non-private results are also new to the literature and thus are interesting \emph{per se}. In addition, we study the univariate mean online change point detection problem, under privacy constraints. This serves as the blueprint of studying more complicated private change point detection problems.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Nicklas Hansen · Hao Su · Xiaolong Wang

While agents trained by Reinforcement Learning (RL) can solve increasingly challenging tasks directly from visual observations, generalizing learned skills to novel environments remains very challenging. Extensive use of data augmentation is a promising technique for improving generalization in RL, but it is often found to decrease sample efficiency and can even lead to divergence. In this paper, we investigate causes of instability when using data augmentation in common off-policy RL algorithms. We identify two problems, both rooted in high-variance Q-targets. Based on our findings, we propose a simple yet effective technique for stabilizing this class of algorithms under augmentation. We perform extensive empirical evaluation of image-based RL using both ConvNets and Vision Transformers (ViT) on a family of benchmarks based on DeepMind Control Suite, as well as in robotic manipulation tasks. Our method greatly improves stability and sample efficiency of ConvNets under augmentation, and achieves generalization results competitive with state-of-the-art methods for image-based RL in environments with unseen visuals. We further show that our method scales to RL with ViT-based architectures, and that data augmentation may be especially important in this setting.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Nate Veldt · Austin Benson · Jon Kleinberg

Minimizing a sum of simple submodular functions of limited support is a special case of general submodular function minimization that has seen numerous applications in machine learning. We develop faster techniques for instances where components in the sum are cardinality-based, meaning they depend only on the size of the input set. This variant is one of the most widely applied in practice, encompassing, e.g., common energy functions arising in image segmentation and recent generalized hypergraph cut functions. We develop the first approximation algorithms for this problem, where the approximations can be quickly computed via reduction to a sparse graph cut problem, with graph sparsity controlled by the desired approximation factor. Our method relies on a new connection between sparse graph reduction techniques and piecewise linear approximations to concave functions. Our sparse reduction technique leads to significant improvements in theoretical runtimes, as well as substantial practical gains in problems ranging from benchmark image segmentation tasks to hypergraph clustering problems.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Mingtian Zhang · Andi Zhang · Steven McDonagh

Out-of-distribution (OOD) detection and lossless compression constitute two problems that can be solved by the training of probabilistic models on a first dataset with subsequent likelihood evaluation on a second dataset, where data distributions differ. By defining the generalization of probabilistic models in terms of likelihood we show that, in the case of image models, the OOD generalization ability is dominated by local features. This motivates our proposal of a Local Autoregressive model that exclusively models local image features towards improving OOD performance. We apply the proposed model to OOD detection tasks and achieve state-of-the-art unsupervised OOD detection performance without the introduction of additional data. Additionally, we employ our model to build a new lossless image compressor: NeLLoC (Neural Local Lossless Compressor) and report state-of-the-art compression rates and model size.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Moshe Eliasof · Eldad Haber · Eran Treister

Graph neural networks are increasingly becoming the go-to approach in various fields such as computer vision, computational biology and chemistry, where data are naturally explained by graphs. However, unlike traditional convolutional neural networks, deep graph networks do not necessarily yield better performance than shallow graph networks. This behavior usually stems from the over-smoothing phenomenon. In this work, we propose a family of architecturesto control this behavior by design. Our networks are motivated by numerical methods for solving Partial Differential Equations (PDEs) on manifolds, and as such, their behavior can be explained by similar analysis. Moreover, as we demonstrate using an extensive set of experiments, our PDE-motivated networks can generalize and be effective for various types of problems from different fields. Our architectures obtain better or on par with the current state-of-the-art results for problems that are typically approached using different architectures.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Ishaq Aden-Ali · Hassan Ashtiani · Christopher Liaw

We consider the problem of learning multivariate Gaussians under the constraint of approximate differential privacy. We prove that $\widetilde{O}(k^2 d \log^{3/2}(1/\delta) / \alpha^2 \varepsilon)$ samples are sufficient to learn a mixture of $k$ axis-aligned Gaussians in $\mathbb{R}^d$ to within total variation distance $\alpha$ while satisfying $(\varepsilon, \delta)$-differential privacy. This is the first result for privately learning mixtures of unbounded axis-aligned (or even unbounded univariate) Gaussians. If the covariance matrices of each of the Gaussians is the identity matrix, we show that $\widetilde{O}(kd/\alpha^2 + kd \log(1/\delta) / \alpha \varepsilon)$ samples are sufficient.To prove our results, we design a new technique for privately learning mixture distributions. A class of distributions $\mathcal{F}$ is said to be list-decodable if there is an algorithm that, given "heavily corrupted" samples from $f \in \mathcal{F}$, outputs a list of distributions one of which approximates $f$. We show that if $\mathcal{F}$ is privately list-decodable then we can learn mixtures of distributions in $\mathcal{F}$. Finally, we show axis-aligned Gaussian distributions are privately list-decodable, thereby proving mixtures of such distributions are privately learnable.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Erik Lindgren · Sashank Reddi · Ruiqi Guo · Sanjiv Kumar

Factorized models, such as two tower neural network models, are widely used for scoring (query, document) pairs in information retrieval tasks. These models are typically trained by optimizing the model parameters to score relevant `positive" pairs higher than the irrelevant`

negative" ones. While a large set of negatives typically improves the model performance, limited computation and memory budgets place constraints on the number of negatives used during training. In this paper, we develop a novel negative sampling technique for accelerating training with softmax cross-entropy loss. By using cached (possibly stale) item embeddings, our technique enables training with a large pool of negatives with reduced memory and computation. We also develop a streaming variant of our algorithm geared towards very large datasets. Furthermore, we establish a theoretical basis for our approach by showing that updating a very small fraction of the cache at each iteration can still ensure fast convergence. Finally, we experimentally validate our approach and show that it is efficient and compares favorably with more complex, state-of-the-art approaches.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Kamélia Daudel · randal douc

This paper focuses on $\alpha$-divergence minimisation methods for Variational Inference. More precisely, we are interested in algorithms optimising the mixture weights of any given mixture model, without any information on the underlying distribution of its mixture components parameters. The Power Descent, defined for all $\alpha \neq 1$, is one such algorithm and we establish in our work the full proof of its convergence towards the optimal mixture weights when $\alpha <1$. Since the $\alpha$-divergence recovers the widely-used forward Kullback-Leibler when $\alpha \to 1$, we then extend the Power Descent to the case $\alpha = 1$ and show that we obtain an Entropic Mirror Descent. This leads us to investigate the link between Power Descent and Entropic Mirror Descent: first-order approximations allow us to introduce the R\'{e}nyi Descent, a novel algorithm for which we prove an $O(1/N)$ convergence rate. Lastly, we compare numerically the behavior of the unbiased Power Descent and of the biased R\'{e}nyi Descent and we discuss the potential advantages of one algorithm over the other.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Gavin Kerrigan · Padhraic Smyth · Mark Steyvers

An increasingly common use case for machine learning models is augmenting the abilities of human decision makers. For classification tasks where neither the human nor model are perfectly accurate, a key step in obtaining high performance is combining their individual predictions in a manner that leverages their relative strengths. In this work, we develop a set of algorithms that combine the probabilistic output of a model with the class-level output of a human. We show theoretically that the accuracy of our combination model is driven not only by the individual human and model accuracies, but also by the model's confidence. Empirical results on image classification with CIFAR-10 and a subset of ImageNet demonstrate that such human-model combinations consistently have higher accuracies than the model or human alone, and that the parameters of the combination method can be estimated effectively with as few as ten labeled datapoints.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Ron Dorfman · Idan Shenfeld · Aviv Tamar

Consider the following instance of the Offline Meta Reinforcement Learning (OMRL) problem: given the complete training logs of $N$ conventional RL agents, trained on $N$ different tasks, design a meta-agent that can quickly maximize reward in a new, unseen task from the same task distribution. In particular, while each conventional RL agent explored and exploited its own different task, the meta-agent must identify regularities in the data that lead to effective exploration/exploitation in the unseen task. Here, we take a Bayesian RL (BRL) view, and seek to learn a Bayes-optimal policy from the offline data. Building on the recent VariBAD BRL approach, we develop an off-policy BRL method that learns to plan an exploration strategy based on an adaptive neural belief estimate. However, learning to infer such a belief from offline data brings a new identifiability issue we term MDP ambiguity. We characterize the problem, and suggest resolutions via data collection and modification procedures.Finally, we evaluate our framework on a diverse set of domains, including difficult sparse reward tasks, and demonstrate learning of effective exploration behavior that is qualitatively different from the exploration used by any RL agent in the data. Our code is available online at \url{https://github.com/Rondorf/BOReL}.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Sai Vemprala · Sami Mian · Ashish Kapoor

Event-based cameras are dynamic vision sensors that provide asynchronous measurements of changes in per-pixel brightness at a microsecond level. This makes them significantly faster than conventional frame-based cameras, and an appealing choice for high-speed robot navigation. While an interesting sensor modality, this asynchronously streamed event data poses a challenge for machine learning based computer vision techniques that are more suited for synchronous, frame-based data. In this paper, we present an event variational autoencoder through which compact representations can be learnt directly from asynchronous spatiotemporal event data. Furthermore, we show that such pretrained representations can be used for event-based reinforcement learning instead of end-to-end reward driven perception. We validate this framework of learning event-based visuomotor policies by applying it to an obstacle avoidance scenario in simulation. Compared to techniques that treat event data as images, we show that representations learnt from event streams result in faster policy training, adapt to different control capacities, and demonstrate a higher degree of robustness to environmental changes and sensor noise.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Ziping Xu · Ambuj Tewari

Recent papers on the theory of representation learning has shown the importance of a quantity called diversity when generalizing from a set of source tasks to a target task. Most of these papers assume that the function mapping shared representations to predictions is linear, for both source and target tasks. In practice, researchers in deep learning use different numbers of extra layers following the pretrained model based on the difficulty of the new task. This motivates us to ask whether diversity can be achieved when source tasks and the target task use different prediction function spaces beyond linear functions. We show that diversity holds even if the target task uses a neural network with multiple layers, as long as source tasks use linear functions. If source tasks use nonlinear prediction functions, we provide a negative result by showing that depth-1 neural networks with ReLu activation function need exponentially many source tasks to achieve diversity. For a general function class, we find that eluder dimension gives a lower bound on the number of tasks required for diversity. Our theoretical results imply that simpler tasks generalize better. Though our theoretical results are shown for the global minimizer of empirical risks, their qualitative predictions still hold true for gradient-based optimization algorithms as verified by our simulations on deep neural networks.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Navid Ardeshir · Clayton Sanford · Daniel Hsu

The support vector machine (SVM) and minimum Euclidean norm least squares regression are two fundamentally different approaches to fitting linear models, but they have recently been connected in models for very high-dimensional data through a phenomenon of support vector proliferation, where every training example used to fit an SVM becomes a support vector. In this paper, we explore the generality of this phenomenon and make the following contributions. First, we prove a super-linear lower bound on the dimension (in terms of sample size) required for support vector proliferation in independent feature models, matching the upper bounds from previous works. We further identify a sharp phase transition in Gaussian feature models, bound the width of this transition, and give experimental support for its universality. Finally, we hypothesize that this phase transition occurs only in much higher-dimensional settings in the $\ell_1$ variant of the SVM, and we present a new geometric characterization of the problem that may elucidate this phenomenon for the general $\ell_p$ case.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Naman Agarwal · Peter Kairouz · Ken Liu

We introduce the multi-dimensional Skellam mechanism, a discrete differential privacy mechanism based on the difference of two independent Poisson random variables. To quantify its privacy guarantees, we analyze the privacy loss distribution via a numerical evaluation and provide a sharp bound on the Rényi divergence between two shifted Skellam distributions. While useful in both centralized and distributed privacy applications, we investigate how it can be applied in the context of federated learning with secure aggregation under communication constraints. Our theoretical findings and extensive experimental evaluations demonstrate that the Skellam mechanism provides the same privacy-accuracy trade-offs as the continuous Gaussian mechanism, even when the precision is low. More importantly, Skellam is closed under summation and sampling from it only requires sampling from a Poisson distribution -- an efficient routine that ships with all machine learning and data analysis software packages. These features, along with its discrete nature and competitive privacy-accuracy trade-offs, make it an attractive practical alternative to the newly introduced discrete Gaussian mechanism.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Kunho Kim · Sivakanth Gopi · Janardhan Kulkarni · Sergey Yekhanin

We revisit the problem of $n$-gram extraction in the differential privacy setting. In this problem, given a corpus of private text data, the goal is to release as many $n$-grams as possible while preserving user level privacy. Extracting $n$-grams is a fundamental subroutine in many NLP applications such as sentence completion, auto response generation for emails, etc. The problem also arises in other applications such as sequence mining, trajectory analysis, etc., and is a generalization of recently studied differentially private set union (DPSU) by Gopi et al. (2020). In this paper, we develop a new differentially private algorithm for this problem which, in our experiments, significantly outperforms the state-of-the-art. Our improvements stem from combining recent advances in DPSU, privacy accounting, and new heuristics for pruning in the tree-based approach initiated by Chen et al. (2012).

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Gregory Szep · Neil Dalchau · Attila Csikász-Nagy

Estimation of parameters in differential equation models can be achieved by applying learning algorithms to quantitative time-series data. However, sometimes it is only possible to measure qualitative changes of a system in response to a controlled condition. In dynamical systems theory, such change points are known as bifurcations and lie on a function of the controlled condition called the bifurcation diagram. In this work, we propose a gradient-based approach for inferring the parameters of differential equations that produce a user-specified bifurcation diagram. The cost function contains an error term that is minimal when the model bifurcations match the specified targets and a bifurcation measure which has gradients that push optimisers towards bifurcating parameter regimes. The gradients can be computed without the need to differentiate through the operations of the solver that was used to compute the diagram. We demonstrate parameter inference with minimal models which explore the space of saddle-node and pitchfork diagrams and the genetic toggle switch from synthetic biology. Furthermore, the cost landscape allows us to organise models in terms of topological and geometric equivalence.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Adrián Csiszárik · Péter Kőrösi-Szabó · Ákos Matszangosz · Gergely Papp · Dániel Varga

We employ a toolset --- dubbed Dr. Frankenstein --- to analyse the similarity of representations in deep neural networks. With this toolset we aim to match the activations on given layers of two trained neural networks by joining them with a stitching layer. We demonstrate that the inner representations emerging in deep convolutional neural networks with the same architecture but different initialisations can be matched with a surprisingly high degree of accuracy even with a single, affine stitching layer. We choose the stitching layer from several possible classes of linear transformations and investigate their performance and properties. The task of matching representations is closely related to notions of similarity. Using this toolset we also provide a novel viewpoint on the current line of research regarding similarity indices of neural network representations: the perspective of the performance on a task.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Daron Anderson · Douglas Leith

We study Online Lazy Gradient Descent for optimisation on a strongly convex domain. The algorithm is known to achieve $O(\sqrt N)$ regret against adversarial opponents; here we show it is universal in the sense that it also achieves $O(\log N)$ expected regret against i.i.d opponents. This improves upon the more complex meta-algorithm of Huang et al \cite{FTLBall} that only gets $O(\sqrt {N \log N})$ and $ O(\log N)$ bounds. In addition we show that, unlike for the simplex, order bounds for pseudo-regret and expected regret are equivalent for strongly convex domains.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

David So · Wojciech Mańke · Hanxiao Liu · Zihang Dai · Noam Shazeer · Quoc V Le

Large Transformer models have been central to recent advances in natural language processing. The training and inference costs of these models, however, have grown rapidly and become prohibitively expensive. Here we aim to reduce the costs of Transformers by searching for a more efficient variant. Compared to previous approaches, our search is performed at a lower level, over the primitives that define a Transformer TensorFlow program. We identify an architecture, named Primer, that has a smaller training cost than the original Transformer and other variants for auto-regressive language modeling. Primer’s improvements can be mostly attributed to two simple modifications: squaring ReLU activations and adding a depthwise convolution layer after each Q, K, and V projection in self-attention.Experiments show Primer’s gains over Transformer increase as compute scale grows and follow a power law with respect to quality at optimal model sizes. We also verify empirically that Primer can be dropped into different codebases to significantly speed up training without additional tuning. For example, at a 500M parameter size, Primer improves the original T5 architecture on C4 auto-regressive language modeling, reducing the training cost by 4X. Furthermore, the reduced training cost means Primer needs much less compute to reach a target one-shot performance. For instance, in a 1.9B parameter configuration similar to GPT-3 XL, Primer uses 1/3 of the training compute to achieve the same one-shot performance as Transformer. We open source our models and several comparisons in T5 to help with reproducibility.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Max Ryabinin · Andrey Malinin · Mark Gales

Ensembles of machine learning models yield improved system performance as well as robust and interpretable uncertainty estimates; however, their inference costs can be prohibitively high. Ensemble Distribution Distillation (EnD$^2$) is an approach that allows a single model to efficiently capture both the predictive performance and uncertainty estimates of an ensemble. For classification, this is achieved by training a Dirichlet distribution over the ensemble members' output distributions via the maximum likelihood criterion. Although theoretically principled, this work shows that the criterion exhibits poor convergence when applied to large-scale tasks where the number of classes is very high. Specifically, we show that for the Dirichlet log-likelihood criterion classes with low probability induce larger gradients than high-probability classes. Hence during training the model focuses on the distribution of the ensemble tail-class probabilities rather than the probability of the correct and closely related classes. We propose a new training objective which minimizes the reverse KL-divergence to a \emph{Proxy-Dirichlet} target derived from the ensemble. This loss resolves the gradient issues of EnD$^2$, as we demonstrate both theoretically and empirically on the ImageNet, LibriSpeech, and WMT17 En-De datasets containing 1000, 5000, and 40,000 classes, respectively.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Joe Kileel · Timo Klock · João M Pereira

In this work, we consider the optimization formulation for symmetric tensor decomposition recently introduced in the Subspace Power Method (SPM) of Kileel and Pereira. Unlike popular alternative functionals for tensor decomposition, the SPM objective function has the desirable properties that its maximal value is known in advance, and its global optima are exactly the rank-1 components of the tensor when the input is sufficiently low-rank. We analyze the non-convex optimization landscape associated with the SPM objective. Our analysis accounts for working with noisy tensors. We derive quantitative bounds such that any second-order critical point with SPM objective value exceeding the bound must equal a tensor component in the noiseless case, and must approximate a tensor component in the noisy case. For decomposing tensors of size $D^{\times m}$, we obtain a near-global guarantee up to rank $\widetilde{o}(D^{\lfloor m/2 \rfloor})$ under a random tensor model, and a global guarantee up to rank $\mathcal{O}(D)$ assuming deterministic frame conditions. This implies that SPM with suitable initialization is a provable, efficient, robust algorithm for low-rank symmetric tensor decomposition. We conclude with numerics that show a practical preferability for using the SPM functional over a more established counterpart.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Hilaf Hasson · Bernie Wang · Tim Januschowski · Jan Gasthaus

Large-scale time series panels have become ubiquitous over the last years in areas such as retail, operational metrics, IoT, and medical domain (to name only a few). This has resulted in a need for forecasting techniques that effectively leverage all available data by learning across all time series in each panel. Among the desirable properties of forecasting techniques, being able to generate probabilistic predictions ranks among the top. In this paper, we therefore present Level Set Forecaster (LSF), a simple yet effective general approach to transform a point estimator into a probabilistic one. By recognizing the connection of our algorithm to random forests (RFs) and quantile regression forests (QRFs), we are able to prove consistency guarantees of our approach under mild assumptions on the underlying point estimator. As a byproduct, we prove the first consistency results for QRFs under the CART-splitting criterion. Empirical experiments show that our approach, equipped with tree-based models as the point estimator, rivals state-of-the-art deep learning models in terms of forecasting accuracy.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Jiawei Chen · Xu Tan · Yichong Leng · Jin Xu · Guihua Wen · Tao Qin · Tie-Yan Liu

Neural Transducer (e.g., RNN-T) has been widely used in automatic speech recognition (ASR) due to its capabilities of efficiently modeling monotonic alignments between input and output sequences and naturally supporting streaming inputs. Considering that monotonic alignments are also critical to text to speech (TTS) synthesis and streaming TTS is also an important application scenario, in this work, we explore the possibility of applying Transducer to TTS and more. However, it is challenging because it is difficult to trade off the emission (continuous mel-spectrogram prediction) probability and transition (ASR Transducer predicts blank token to indicate transition to next input) probability when calculating the output probability lattice in Transducer, and it is not easy to learn the alignments between text and speech through the output probability lattice. We propose SpeechTransducer (Speech-T for short), a Transformer based Transducer model that 1) uses a new forward algorithm to separate the transition prediction from the continuous mel-spectrogram prediction when calculating the output probability lattice, and uses a diagonal constraint in the probability lattice to help the alignment learning; 2) supports both full-sentence or streaming TTS by adjusting the look-ahead context; and 3) further supports both TTS and ASR together for the first time, which enjoys several advantages including fewer parameters as well as streaming synthesis and recognition in a single model. Experiments on LJSpeech datasets demonstrate that Speech-T 1) is more robust than the attention based autoregressive TTS model due to its inherent monotonic alignments between text and speech; 2) naturally supports streaming TTS with good voice quality; and 3) enjoys the benefit of joint modeling TTS and ASR in a single network.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Xiuyuan Cheng · Yao Xie

We present a novel neural network Maximum Mean Discrepancy (MMD) statistic by identifying a new connection between neural tangent kernel (NTK) and MMD. This connection enables us to develop a computationally efficient and memory-efficient approach to compute the MMD statistic and perform NTK based two-sample tests towards addressing the long-standing challenge of memory and computational complexity of the MMD statistic, which is essential for online implementation to assimilating new samples. Theoretically, such a connection allows us to understand the NTK test statistic properties, such as the Type-I error and testing power for performing the two-sample test, by adapting existing theories for kernel MMD. Numerical experiments on synthetic and real-world datasets validate the theory and demonstrate the effectiveness of the proposed NTK-MMD statistic.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Yangsibo Huang · Samyak Gupta · Zhao Song · Kai Li · Sanjeev Arora

Gradient inversion attack (or input recovery from gradient) is an emerging threat to the security and privacy preservation of Federated learning, whereby malicious eavesdroppers or participants in the protocol can recover (partially) the clients' private data. This paper evaluates existing attacks and defenses. We find that some attacks make strong assumptions about the setup. Relaxing such assumptions can substantially weaken these attacks. We then evaluate the benefits of three proposed defense mechanisms against gradient inversion attacks. We show the trade-offs of privacy leakage and data utility of these defense methods, and find that combining them in an appropriate manner makes the attack less effective, even under the original strong assumptions. We also estimate the computation cost of end-to-end recovery of a single image under each evaluated defense. Our findings suggest that the state-of-the-art attacks can currently be defended against with minor data utility loss, as summarized in a list of potential strategies.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Janne H. Korhonen · Dan Alistarh

We consider a standard distributed optimisation setting where $N$ machines, each holding a $d$-dimensional function $f_i$, aim to jointly minimise the sum of the functions $\sum_{i = 1}^N f_i (x)$. This problem arises naturally in large-scale distributed optimisation, where a standard solution is to apply variants of (stochastic) gradient descent. We focus on the communication complexity of this problem: our main result provides the first fully unconditional bounds on total number of bits which need to be sent and received by the $N$ machines to solve this problem under point-to-point communication, within a given error-tolerance. Specifically, we show that $\Omega( Nd \log d / N\varepsilon)$ total bits need to be communicated between the machines to find an additive $\epsilon$-approximation to the minimum of $\sum_{i = 1}^N f_i (x)$. The result holds for both deterministic and randomised algorithms, and, importantly, requires no assumptions on the algorithm structure. The lower bound is tight under certain restrictions on parameter values, and is matched within constant factors for quadratic objectives by a new variant of quantised gradient descent, which we describe and analyse. Our results bring over tools from communication complexity to distributed optimisation, which has potential for further applications.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Jiong Zhang · Wei-Cheng Chang · Hsiang-Fu Yu · Inderjit Dhillon

Extreme multi-label text classification~(XMC) seeks to find relevant labels from an extreme large label collection for a given text input. Many real-world applications can be formulated as XMC problems, such as recommendation systems, document tagging and semantic search. Recently, transformer based XMC methods, such as X-Transformer and LightXML, have shown significant improvement over other XMC methods. Despite leveraging pre-trained transformer models for text representation, the fine-tuning procedure of transformer models on large label space still has lengthy computational time even with powerful GPUs. In this paper, we propose a novel recursive approach, XR-Transformer to accelerate the procedure through recursively fine-tuning transformer models on a series of multi-resolution objectives related to the original XMC objective function. Empirical results show that XR-Transformer takes significantly less training time compared to other transformer-based XMC models while yielding better state-of-the-art results. In particular, on the public Amazon-3M dataset with 3 million labels, XR-Transformer is not only 20x faster than X-Transformer but also improves the Precision@1 from 51% to 54%.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Abhinav Moudgil · Arjun Majumdar · Harsh Agrawal · Stefan Lee · Dhruv Batra

Natural language instructions for visual navigation often use scene descriptions (e.g., bedroom) and object references (e.g., green chairs) to provide a breadcrumb trail to a goal location. This work presents a transformer-based vision-and-language navigation (VLN) agent that uses two different visual encoders -- a scene classification network and an object detector -- which produce features that match these two distinct types of visual cues. In our method, scene features contribute high-level contextual information that supports object-level processing. With this design, our model is able to use vision-and-language pretraining (i.e., learning the alignment between images and text from large-scale web data) to substantially improve performance on the Room-to-Room (R2R) and Room-Across-Room (RxR) benchmarks. Specifically, our approach leads to improvements of 1.8% absolute in SPL on R2R and 3.7% absolute in SR on RxR. Our analysis reveals even larger gains for navigation instructions that contain six or more object references, which further suggests that our approach is better able to use object features and align them to references in the instructions.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Yonghoon Lee · Rina Barber

In data analysis problems where we are not able to rely on distributional assumptions, what types of inference guarantees can still be obtained? Many popular methods, such as holdout methods, cross-validation methods, and conformal prediction, are able to provide distribution-free guarantees for predictive inference, but the problem of providing inference for the underlying regression function (for example, inference on the conditional mean $\mathbb{E}[Y|X]$) is more challenging. In the setting where the features $X$ are continuously distributed, recent work has established that any confidence interval for $\mathbb{E}[Y|X]$ must have non-vanishing width, even as sample size tends to infinity. At the other extreme, if $X$ takes only a small number of possible values, then inference on $\mathbb{E}[Y|X]$ is trivial to achieve. In this work, we study the problem in settings in between these two extremes. We find that there are several distinct regimes in between the finite setting and the continuous setting, where vanishing-width confidence intervals are achievable if and only if the effective support size of the distribution of $X$ is smaller than the square of the sample size.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Liang Xin · Wen Song · Zhiguang Cao · Jie Zhang

We present NeuroLKH, a novel algorithm that combines deep learning with the strong traditional heuristic Lin-Kernighan-Helsgaun (LKH) for solving Traveling Salesman Problem. Specifically, we train a Sparse Graph Network (SGN) with supervised learning for edge scores and unsupervised learning for node penalties, both of which are critical for improving the performance of LKH. Based on the output of SGN, NeuroLKH creates the edge candidate set and transforms edge distances to guide the searching process of LKH. Extensive experiments firmly demonstrate that, by training one model on a wide range of problem sizes, NeuroLKH significantly outperforms LKH and generalizes well to much larger sizes. Also, we show that NeuroLKH can be applied to other routing problems such as Capacitated Vehicle Routing Problem (CVRP), Pickup and Delivery Problem (PDP), and CVRP with Time Windows (CVRPTW).

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Yuan Yin · Ibrahim Ayed · Emmanuel de Bézenac · Nicolas Baskiotis · Patrick Gallinari

When modeling dynamical systems from real-world data samples, the distribution of data often changes according to the environment in which they are captured, and the dynamics of the system itself vary from one environment to another. Generalizing across environments thus challenges the conventional frameworks. The classical settings suggest either considering data as i.i.d and learning a single model to cover all situations or learning environment-specific models. Both are sub-optimal: the former disregards the discrepancies between environments leading to biased solutions, while the latter does not exploit their potential commonalities and is prone to scarcity problems. We propose LEADS, a novel framework that leverages the commonalities and discrepancies among known environments to improve model generalization. This is achieved with a tailored training formulation aiming at capturing common dynamics within a shared model while additional terms capture environment-specific dynamics. We ground our approach in theory, exhibiting a decrease in sample complexity w.r.t classical alternatives. We show how theory and practice coincides on the simplified case of linear dynamics. Moreover, we instantiate this framework for neural networks and evaluate it experimentally on representative families of nonlinear dynamics. We show that this new setting can exploit knowledge extracted from environment-dependent data and improves generalization for both known and novel environments.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Emile van Krieken · Jakub Tomczak · Annette Ten Teije

Modelers use automatic differentiation (AD) of computation graphs to implement complex Deep Learning models without defining gradient computations. Stochastic AD extends AD to stochastic computation graphs with sampling steps, which arise when modelers handle the intractable expectations common in Reinforcement Learning and Variational Inference. However, current methods for stochastic AD are limited: They are either only applicable to continuous random variables and differentiable functions, or can only use simple but high variance score-function estimators. To overcome these limitations, we introduce Storchastic, a new framework for AD of stochastic computation graphs. Storchastic allows the modeler to choose from a wide variety of gradient estimation methods at each sampling step, to optimally reduce the variance of the gradient estimates. Furthermore, Storchastic is provably unbiased for estimation of any-order gradients, and generalizes variance reduction techniques to higher-order gradient estimates. Finally, we implement Storchastic as a PyTorch library at github.com/HEmile/storchastic.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

James Robinson · Mark Herbster

We address the problem of sequential prediction with expert advice in a non-stationary environment with long-term memory guarantees in the sense of Bousquet and Warmuth [4]. We give a linear-time algorithm that improves on the best known regret bound [27]. This algorithm incorporates a relative entropy projection step. This projection is advantageous over previous weight-sharing approaches in that weight updates may come with implicit costs as in for example portfolio optimization. We give an algorithm to compute this projection step in linear time, which may be of independent interest.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Jiayuan Mao · Freda Shi · Jiajun Wu · Roger Levy · Josh Tenenbaum

We present Grammar-Based Grounded Language Learning (G2L2), a lexicalist approach toward learning a compositional and grounded meaning representation of language from grounded data, such as paired images and texts. At the core of G2L2 is a collection of lexicon entries, which map each word to a tuple of a syntactic type and a neuro-symbolic semantic program. For example, the word shiny has a syntactic type of adjective; its neuro-symbolic semantic program has the symbolic form $\lambda x.\textit{filter}(x, \textbf{SHINY})$, where the concept SHINY is associated with a neural network embedding, which will be used to classify shiny objects. Given an input sentence, G2L2 first looks up the lexicon entries associated with each token. It then derives the meaning of the sentence as an executable neuro-symbolic program by composing lexical meanings based on syntax. The recovered meaning programs can be executed on grounded inputs. To facilitate learning in an exponentially-growing compositional space, we introduce a joint parsing and expected execution algorithm, which does local marginalization over derivations to reduce the training time. We evaluate G2L2 on two domains: visual reasoning and language-driven navigation. Results show that G2L2 can generalize from small amounts of data to novel compositions of words.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Gavin Brown · Marco Gaboardi · Adam Smith · Jonathan Ullman · Lydia Zakynthinou

We present two sample-efficient differentially private mean estimators for $d$-dimensional (sub)Gaussian distributions with unknown covariance. Informally, given $n \gtrsim d/\alpha^2$ samples from such a distribution with mean $\mu$ and covariance $\Sigma$, our estimators output $\tilde\mu$ such that $\| \tilde\mu - \mu \|_{\Sigma} \leq \alpha$, where $\| \cdot \|_{\Sigma}$ is the \emph{Mahalanobis distance}. All previous estimators with the same guarantee either require strong a priori bounds on the covariance matrix or require $\Omega(d^{3/2})$ samples. Each of our estimators is based on a simple, general approach to designing differentially private mechanisms, but with novel technical steps to make the estimator private and sample-efficient. Our first estimator samples a point with approximately maximum Tukey depth using the exponential mechanism, but restricted to the set of points of large Tukey depth. Proving that this mechanism is private requires a novel analysis. Our second estimator perturbs the empirical mean of the data set with noise calibrated to the empirical covariance. Only the mean is released, however; the covariance is only used internally. Its sample complexity guarantees hold more generally for subgaussian distributions, albeit with a slightly worse dependence on the privacy parameter. For both estimators, careful preprocessing of the data is required to satisfy differential privacy.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Ibrahim Alabdulmohsin · Mario Lucic

We present a scalable post-processing algorithm for debiasing trained models, including deep neural networks (DNNs), which we prove to be near-optimal by bounding its excess Bayes risk. We empirically validate its advantages on standard benchmark datasets across both classical algorithms as well as modern DNN architectures and demonstrate that it outperforms previous post-processing methods while performing on par with in-processing. In addition, we show that the proposed algorithm is particularly effective for models trained at scale where post-processing is a natural and practical choice.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Martin Engelcke · Oiwi Parker Jones · Ingmar Posner

Advances in unsupervised learning of object-representations have culminated in the development of a broad range of methods for unsupervised object segmentation and interpretable object-centric scene generation. These methods, however, are limited to simulated and real-world datasets with limited visual complexity. Moreover, object representations are often inferred using RNNs which do not scale well to large images or iterative refinement which avoids imposing an unnatural ordering on objects in an image but requires the a priori initialisation of a fixed number of object representations. In contrast to established paradigms, this work proposes an embedding-based approach in which embeddings of pixels are clustered in a differentiable fashion using a stochastic stick-breaking process. Similar to iterative refinement, this clustering procedure also leads to randomly ordered object representations, but without the need of initialising a fixed number of clusters a priori. This is used to develop a new model, GENESIS-v2, which can infer a variable number of object representations without using RNNs or iterative refinement. We show that GENESIS-v2 performs strongly in comparison to recent baselines in terms of unsupervised image segmentation and object-centric scene generation on established synthetic datasets as well as more complex real-world datasets.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Cameron Allen · Neev Parikh · Omer Gottesman · George Konidaris

A fundamental assumption of reinforcement learning in Markov decision processes (MDPs) is that the relevant decision process is, in fact, Markov. However, when MDPs have rich observations, agents typically learn by way of an abstract state representation, and such representations are not guaranteed to preserve the Markov property. We introduce a novel set of conditions and prove that they are sufficient for learning a Markov abstract state representation. We then describe a practical training procedure that combines inverse model estimation and temporal contrastive learning to learn an abstraction that approximately satisfies these conditions. Our novel training objective is compatible with both online and offline training: it does not require a reward signal, but agents can capitalize on reward information when available. We empirically evaluate our approach on a visual gridworld domain and a set of continuous control benchmarks. Our approach learns representations that capture the underlying structure of the domain and lead to improved sample efficiency over state-of-the-art deep reinforcement learning with visual features---often matching or exceeding the performance achieved with hand-designed compact state information.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Yuan Cao · Quanquan Gu · Mikhail Belkin

Modern machine learning systems such as deep neural networks are often highly over-parameterized so that they can fit the noisy training data exactly, yet they can still achieve small test errors in practice. In this paper, we study this "benign overfitting" phenomenon of the maximum margin classifier for linear classification problems. Specifically, we consider data generated from sub-Gaussian mixtures, and provide a tight risk bound for the maximum margin linear classifier in the over-parameterized setting. Our results precisely characterize the condition under which benign overfitting can occur in linear classification problems, and improve on previous work. They also have direct implications for over-parameterized logistic regression.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Chen Tang · Wei Zhan · Masayoshi Tomizuka

Multi-agent behavior modeling and trajectory forecasting are crucial for the safe navigation of autonomous agents in interactive scenarios. Variational Autoencoder (VAE) has been widely applied in multi-agent interaction modeling to generate diverse behavior and learn a low-dimensional representation for interacting systems. However, existing literature did not formally discuss if a VAE-based model can properly encode interaction into its latent space. In this work, we argue that one of the typical formulations of VAEs in multi-agent modeling suffers from an issue we refer to as social posterior collapse, i.e., the model is prone to ignoring historical social context when predicting the future trajectory of an agent. It could cause significant prediction errors and poor generalization performance. We analyze the reason behind this under-explored phenomenon and propose several measures to tackle it. Afterward, we implement the proposed framework and experiment on real-world datasets for multi-agent trajectory prediction. In particular, we propose a novel sparse graph attention message-passing (sparse-GAMP) layer, which helps us detect social posterior collapse in our experiments. In the experiments, we verify that social posterior collapse indeed occurs. Also, the proposed measures are effective in alleviating the issue. As a result, the model attains better generalization performance when historical social context is informative for prediction.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Thanh Lam Hoang · Gabriele Picco · Yufang Hou · Young-Suk Lee · Lam Nguyen · Dzung Phan · Vanessa Lopez · Ramon Fernandez Astudillo

In many machine learning tasks, models are trained to predict structure data such as graphs. For example, in natural language processing, it is very common to parse texts into dependency trees or abstract meaning representation (AMR) graphs. On the other hand, ensemble methods combine predictions from multiple models to create a new one that is more robust and accurate than individual predictions. In the literature, there are many ensembling techniques proposed for classification or regression problems, however, ensemble graph prediction has not been studied thoroughly. In this work, we formalize this problem as mining the largest graph that is the most supported by a collection of graph predictions. As the problem is NP-Hard, we propose an efficient heuristic algorithm to approximate the optimal solution. To validate our approach, we carried out experiments in AMR parsing problems. The experimental results demonstrate that the proposed approach can combine the strength of state-of-the-art AMR parsers to create new predictions that are more accurate than any individual models in five standard benchmark datasets.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Stéphane d'Ascoli · Marylou Gabrié · Levent Sagun · Giulio Biroli

One of the central features of modern machine learning models, including deep neural networks, is their generalization ability on structured data in the over-parametrized regime. In this work, we consider an analytically solvable setup to investigate how properties of data impact learning in classification problems, and compare the results obtained for quadratic loss and logistic loss. Using methods from statistical physics, we obtain a precise asymptotic expression for the train and test errors of random feature models trained on a simple model of structured data. The input covariance is built from independent blocks allowing us to tune the saliency of low-dimensional structures and their alignment with respect to the target function.Our results show in particular that in the over-parametrized regime, the impact of data structure on both train and test error curves is greater for logistic loss than for mean-squared loss: the easier the task, the wider the gap in performance between the two losses at the advantage of the logistic. Numerical experiments on MNIST and CIFAR10 confirm our insights.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Saurabh Garg · Yifan Wu · Alexander Smola · Sivaraman Balakrishnan · Zachary Lipton

Given only positive examples and unlabeled examples (from both positive and negative classes), we might hope nevertheless to estimate an accurate positive-versus-negative classifier. Formally, this task is broken down into two subtasks: (i) Mixture Proportion Estimation (MPE)---determining the fraction of positive examples in the unlabeled data; and (ii) PU-learning---given such an estimate, learning the desired positive-versus-negative classifier. Unfortunately, classical methods for both problems break down in high-dimensional settings. Meanwhile, recently proposed heuristics lack theoretical coherence and depend precariously on hyperparameter tuning. In this paper, we propose two simple techniques: Best Bin Estimation (BBE) (for MPE); and Conditional Value Ignoring Risk (CVIR), a simple objective for PU-learning. Both methods dominate previous approaches empirically, and for BBE, we establish formal guarantees that hold whenever we can train a model to cleanly separate out a small subset of positive examples. Our final algorithm (TED)$^n$, alternates between the two procedures, significantly improving both our mixture proportion estimator and classifier

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Virginie Do · Sam Corbett-Davies · Jamal Atif · Nicolas Usunier

We consider the problem of generating rankings that are fair towards both users and item producers in recommender systems. We address both usual recommendation (e.g., of music or movies) and reciprocal recommendation (e.g., dating). Following concepts of distributive justice in welfare economics, our notion of fairness aims at increasing the utility of the worse-off individuals, which we formalize using the criterion of Lorenz efficiency. It guarantees that rankings are Pareto efficient, and that they maximally redistribute utility from better-off to worse-off, at a given level of overall utility. We propose to generate rankings by maximizing concave welfare functions, and develop an efficient inference procedure based on the Frank-Wolfe algorithm. We prove that unlike existing approaches based on fairness constraints, our approach always produces fair rankings. Our experiments also show that it increases the utility of the worse-off at lower costs in terms of overall utility.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Yongyi Guo · Dominic Coey · Mikael Konutgan · Wenting Li · Chris Schoener · Matt Goldman

We consider the problem of variance reduction in randomized controlled trials, through the use of covariates correlated with the outcome but independent of the treatment. We propose a machine learning regression-adjusted treatment effect estimator, which we call MLRATE. MLRATE uses machine learning predictors of the outcome to reduce estimator variance. It employs cross-fitting to avoid overfitting biases, and we prove consistency and asymptotic normality under general conditions. MLRATE is robust to poor predictions from the machine learning step: if the predictions are uncorrelated with the outcomes, the estimator performs asymptotically no worse than the standard difference-in-means estimator, while if predictions are highly correlated with outcomes, the efficiency gains are large. In A/A tests, for a set of 48 outcome metrics commonly monitored in Facebook experiments, the estimator has over $70\%$ lower variance than the simple difference-in-means estimator, and about $19\%$ lower variance than the common univariate procedure which adjusts only for pre-experiment values of the outcome.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Sriram Ravula · Georgios Smyrnis · Matt Jordan · Alex Dimakis

We study a new family of inverse problems for recovering representations of corrupted data. We assume access to a pre-trained representation learning network R(x) that operates on clean images, like CLIP. The problem is to recover the representation of an image R(x), if we are only given a corrupted version A(x), for some known forward operator A. We propose a supervised inversion method that uses a contrastive objective to obtain excellent representations for highly corrupted images. Using a linear probe on our robust representations, we achieve a higher accuracy than end-to-end supervised baselines when classifying images with various types of distortions, including blurring, additive noise, and random pixel masking. We evaluate on a subset of ImageNet and observe that our method is robust to varying levels of distortion. Our method outperforms end-to-end baselines even with a fraction of the labeled data in a wide range of forward operators.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Gabriele Farina · Tuomas Sandholm

In two-player zero-sum extensive-form games, Nash equilibrium prescribes optimal strategies against perfectly rational opponents. However, it does not guarantee rational play in parts of the game tree that can only be reached by the players making mistakes. This can be problematic when operationalizing equilibria in the real world among imperfect players. Trembling-hand refinements are a sound remedy to this issue, and are subsets of Nash equilibria that are designed to handle the possibility that any of the players may make mistakes. In this paper, we initiate the study of equilibrium refinements for settings where one of the players is perfectly rational (the ``machine'') and the other may make mistakes. As we show, this endeavor has many pitfalls: many intuitively appealing approaches to refinement fail in various ways. On the positive side, we introduce a modification of the classical quasi-perfect equilibrium (QPE) refinement, which we call the one-sided quasi-perfect equilibrium. Unlike QPE, one-sided QPE only accounts for mistakes from one player and assumes that no mistakes will be made by the machine. We present experiments on standard benchmark games and an endgame from the famous man-machine match where the AI Libratus was the first to beat top human specialist professionals in heads-up no-limit Texas hold'em poker. We show that one-sided QPE can be computed more efficiently than all known prior refinements, paving the way to wider adoption of Nash equilibrium refinements in settings with perfectly rational machines (or humans perfectly actuating machine-generated strategies) that interact with players prone to mistakes. We also show that one-sided QPE tends to play better than a Nash equilibrium strategy against imperfect opponents.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Alon Cohen · Amit Daniely · Yoel Drori · Tomer Koren · Mariano Schain

We consider the problem of stochastic optimization with delayed gradients in which, at each time step $t$, the algorithm makes an update using a stale stochastic gradient from step $t - d_t$ for some arbitrary delay $d_t$. This setting abstracts asynchronous distributed optimization where a central server receives gradient updates computed by worker machines. These machines can experience computation and communication loads that might vary significantly over time. In the general non-convex smooth optimization setting, we give a simple and efficient algorithm that requires $O( \sigma^2/\epsilon^4 + \tau/\epsilon^2 )$ steps for finding an $\epsilon$-stationary point $x$. Here, $\tau$ is the \emph{average} delay $\frac{1}{T}\sum_{t=1}^T d_t$ and $\sigma^2$ is the variance of the stochastic gradients. This improves over previous work, which showed that stochastic gradient decent achieves the same rate but with respect to the \emph{maximal} delay $\max_{t} d_t$, that can be significantly larger than the average delay especially in heterogeneous distributed systems. Our experiments demonstrate the efficacy and robustness of our algorithm in cases where the delay distribution is skewed or heavy-tailed.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Daniel Franzen · Michael Wand

Invariance under symmetry is an important problem in machine learning. Our paper looks specifically at equivariant neural networks where transformations of inputs yield homomorphic transformations of outputs. Here, steerable CNNs have emerged as the standard solution. An inherent problem of steerable representations is that general nonlinear layers break equivariance, thus restricting architectural choices. Our paper applies harmonic distortion analysis to illuminate the effect of nonlinearities on Fourier representations of SO(2). We develop a novel FFT-based algorithm for computing representations of non-linearly transformed activations while maintaining band-limitation. It yields exact equivariance for polynomial (approximations of) nonlinearities, as well as approximate solutions with tunable accuracy for general functions. We apply the approach to build a fully E(3)-equivariant network for sampled 3D surface data. In experiments with 2D and 3D data, we obtain results that compare favorably to the state-of-the-art in terms of accuracy while permitting continuous symmetry and exact equivariance.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

David Ding · Felix Hill · Adam Santoro · Malcolm Reynolds · Matt Botvinick

Neural networks have achieved success in a wide array of perceptual tasks but often fail at tasks involving both perception and higher-level reasoning. On these more challenging tasks, bespoke approaches (such as modular symbolic components, independent dynamics models or semantic parsers) targeted towards that specific type of task have typically performed better. The downside to these targeted approaches, however, is that they can be more brittle than general-purpose neural networks, requiring significant modification or even redesign according to the particular task at hand. Here, we propose a more general neural-network-based approach to dynamic visual reasoning problems that obtains state-of-the-art performance on three different domains, in each case outperforming bespoke modular approaches tailored specifically to the task. Our method relies on learned object-centric representations, self-attention and self-supervised dynamics learning, and all three elements together are required for strong performance to emerge. The success of this combination suggests that there may be no need to trade off flexibility for performance on problems involving spatio-temporal or causal-style reasoning. With the right soft biases and learning objectives in a neural network we may be able to attain the best of both worlds.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Raef Bassily · Cristóbal Guzmán · Michael Menart

We study differentially private stochastic optimization in convex and non-convex settings. For the convex case, we focus on the family of non-smooth generalized linear losses (GLLs). Our algorithm for the $\ell_2$ setting achieves optimal excess population risk in near-linear time, while the best known differentially private algorithms for general convex losses run in super-linear time. Our algorithm for the $\ell_1$ setting has nearly-optimal excess population risk $\tilde{O}\big(\sqrt{\frac{\log{d}}{n}}\big)$, and circumvents the dimension dependent lower bound of \cite{Asi:2021} for general non-smooth convex losses. In the differentially private non-convex setting, we provide several new algorithms for approximating stationary points of the population risk. For the $\ell_1$-case with smooth losses and polyhedral constraint, we provide the first nearly dimension independent rate, $\tilde O\big(\frac{\log^{2/3}{d}}{{n^{1/3}}}\big)$ in linear time. For the constrained $\ell_2$-case, with smooth losses, we obtain a linear-time algorithm with rate $\tilde O\big(\frac{1}{n^{3/10}d^{1/10}}+\big(\frac{d}{n^2}\big)^{1/5}\big)$. Finally, for the $\ell_2$-case we provide the first method for {\em non-smooth weakly convex} stochastic optimization with rate $\tilde O\big(\frac{1}{n^{1/4}}+\big(\frac{d}{n^2}\big)^{1/6}\big)$ which matches the best existing non-private algorithm when $d= O(\sqrt{n})$. We also extend all our results above for the non-convex $\ell_2$ setting to the $\ell_p$ setting, where $1 < p \leq 2$, with only polylogarithmic (in the dimension) overhead in the rates.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Róbert Busa-Fekete · Dimitris Fotakis · Emmanouil Zampetakis

We study the problem of uniformity testing for statistical data that consists of rankings over $m$ items where the alternative class is restricted to Mallows models with single parameter. Testing ranking data is challenging because of the size of the large domain that is factorial in $m$, therefore the tester needs to take advantage of some structure of the alternative class. We show that uniform distribution can be distinguished from Mallows model with $O(m^{-1/2})$ samples based on simple pairwise statistics, which allows us to test uniformity using only two samples, if $m$ is large enough. We also consider uniformity testing with central and locally differential private (DP) constraints. We present a central DP algorithm that requires $O\left(\max \{ 1/\epsilon_0, 1/\sqrt{m} \} \right)$ where $\epsilon_0$ is the privacy budget parameter. Interestingly, our uniformity testing algorithm is straightforward to apply in the local DP scenario by its nature, since it works with binary statistics that is extracted from the ranking data. We carry out large-scale experiments, including $m=10000$, to show that these testing algorithms scales very gracefully with the number of items.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Dor Arad Hudson · Larry Zitnick

We introduce the GANformer2 model, an iterative object-oriented transformer, explored for the task of generative modeling. The network incorporates strong and explicit structural priors, to reflect the compositional nature of visual scenes, and synthesizes images through a sequential process. It operates in two stages: a fast and lightweight planning phase, where we draft a high-level scene layout, followed by an attention-based execution phase, where the layout is being refined, evolving into a rich and detailed picture. Our model moves away from conventional black-box GAN architectures that feature a flat and monolithic latent space towards a transparent design that encourages efficiency, controllability and interpretability. We demonstrate GANformer2's strengths and qualities through a careful evaluation over a range of datasets, from multi-object CLEVR scenes to the challenging COCO images, showing it successfully achieves state-of-the-art performance in terms of visual quality, diversity and consistency. Further experiments demonstrate the model's disentanglement and provide a deeper insight into its generative process, as it proceeds step-by-step from a rough initial sketch, to a detailed layout that accounts for objects' depths and dependencies, and up to the final high-resolution depiction of vibrant and intricate real-world scenes. See https://github.com/dorarad/gansformer for model implementation.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Zhichun Huang · Shaojie Bai · J. Zico Kolter

Recent research in deep learning has investigated two very different forms of ''implicitness'': implicit representations model high-frequency data such as images or 3D shapes directly via a low-dimensional neural network (often using e.g., sinusoidal bases or nonlinearities); implicit layers, in contrast, refer to techniques where the forward pass of a network is computed via non-linear dynamical systems, such as fixed-point or differential equation solutions, with the backward pass computed via the implicit function theorem. In this work, we demonstrate that these two seemingly orthogonal concepts are remarkably well-suited for each other. In particular, we show that by exploiting fixed-point implicit layer to model implicit representations, we can substantially improve upon the performance of the conventional explicit-layer-based approach. Additionally, as implicit representation networks are typically trained in large-batch settings, we propose to leverage the property of implicit layers to amortize the cost of fixed-point forward/backward passes over training steps -- thereby addressing one of the primary challenges with implicit layers (that many iterations are required for the black-box fixed-point solvers). We empirically evaluated our method on learning multiple implicit representations for images, videos and audios, showing that our $(\textrm{Implicit})^2$ approach substantially improve upon existing models while being both faster to train and much more memory efficient.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Evrard Garcelon · Vianney Perchet · Ciara Pike-Burke · Matteo Pirotta

Reinforcement learning algorithms are widely used in domains where it is desirable to provide a personalized service. In these domains it is common that user data contains sensitive information that needs to be protected from third parties. Motivated by this, we study privacy in the context of finite-horizon Markov Decision Processes (MDPs) by requiring information to be obfuscated on the user side. We formulate this notion of privacy for RL by leveraging the local differential privacy (LDP) framework. We establish a lower bound for regret minimization in finite-horizon MDPs with LDP guarantees which shows that guaranteeing privacy has a multiplicative effect on the regret. This result shows that while LDP is an appealing notion of privacy, it makes the learning problem significantly more complex. Finally, we present an optimistic algorithm that simultaneously satisfies $\varepsilon$-LDP requirements, and achieves $\sqrt{K}/\varepsilon$ regret in any finite-horizon MDP after $K$ episodes, matching the lower bound dependency on the number of episodes $K$.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Morgane Austern · Vasilis Syrgkanis

One of the most commonly used methods for forming confidence intervals is the empirical bootstrap, which is especially expedient when the limiting distribution of the estimator is unknown. However, despite its ubiquitous role in machine learning, its theoretical properties are still not well understood. Recent developments in probability have provided new tools to study the bootstrap method. However, they have been applied only to specific applications and contexts, and it is unclear whether these techniques are applicable to the understanding of the consistency of the bootstrap in machine learning pipelines. In this paper, we derive general stability conditions under which the empirical bootstrap estimator is consistent and quantify the speed of convergence. Moreover, we propose alternative ways to use the bootstrap method to build confidence intervals with coverage guarantees. Finally, we illustrate the generality and tightness of our results by examples of interest for machine learning including for two-sample kernel tests after kernel selection and the empirical risk of stacked estimators.

We initiate a systematic study on {\em dynamic influence maximization} (DIM). In the DIM problem, one maintains a seed set $S$ of at most $k$ nodes in a dynamically involving social network, with the goal of maximizing the expected influence spread while minimizing the amortized updating cost. We consider two evolution models. In the {\em incremental model}, the social network gets enlarged over time and one only introduces new users and establishes new social links, we design an algorithm that achieves $(1-1/e-\epsilon)$-approximation to the optimal solution and has $k \cdot\mathsf{poly}(\log n, \epsilon^{-1})$ amortized running time, which matches the state-of-art offline algorithm with only poly-logarithmic overhead. In the fully dynamic model, users join in and leave, influence propagation gets strengthened or weakened in real time, we prove that under the Strong Exponential Time Hypothesis (SETH), no algorithm can achieve $2^{-(\log n)^{1-o(1)}}$-approximation unless the amortized running time is $n^{1-o(1)}$. On the technical side, we exploit novel adaptive sampling approaches that reduce DIM to the dynamic MAX-k coverage problem, and design an efficient $(1-1/e-\epsilon)$-approximation algorithm for it. Our lower bound leverages the recent developed distributed PCP framework.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Nanbo Li · Muhammad Ahmed Raza · Wenbin Hu · Zhaole Sun · Robert Fisher

Learning object-centric scene representations is essential for attaining structural understanding and abstraction of complex scenes. Yet, as current approaches for unsupervised object-centric representation learning are built upon either a stationary observer assumption or a static scene assumption, they often: i) suffer single-view spatial ambiguities, or ii) infer incorrectly or inaccurately object representations from dynamic scenes. To address this, we propose Dynamics-aware Multi-Object Network (DyMON), a method that broadens the scope of multi-view object-centric representation learning to dynamic scenes. We train DyMON on multi-view-dynamic-scene data and show that DyMON learns---without supervision---to factorize the entangled effects of observer motions and scene object dynamics from a sequence of observations, and constructs scene object spatial representations suitable for rendering at arbitrary times (querying across time) and from arbitrary viewpoints (querying across space). We also show that the factorized scene representations (w.r.t. objects) support querying about a single object by space and time independently.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Hilal Asi · Yair Carmon · Arun Jambulapati · Yujia Jin · Aaron Sidford

We develop a new primitive for stochastic optimization: a low-bias, low-cost estimator of the minimizer $x_\star$ of any Lipschitz strongly-convex function $f$. In particular, we use a multilevel Monte-Carlo approach due to Blanchet and Glynn to turn any optimal stochastic gradient method into an estimator of $x_\star$ with bias $\delta$, variance $O(\log(1/\delta))$, and an expected sampling cost of $O(\log(1/\delta))$ stochastic gradient evaluations. As an immediate consequence, we obtain cheap and nearly unbiased gradient estimators for the Moreau envelope of any Lipschitz convex function. We demonstrate the potential of our estimator through four applications. First, we develop a method for minimizing the maximum of $N$ functions, improving on recent results and matching a lower bound up to logarithmic factors. Second and third, we recover state-of-the-art rates for projection-efficient and gradient-efficient optimization using simple algorithms with a transparent analysis. Finally, we show that an improved version of our estimator would yield a nearly linear-time, optimal-utility, differentially-private non-smooth stochastic optimization method.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Youngseog Chung · Willie Neiswanger · Ian Char · Jeff Schneider

Among the many ways of quantifying uncertainty in a regression setting, specifying the full quantile function is attractive, as quantiles are amenable to interpretation and evaluation. A model that predicts the true conditional quantiles for each input, at all quantile levels, presents a correct and efficient representation of the underlying uncertainty. To achieve this, many current quantile-based methods focus on optimizing the pinball loss. However, this loss restricts the scope of applicable regression models, limits the ability to target many desirable properties (e.g. calibration, sharpness, centered intervals), and may produce poor conditional quantiles. In this work, we develop new quantile methods that address these shortcomings. In particular, we propose methods that can apply to any class of regression model, select an explicit balance between calibration and sharpness, optimize for calibration of centered intervals, and produce more accurate conditional quantiles. We provide a thorough experimental evaluation of our methods, which includes a high dimensional uncertainty quantification task in nuclear fusion.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Leonard Berrada · Sumanth Dathathri · Krishnamurthy Dvijotham · Robert Stanforth · Rudy Bunel · Jonathan Uesato · Sven Gowal · M. Pawan Kumar

Most real world applications require dealing with stochasticity like sensor noise or predictive uncertainty, where formal specifications of desired behavior are inherently probabilistic. Despite the promise of formal verification in ensuring the reliability of neural networks, progress in the direction of probabilistic specifications has been limited. In this direction, we first introduce a general formulation of probabilistic specifications for neural networks, which captures both probabilistic networks (e.g., Bayesian neural networks, MC-Dropout networks) and uncertain inputs (distributions over inputs arising from sensor noise or other perturbations). We then propose a general technique to verify such specifications by generalizing the notion of Lagrangian duality, replacing standard Lagrangian multipliers with "functional multipliers" that can be arbitrary functions of the activations at a given layer. We show that an optimal choice of functional multipliers leads to exact verification (i.e., sound and complete verification), and for specific forms of multipliers, we develop tractable practical verification algorithms. We empirically validate our algorithms by applying them to Bayesian Neural Networks (BNNs) and MC Dropout Networks, and certifying properties such as adversarial robustness and robust detection of out-of-distribution (OOD) data. On these tasks we are able to provide significantly stronger guarantees when compared to prior work -- for instance, for a VGG-64 MC-Dropout CNN trained on CIFAR-10 in a verification-agnostic manner, we improve the certified AUC (a verified lower bound on the true AUC) for robust OOD detection (on CIFAR-100) from $0 \% \rightarrow 29\%$. Similarly, for a BNN trained on MNIST, we improve on the $\ell_\infty$ robust accuracy from $60.2 \% \rightarrow 74.6\%$. Further, on a novel specification -- distributionally robust OOD detection -- we improve on the certified AUC from $5\% \rightarrow 23\%$.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Aviv Rosenberg · Yishay Mansour

We study regret minimization in non-episodic factored Markov decision processes (FMDPs), where all existing algorithms make the strong assumption that the factored structure of the FMDP is known to the learner in advance. In this paper, we provide the first algorithm that learns the structure of the FMDP while minimizing the regret. Our algorithm is based on the optimism in face of uncertainty principle, combined with a simple statistical method for structure learning, and can be implemented efficiently given oracle-access to an FMDP planner. Moreover, we give a variant of our algorithm that remains efficient even when the oracle is limited to non-factored actions, which is the case with almost all existing approximate planners. Finally, we leverage our techniques to prove a novel lower bound for the known structure case, closing the gap to the regret bound of Chen et al. [2021].

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Karan Singhal · Hakim Sidahmed · Zachary Garrett · Shanshan Wu · John Rush · Sushant Prakash

Personalization methods in federated learning aim to balance the benefits of federated and local training for data availability, communication cost, and robustness to client heterogeneity. Approaches that require clients to communicate all model parameters can be undesirable due to privacy and communication constraints. Other approaches require always-available or stateful clients, impractical in large-scale cross-device settings. We introduce Federated Reconstruction, the first model-agnostic framework for partially local federated learning suitable for training and inference at scale. We motivate the framework via a connection to model-agnostic meta learning, empirically demonstrate its performance over existing approaches for collaborative filtering and next word prediction, and release an open-source library for evaluating approaches in this setting. We also describe the successful deployment of this approach at scale for federated collaborative filtering in a mobile keyboard application.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Arash Vahdat · Karsten Kreis · Jan Kautz

Score-based generative models (SGMs) have recently demonstrated impressive results in terms of both sample quality and distribution coverage. However, they are usually applied directly in data space and often require thousands of network evaluations for sampling. Here, we propose the Latent Score-based Generative Model (LSGM), a novel approach that trains SGMs in a latent space, relying on the variational autoencoder framework. Moving from data to latent space allows us to train more expressive generative models, apply SGMs to non-continuous data, and learn smoother SGMs in a smaller space, resulting in fewer network evaluations and faster sampling. To enable training LSGMs end-to-end in a scalable and stable manner, we (i) introduce a new score-matching objective suitable to the LSGM setting, (ii) propose a novel parameterization of the score function that allows SGM to focus on the mismatch of the target distribution with respect to a simple Normal one, and (iii) analytically derive multiple techniques for variance reduction of the training objective. LSGM obtains a state-of-the-art FID score of 2.10 on CIFAR-10, outperforming all existing generative results on this dataset. On CelebA-HQ-256, LSGM is on a par with previous SGMs in sample quality while outperforming them in sampling time by two orders of magnitude. In modeling binary images, LSGM achieves state-of-the-art likelihood on the binarized OMNIGLOT dataset.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Ruihan Wu · Chuan Guo · Yi Su · Kilian Weinberger

Machine learning models often encounter distribution shifts when deployed in the real world. In this paper, we focus on adaptation to label distribution shift in the online setting, where the test-time label distribution is continually changing and the model must dynamically adapt to it without observing the true label. This setting is common in many real world scenarios such as medical diagnosis, where disease prevalences can vary substantially at different times of the year. Leveraging a novel analysis, we show that the lack of true label does not hinder estimation of the expected test loss, which enables the reduction of online label shift adaptation to conventional online learning. Informed by this observation, we propose adaptation algorithms inspired by classical online learning techniques such as Follow The Leader (FTL) and Online Gradient Descent (OGD) and derive their regret bounds. We empirically verify our findings under both simulated and real world label distribution shifts and show that OGD is particularly effective and robust to a variety of challenging label shift scenarios.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Hamza Fawzi · Harry Goulbourne

We consider proximal splitting algorithms for convex optimization problems over matrices. A significant computational bottleneck in many of these algorithms is the need to compute a full eigenvalue or singular value decomposition at each iteration for the evaluation of a proximal operator.In this paper we propose to use an old and surprisingly simple method due to Jacobi to compute these eigenvalue and singular value decompositions, and we demonstrate that it can lead to substantial gains in terms of computation time compared to standard approaches. We rely on three essential properties of this method: (a) its ability to exploit an approximate decomposition as an initial point, which in the case of iterative optimization algorithms can be obtained from the previous iterate; (b) its parallel nature which makes it a great fit for hardware accelerators such as GPUs, now common in machine learning, and (c) its simple termination criterion which allows us to trade-off accuracy with computation time. We demonstrate the efficacy of this approach on a variety of algorithms and problems, and show that, on a GPU, we can obtain 5 to 10x speed-ups in the evaluation of proximal operators compared to standard CPU or GPU linear algebra routines. Our findings are supported by new theoretical results providing guarantees on the approximation quality of proximal operators obtained using approximate eigenvalue or singular value decompositions.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Josh Rozner · Christopher Potts · Kyle Mahowald

Cryptic crosswords, the dominant crossword variety in the UK, are a promising target for advancing NLP systems that seek to process semantically complex, highly compositional language. Cryptic clues read like fluent natural language but are adversarially composed of two parts: a definition and a wordplay cipher requiring character-level manipulations. Expert humans use creative intelligence to solve cryptics, flexibly combining linguistic, world, and domain knowledge. In this paper, we make two main contributions. First, we present a dataset of cryptic clues as a challenging new benchmark for NLP systems that seek to process compositional language in more creative, human-like ways. After showing that three non-neural approaches and T5, a state-of-the-art neural language model, do not achieve good performance, we make our second main contribution: a novel curriculum approach, in which the model is first fine-tuned on related tasks such as unscrambling words. We also introduce a challenging data split, examine the meta-linguistic capabilities of subword-tokenized models, and investigate model systematicity by perturbing the wordplay part of clues, showing that T5 exhibits behavior partially consistent with human solving strategies. Although our curricular approach considerably improves on the T5 baseline, our best-performing model still fails to generalize to the extent that humans can. Thus, cryptic crosswords remain an unsolved challenge for NLP systems and a potential source of future innovation.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Yan-Bo Lin · Hung-Yu Tseng · Hsin-Ying Lee · Yen-Yu Lin · Ming-Hsuan Yang

The audio-visual video parsing task aims to temporally parse a video into audio or visual event categories. However, it is labor intensive to temporally annotate audio and visual events and thus hampers the learning of a parsing model. To this end, we propose to explore additional cross-video and cross-modality supervisory signals to facilitate weakly-supervised audio-visual video parsing. The proposed method exploits both the common and diverse event semantics across videos to identify audio or visual events. In addition, our method explores event co-occurrence across audio, visual, and audio-visual streams. We leverage the explored cross-modality co-occurrence to localize segments of target events while excluding irrelevant ones. The discovered supervisory signals across different videos and modalities can greatly facilitate the training with only video-level annotations. Quantitative and qualitative results demonstrate that the proposed method performs favorably against existing methods on weakly-supervised audio-visual video parsing.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Noah Golowich · Roi Livni

We consider the problem of online classification under a privacy constraint. In this setting a learner observes sequentially a stream of labelled examples $(x_t, y_t)$, for $1 \leq t \leq T$, and returns at each iteration $t$ a hypothesis $h_t$ which is used to predict the label of each new example $x_t$. The learner's performance is measured by her regret against a known hypothesis class $\mathcal{H}$. We require that the algorithm satisfies the following privacy constraint: the sequence $h_1, \ldots, h_T$ of hypotheses output by the algorithm needs to be an $(\epsilon, \delta)$-differentially private function of the whole input sequence $(x_1, y_1), \ldots, (x_T, y_T)$.We provide the first non-trivial regret bound for the realizable setting. Specifically, we show that if the class $\mathcal{H}$ has constant Littlestone dimension then, given an oblivious sequence of labelled examples, there is a private learner that makes in expectation at most $O(\log T)$ mistakes -- comparable to the optimal mistake bound in the non-private case, up to a logarithmic factor. Moreover, for general values of the Littlestone dimension $d$, the same mistake bound holds but with a doubly-exponential in $d$ factor. A recent line of work has demonstrated a strong connection between classes that are online learnable and those that are differentially-private learnable. Our results strengthen this connection and show that an online learning algorithm can in fact be directly privatized (in the realizable setting).We also discuss an adaptive setting and provide a sublinear regret bound of $O(\sqrt{T})$.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Shen Kai · Lingfei Wu · Siliang Tang · Yueting Zhuang · zhen he · Zhuoye Ding · Yun Xiao · Bo Long

The task of visual question generation (VQG) aims to generate human-like neural questions from an image and potentially other side information (e.g., answer type or the answer itself). Existing works often suffer from the severe one image to many questions mapping problem, which generates uninformative and non-referential questions. Recent work has demonstrated that by leveraging double visual and answer hints, a model can faithfully generate much better quality questions. However, visual hints are not available naturally. Despite they proposed a simple rule-based similarity matching method to obtain candidate visual hints, they could be very noisy practically and thus restrict the quality of generated questions. In this paper, we present a novel learning approach for double-hints based VQG, which can be cast as a weakly supervised learning problem with noises. The key rationale is that the salient visual regions of interest can be viewed as a constraint to improve the generation procedure for producing high-quality questions. As a result, given the predicted salient visual regions of interest, we can focus on estimating the probability of being ground-truth questions, which in turn implicitly measures the quality of predicted visual hints. Experimental results on two benchmark datasets show that our proposed method outperforms the state-of-the-art approaches by a large margin on a variety of metrics, including both automatic machine metrics and human evaluation.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Ruihan Wu · Chuan Guo · Awni Hannun · Laurens van der Maaten

Machine-learning systems such as self-driving cars or virtual assistants are composed of a large number of machine-learning models that recognize image content, transcribe speech, analyze natural language, infer preferences, rank options, etc. Models in these systems are often developed and trained independently, which raises an obvious concern: Can improving a machine-learning model make the overall system worse? We answer this question affirmatively by showing that improving a model can deteriorate the performance of downstream models, even after those downstream models are retrained. Such self-defeating improvements are the result of entanglement between the models in the system. We perform an error decomposition of systems with multiple machine-learning models, which sheds light on the types of errors that can lead to self-defeating improvements. We also present the results of experiments which show that self-defeating improvements emerge in a realistic stereo-based detection system for cars and pedestrians.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Tadashi Kozuno · Pierre Ménard · Remi Munos · Michal Valko

We study the problem of learning a Nash equilibrium (NE) in an extensive game with imperfect information (EGII) through self-play. Precisely, we focus on two-player, zero-sum, episodic, tabular EGII under the \textit{perfect-recall} assumption where the only feedback is realizations of the game (bandit feedback). In particular the \textit{dynamics of the EGII is not known}---we can only access it by sampling or interacting with a game simulator. For this learning setting, we provide the Implicit Exploration Online Mirror Descent (IXOMD) algorithm. It is a model-free algorithm with a high-probability bound on convergence rate to the NE of order $1/\sqrt{T}$ where~$T$ is the number of played games. Moreover IXOMD is computationally efficient as it needs to perform the updates only along the sampled trajectory.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Despoina Paschalidou · Amlan Kar · Maria Shugrina · Karsten Kreis · Andreas Geiger · Sanja Fidler

The ability to synthesize realistic and diverse indoor furniture layouts automatically or based on partial input, unlocks many applications, from better interactive 3D tools to data synthesis for training and simulation. In this paper, we present ATISS, a novel autoregressive transformer architecture for creating diverse and plausible synthetic indoor environments, given only the room type and its floor plan. In contrast to prior work, which poses scene synthesis as sequence generation, our model generates rooms as unordered sets of objects. We argue that this formulation is more natural, as it makes ATISS generally useful beyond fully automatic room layout synthesis. For example, the same trained model can be used in interactive applications for general scene completion, partial room re-arrangement with any objects specified by the user, as well as object suggestions for any partial room. To enable this, our model leverages the permutation equivariance of the transformer when conditioning on the partial scene, and is trained to be permutation-invariant across object orderings. Our model is trained end-to-end as an autoregressive generative model using only labeled 3D bounding boxes as supervision. Evaluations on four room types in the 3D-FRONT dataset demonstrate that our model consistently generates plausible room layouts that are more realistic than existing methods.In addition, it has fewer parameters, is simpler to implement and train and runs up to 8 times faster than existing methods.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Vishnu Veerathu · Arun Rajkumar

We consider the classical problem of finding the minimum feedback arc set on tournaments (MFAST). The problem is NP-hard in general and we study it for important classes of tournaments that arise naturally in the problem of learning to rank from pairwise comparisons. Specifically, we consider tournaments classes that arise out of parametric preference matrices that can lead to cyclic preference relations. We investigate their structural properties via forbidden sub tournament configurations. Towards this, we introduce \emph{Tournament Dimension} - a combinatorial parameter that characterizes the size of a forbidden configuration for rank $r$ tournament classes i.e., classes that arise out pairwise preference matrices which lead to rank $r$ skew-symmetric matrices under a suitable link function. Our main result is a polynomial-time algorithm - \texttt{Rank2Rank} - that solves the MFAST problem for the rank $2$ tournament class. This is achieved via a geometric characterization that relies on our explicit construction of a forbidden configuration for this class. Building on our understanding of the rank-$2$ tournament class, we propose a very general and flexible parametric pairwise preference model called the local-global model which subsumes the popular Bradley-Terry-Luce/Thurstone classes to capture locally cyclic as well as globally acyclic preference relations. We develop a polynomial-time algorithm - \texttt{BlockRank2Rank}- to solve the MFAST problem on the associated Block-Rank $2$ tournament class. As an application, we study the problem of learning to rank from pairwise comparisons under the proposed local-global preference model. Exploiting our structural characterization, we propose \texttt{PairwiseBlockRank} - a pairwise ranking algorithm for this class. We show sample complexity bounds of \texttt{PairwiseBlockRank} to learn a good ranking under the proposed model. Finally, we conduct experiments on synthetic and real-world datasets to show the efficacy of the proposed algorithm.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Aran Nayebi · Alexander Attinger · Malcolm Campbell · Kiah Hardcastle · Isabel Low · Caitlin S Mallory · Gabriel Mel · Ben Sorscher · Alex H Williams · Surya Ganguli · Lisa Giocomo · Dan Yamins

Medial entorhinal cortex (MEC) supports a wide range of navigational and memory related behaviors.Well-known experimental results have revealed specialized cell types in MEC --- e.g. grid, border, and head-direction cells --- whose highly stereotypical response profiles are suggestive of the role they might play in supporting MEC functionality. However, the majority of MEC neurons do not exhibit stereotypical firing patterns.How should the response profiles of these more "heterogeneous" cells be described, and how do they contribute to behavior?In this work, we took a computational approach to addressing these questions.We first performed a statistical analysis that shows that heterogeneous MEC cells are just as reliable in their response patterns as the more stereotypical cell types, suggesting that they have a coherent functional role.Next, we evaluated a spectrum of candidate models in terms of their ability to describe the response profiles of both stereotypical and heterogeneous MEC cells.We found that recently developed task-optimized neural network models are substantially better than traditional grid cell-centric models at matching most MEC neuronal response profiles --- including those of grid cells themselves --- despite not being explicitly trained for this purpose.Specific choices of network architecture (such as gated nonlinearities and an explicit intermediate place cell representation) have an important effect on the ability of the model to generalize to novel scenarios, with the best of these models closely approaching the noise ceiling of the data itself.We then performed in silico experiments on this model to address questions involving the relative functional relevance of various cell types, finding that heterogeneous cells are likely to be just as involved in downstream functional outcomes (such as path integration) as grid and border cells.Finally, inspired by recent data showing that, going beyond their spatial response selectivity, MEC cells are also responsive to non-spatial rewards, we introduce a new MEC model that performs reward-modulated path integration.We find that this unified model matches neural recordings across all variable-reward conditions.Taken together, our results point toward a conceptually principled goal-driven modeling approach for moving future experimental and computational efforts beyond overly-simplistic single-cell stereotypes.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Bei Peng · Tabish Rashid · Christian Schroeder de Witt · Pierre-Alexandre Kamienny · Philip Torr · Wendelin Boehmer · Shimon Whiteson

We propose FACtored Multi-Agent Centralised policy gradients (FACMAC), a new method for cooperative multi-agent reinforcement learning in both discrete and continuous action spaces. Like MADDPG, a popular multi-agent actor-critic method, our approach uses deep deterministic policy gradients to learn policies. However, FACMAC learns a centralised but factored critic, which combines per-agent utilities into the joint action-value function via a non-linear monotonic function, as in QMIX, a popular multi-agent $Q$-learning algorithm. However, unlike QMIX, there are no inherent constraints on factoring the critic. We thus also employ a nonmonotonic factorisation and empirically demonstrate that its increased representational capacity allows it to solve some tasks that cannot be solved with monolithic, or monotonically factored critics. In addition, FACMAC uses a centralised policy gradient estimator that optimises over the entire joint action space, rather than optimising over each agent's action space separately as in MADDPG. This allows for more coordinated policy changes and fully reaps the benefits of a centralised critic. We evaluate FACMAC on variants of the multi-agent particle environments, a novel multi-agent MuJoCo benchmark, and a challenging set of StarCraft II micromanagement tasks. Empirical results demonstrate FACMAC's superior performance over MADDPG and other baselines on all three domains.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Shiao Liu · Yunfei Yang · Jian Huang · Yuling Jiao · Yang Wang

We derive nearly sharp bounds for the bidirectional GAN (BiGAN) estimation error under the Dudley distance between the latent joint distribution and the data joint distribution with appropriately specified architecture of the neural networks used in the model. To the best of our knowledge, this is the first theoretical guarantee for the bidirectional GAN learning approach. An appealing feature of our results is that they do not assume the reference and the data distributions to have the same dimensions or these distributions to have bounded support. These assumptions are commonly assumed in the existing convergence analysis of the unidirectional GANs but may not be satisfied in practice. Our results are also applicable to the Wasserstein bidirectional GAN if the target distribution is assumed to have a bounded support. To prove these results, we construct neural network functions that push forward an empirical distribution to another arbitrary empirical distribution on a possibly different-dimensional space. We also develop a novel decomposition of the integral probability metric for the error analysis of bidirectional GANs. These basic theoretical results are of independent interest and can be applied to other related learning problems.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Charles Vorbach · Ramin Hasani · Alexander Amini · Mathias Lechner · Daniela Rus

Imitation learning enables high-fidelity, vision-based learning of policies within rich, photorealistic environments. However, such techniques often rely on traditional discrete-time neural models and face difficulties in generalizing to domain shifts by failing to account for the causal relationships between the agent and the environment. In this paper, we propose a theoretical and experimental framework for learning causal representations using continuous-time neural networks, specifically over their discrete-time counterparts. We evaluate our method in the context of visual-control learning of drones over a series of complex tasks, ranging from short- and long-term navigation, to chasing static and dynamic objects through photorealistic environments. Our results demonstrate that causal continuous-time deep models can perform robust navigation tasks, where advanced recurrent models fail. These models learn complex causal control representations directly from raw visual inputs and scale to solve a variety of tasks using imitation learning.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Daniel Levy · Ziteng Sun · Kareem Amin · Satyen Kale · Alex Kulesza · Mehryar Mohri · Ananda Theertha Suresh

We propose and analyze algorithms to solve a range of learning tasks under user-level differential privacy constraints. Rather than guaranteeing only the privacy of individual samples, user-level DP protects a user's entire contribution ($m \ge 1$ samples), providing more stringent but more realistic protection against information leaks. We show that for high-dimensional meanestimation, empirical risk minimization with smooth losses, stochastic convex optimization, and learning hypothesis classes with finite metric entropy, the privacy cost decreases as $O(1/\sqrt{m})$ as users provide more samples. In contrast, when increasing the number of users $n$, the privacy cost decreases at a faster $O(1/n)$ rate. We complement these results with lower bounds showing the minimax optimality of our algorithms for mean estimation and stochastic convex optimization. Our algorithms rely on novel techniques for private mean estimation in arbitrary dimension with error scaling as the concentration radius $\tau$ of the distribution rather than the entire range.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Tianshi Cao · Alex Bie · Arash Vahdat · Sanja Fidler · Karsten Kreis

Although machine learning models trained on massive data have led to breakthroughs in several areas, their deployment in privacy-sensitive domains remains limited due to restricted access to data. Generative models trained with privacy constraints on private data can sidestep this challenge, providing indirect access to private data instead. We propose DP-Sinkhorn, a novel optimal transport-based generative method for learning data distributions from private data with differential privacy. DP-Sinkhorn minimizes the Sinkhorn divergence, a computationally efficient approximation to the exact optimal transport distance, between the model and data in a differentially private manner and uses a novel technique for controlling the bias-variance trade-off of gradient estimates. Unlike existing approaches for training differentially private generative models, which are mostly based on generative adversarial networks, we do not rely on adversarial objectives, which are notoriously difficult to optimize, especially in the presence of noise imposed by privacy constraints. Hence, DP-Sinkhorn is easy to train and deploy. Experimentally, we improve upon the state-of-the-art on multiple image modeling benchmarks and show differentially private synthesis of informative RGB images.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Abhishek Sinha · Jiaming Song · Chenlin Meng · Stefano Ermon

Conditional generative models of high-dimensional images have many applications, but supervision signals from conditions to images can be expensive to acquire. This paper describes Diffusion-Decoding models with Contrastive representations (D2C), a paradigm for training unconditional variational autoencoders (VAE) for few-shot conditional image generation. D2C uses a learned diffusion-based prior over the latent representations to improve generation and contrastive self-supervised learning to improve representation quality. D2C can adapt to novel generation tasks, conditioned on labels or manipulation constraints, by learning from as few as 100 labeled examples. On conditional generation from new labels, D2C achieves superior performance over state-of-the-art VAEs and diffusion models. On conditional image manipulation, D2C generations are two orders of magnitude faster to produce over StyleGAN2 ones and are preferred by 50% - 60% of the human evaluators in a double-blind study. We release our code at https://github.com/jiamings/d2c.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Matthew McLeod · Chunlok Lo · Matthew Schlegel · Andrew Jacobsen · Raksha Kumaraswamy · Martha White · Adam White

Learning auxiliary tasks, such as multiple predictions about the world, can provide many benefits to reinforcement learning systems. A variety of off-policy learning algorithms have been developed to learn such predictions, but as yet there is little work on how to adapt the behavior to gather useful data for those off-policy predictions. In this work, we investigate a reinforcement learning system designed to learn a collection of auxiliary tasks, with a behavior policy learning to take actions to improve those auxiliary predictions. We highlight the inherent non-stationarity in this continual auxiliary task learning problem, for both prediction learners and the behavior learner. We develop an algorithm based on successor features that facilitates tracking under non-stationary rewards, and prove the separation into learning successor features and rewards provides convergence rate improvements. We conduct an in-depth study into the resulting multi-prediction learning system.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Adam Kalai · Varun Kanade

A common challenge across all areas of machine learning is that training data is not distributed like test data, due to natural shifts or adversarial examples; such examples are referred to as out-of-distribution (OOD) test examples. We consider a model where one may abstain from predicting, at a fixed cost. In particular, our transductive abstention algorithm takes labeled training examples and unlabeled test examples as input, and provides predictions with optimal prediction loss guarantees. The loss bounds match standard generalization bounds when test examples are i.i.d. from the training distribution, but add an additional term that is the cost of abstaining times the statistical distance between the train and test distribution (or the fraction of adversarial examples). For linear regression, we give a polynomial-time algorithm based on Celis-Dennis-Tapia optimization algorithms. For binary classification, we show how to efficiently implement it using a proper agnostic learner (i.e., an Empirical Risk Minimizer) for the class of interest. Our work builds on recent work of Goldwasser, Kalais, and Montasser (2020) who gave error and abstention guarantees for transductive binary classification.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Samuel Horváth · Stefanos Laskaridis · Mario Almeida · Ilias Leontiadis · Stylianos Venieris · Nicholas Lane

Federated Learning (FL) has been gaining significant traction across different ML tasks, ranging from vision to keyboard predictions. In large-scale deployments, client heterogeneity is a fact and constitutes a primary problem for fairness, training performance and accuracy. Although significant efforts have been made into tackling statistical data heterogeneity, the diversity in the processing capabilities and network bandwidth of clients, termed system heterogeneity, has remained largely unexplored. Current solutions either disregard a large portion of available devices or set a uniform limit on the model's capacity, restricted by the least capable participants.In this work, we introduce Ordered Dropout, a mechanism that achieves an ordered, nested representation of knowledge in Neural Networks and enables the extraction of lower footprint submodels without the need for retraining. We further show that for linear maps our Ordered Dropout is equivalent to SVD. We employ this technique, along with a self-distillation methodology, in the realm of FL in a framework called FjORD. FjORD alleviates the problem of client system heterogeneity by tailoring the model width to the client's capabilities. Extensive evaluation on both CNNs and RNNs across diverse modalities shows that FjORD consistently leads to significant performance gains over state-of-the-art baselines while maintaining its nested structure.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Ming Yin · Yu-Xiang Wang

This work studies the statistical limits of uniform convergence for offline policy evaluation (OPE) problems with model-based methods (for episodic MDP) and provides a unified framework towards optimal learning for several well-motivated offline tasks. Uniform OPE $\sup_\Pi|Q^\pi-\hat{Q}^\pi|<\epsilon$ is a stronger measure than the point-wise OPE and ensures offline learning when $\Pi$ contains all policies (the global class). In this paper, we establish an $\Omega(H^2 S/d_m\epsilon^2)$ lower bound (over model-based family) for the global uniform OPE and our main result establishes an upper bound of $\tilde{O}(H^2/d_m\epsilon^2)$ for the \emph{local} uniform convergence that applies to all \emph{near-empirically optimal} policies for the MDPs with \emph{stationary} transition. Here $d_m$ is the minimal marginal state-action probability. Critically, the highlight in achieving the optimal rate $\tilde{O}(H^2/d_m\epsilon^2)$ is our design of \emph{singleton absorbing MDP}, which is a new sharp analysis tool that works with the model-based approach. We generalize such a model-based framework to the new settings: offline task-agnostic and the offline reward-free with optimal complexity $\tilde{O}(H^2\log(K)/d_m\epsilon^2)$ ($K$ is the number of tasks) and $\tilde{O}(H^2S/d_m\epsilon^2)$ respectively. These results provide a unified solution for simultaneously solving different offline RL problems.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Qihang Yu · Yingda Xia · Yutong Bai · Yongyi Lu · Alan Yuille · Wei Shen

Recently, there emerges a series of vision Transformers, which show superior performance with a more compact model size than conventional convolutional neural networks, thanks to the strong ability of Transformers to model long-range dependencies. However, the advantages of vision Transformers also come with a price: Self-attention, the core part of Transformer, has a quadratic complexity to the input sequence length. This leads to a dramatic increase of computation and memory cost with the increase of sequence length, thus introducing difficulties when applying Transformers to the vision tasks that require dense predictions based on high-resolution feature maps.In this paper, we propose a new vision Transformer, named Glance-and-Gaze Transformer (GG-Transformer), to address the aforementioned issues. It is motivated by the Glance and Gaze behavior of human beings when recognizing objects in natural scenes, with the ability to efficiently model both long-range dependencies and local context. In GG-Transformer, the Glance and Gaze behavior is realized by two parallel branches: The Glance branch is achieved by performing self-attention on the adaptively-dilated partitions of the input, which leads to a linear complexity while still enjoying a global receptive field; The Gaze branch is implemented by a simple depth-wise convolutional layer, which compensates local image context to the features obtained by the Glance mechanism. We empirically demonstrate our method achieves consistently superior performance over previous state-of-the-art Transformers on various vision tasks and benchmarks.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Haixiang Zhang · Zeyu Zheng · Javad Lavaei

We study an extension of the stochastic submodular minimization problem, namely, the stochastic $L^\natural$-convex minimization problem. We develop the first polynomial-time algorithms that return a near-optimal solution with high probability. We design a novel truncation operation to further reduce the computational complexity of the proposed algorithms. When applied to a stochastic submodular function, the computational complexity of the proposed algorithms is lower than that of the existing stochastic submodular minimization algorithms. In addition, we provide a strongly polynomial approximate algorithm. The algorithm execution also does not require any prior knowledge about the objective function except the $L^\natural$-convexity. A lower bound on the computational complexity that is required to achieve a high probability error bound is also derived. Numerical experiments are implemented to demonstrate the efficiency of our theoretical findings.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Martino Bernasconi · Federico Cacciamani · Simone Fioravanti · Nicola Gatti · Alberto Marchesi · Francesco Trovò

Recently, game-playing agents based on AI techniques have demonstrated super-human performance in several sequential games, such as chess, Go, and poker. Surprisingly, the multi-agent learning techniques that allowed to reach these achievements do not take into account the actual behavior of the human player, potentially leading to an impressive gap in performances. In this paper, we address the problem of designing artificial agents that learn how to effectively exploit unknown human opponents while playing repeatedly against them in an online fashion. We study the case in which the agent's strategy during each repetition of the game is subject to constraints ensuring that the human's expected utility is within some lower and upper thresholds. Our framework encompasses several real-world problems, such as human engagement in repeated game playing and human education by means of serious games. As a first result, we formalize a set of linear inequalities encoding the conditions that the agent's strategy must satisfy at each iteration in order to do not violate the given bounds for the human's expected utility. Then, we use such formulation in an upper confidence bound algorithm, and we prove that the resulting procedure suffers from sublinear regret and guarantees that the constraints are satisfied with high probability at each iteration. Finally, we empirically evaluate the convergence of our algorithm on standard testbeds of sequential games.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Dirk van der Hoeven · Federico Fusco · Nicolò Cesa-Bianchi

We study the problem of online multiclass classification in a setting where the learner's feedback is determined by an arbitrary directed graph. While including bandit feedback as a special case, feedback graphs allow a much richer set of applications, including filtering and label efficient classification.We introduce \textproc{Gappletron}, the first online multiclass algorithm that works with arbitrary feedback graphs. For this new algorithm,we prove surrogate regret bounds that hold, both in expectation and with high probability, for a large class of surrogate losses. Our bounds are of order $B\sqrt{\rho KT}$, where $B$ is the diameter of the prediction space, $K$ is the number of classes, $T$ is the time horizon, and $\rho$ is the domination number (a graph-theoretic parameter affecting the amount of exploration). In the full information case, we show that \textproc{Gappletron} achieves a constant surrogate regret of order $B^2K$. We also prove a general lower bound of order $\max\big\{B^2K,\sqrt{T}\big\}$ showing that our upper bounds are not significantly improvable. Experiments on synthetic data show that for various feedback graphs our algorithm is competitive against known baselines.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Weili Nie · Arash Vahdat · Anima Anandkumar

Controllable generation is one of the key requirements for successful adoption of deep generative models in real-world applications, but it still remains as a great challenge. In particular, the compositional ability to generate novel concept combinations is out of reach for most current models. In this work, we use energy-based models (EBMs) to handle compositional generation over a set of attributes. To make them scalable to high-resolution image generation, we introduce an EBM in the latent space of a pre-trained generative model such as StyleGAN. We propose a novel EBM formulation representing the joint distribution of data and attributes together, and we show how sampling from it is formulated as solving an ordinary differential equation (ODE). Given a pre-trained generator, all we need for controllable generation is to train an attribute classifier. Sampling with ODEs is done efficiently in the latent space and is robust to hyperparameters. Thus, our method is simple, fast to train, and efficient to sample. Experimental results show that our method outperforms the state-of-the-art in both conditional sampling and sequential editing. In compositional generation, our method excels at zero-shot generation of unseen attribute combinations. Also, by composing energy functions with logical operators, this work is the first to achieve such compositionality in generating photo-realistic images of resolution 1024x1024.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Andrea Zanette · Martin J Wainwright · Emma Brunskill

Actor-critic methods are widely used in offline reinforcement learningpractice, but are not so well-understood theoretically. We propose a newoffline actor-critic algorithm that naturally incorporates the pessimism principle, leading to several key advantages compared to the state of the art. The algorithm can operate when the Bellman evaluation operator is closed with respect to the action value function of the actor's policies; this is a more general setting than the low-rank MDP model. Despite the added generality, the procedure is computationally tractable as it involves the solution of a sequence of second-order programs.We prove an upper bound on the suboptimality gap of the policy returned by the procedure that depends on the data coverage of any arbitrary, possibly data dependent comparator policy.The achievable guarantee is complemented with a minimax lower bound that is matching up to logarithmic factors.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Mattie Fellows · Kristian Hartikainen · Shimon Whiteson

We introduce a novel perspective on Bayesian reinforcement learning (RL); whereas existing approaches infer a posterior over the transition distribution or Q-function, we characterise the uncertainty in the Bellman operator. Our Bayesian Bellman operator (BBO) framework is motivated by the insight that when bootstrapping is introduced, model-free approaches actually infer a posterior over Bellman operators, not value functions. In this paper, we use BBO to provide a rigorous theoretical analysis of model-free Bayesian RL to better understand its relationship to established frequentist RL methodologies. We prove that Bayesian solutions are consistent with frequentist RL solutions, even when approximate inference is used, and derive conditions for which convergence properties hold. Empirically, we demonstrate that algorithms derived from the BBO framework have sophisticated deep exploration properties that enable them to solve continuous control tasks at which state-of-the-art regularised actor-critic algorithms fail catastrophically.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Bingzhao Zhu · Mahsa Shoaran

Decision trees have been widely used as classifiers in many machine learning applications thanks to their lightweight and interpretable decision process. This paper introduces Tree in Tree decision graph (TnT), a framework that extends the conventional decision tree to a more generic and powerful directed acyclic graph. TnT constructs decision graphs by recursively growing decision trees inside the internal or leaf nodes instead of greedy training. The time complexity of TnT is linear to the number of nodes in the graph, therefore it can construct decision graphs on large datasets. Compared to decision trees, we show that TnT achieves better classification performance with reduced model size, both as a stand-alone classifier and as a base-estimator in bagging/AdaBoost ensembles. Our proposed model is a novel, more efficient and accurate alternative to the widely-used decision trees.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Celestine Mendler-Dünner · Wenshuo Guo · Stephen Bates · Michael Jordan

An increasingly common setting in machine learning involves multiple parties, each with their own data, who want to jointly make predictions on future test points. Agents wish to benefit from the collective expertise of the full set of agents to make better predictions than they would individually, but may not be willing to release labeled data or model parameters. In this work, we explore a decentralized mechanism to make collective predictions at test time, that is inspired by the literature in social science on human consensus-making. Building on a query model to facilitate information exchange among agents, our approach leverages each agent’s pre-trained model without relying on external validation, model retraining, or data pooling. A theoretical analysis shows that our approach recovers inverse mean-squared-error (MSE) weighting in the large-sample limit which is known to be the optimal way to combine independent, unbiased estimators. Empirically, we demonstrate that our scheme effectively combines models with differing quality across the input space: the proposed consensus prediction achieves significant gains over classical model averaging, and even outperforms weighted averaging schemes that have access to additional validation data. Finally, we propose a decentralized Jackknife procedure as a tool to evaluate the sensitivity of the collective predictions with respect to a single agent's opinion.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Mikita Dvornik · Isma Hadji · Konstantinos Derpanis · Animesh Garg · Allan Jepson

In this work, we consider the problem of sequence-to-sequence alignment for signals containing outliers. Assuming the absence of outliers, the standard Dynamic Time Warping (DTW) algorithm efficiently computes the optimal alignment between two (generally) variable-length sequences. While DTW is robust to temporal shifts and dilations of the signal, it fails to align sequences in a meaningful way in the presence of outliers that can be arbitrarily interspersed in the sequences. To address this problem, we introduce Drop-DTW, a novel algorithm that aligns the common signal between the sequences while automatically dropping the outlier elements from the matching. The entire procedure is implemented as a single dynamic program that is efficient and fully differentiable. In our experiments, we show that Drop-DTW is a robust similarity measure for sequence retrieval and demonstrate its effectiveness as a training loss on diverse applications. With Drop-DTW, we address temporal step localization on instructional videos, representation learning from noisy videos, and cross-modal representation learning for audio-visual retrieval and localization. In all applications, we take a weakly- or unsupervised approach and demonstrate state-of-the-art results under these settings.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Tsung-Yen Yang · Michael Y Hu · Yinlam Chow · Peter J Ramadge · Karthik Narasimhan

While safe reinforcement learning (RL) holds great promise for many practical applications like robotics or autonomous cars, current approaches require specifying constraints in mathematical form. Such specifications demand domain expertise, limiting the adoption of safe RL. In this paper, we propose learning to interpret natural language constraints for safe RL. To this end, we first introduce HAZARDWORLD, a new multi-task benchmark that requires an agent to optimize reward while not violating constraints specified in free-form text. We then develop an agent with a modular architecture that can interpret and adhere to such textual constraints while learning new tasks. Our model consists of (1) a constraint interpreter that encodes textual constraints into spatial and temporal representations of forbidden states, and (2) a policy network that uses these representations to produce a policy achieving minimal constraint violations during training. Across different domains in HAZARDWORLD, we show that our method achieves higher rewards (up to11x) and fewer constraint violations (by 1.8x) compared to existing approaches. However, in terms of absolute performance, HAZARDWORLD still poses significant challenges for agents to learn efficiently, motivating the need for future work.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Jianyu Xu · Yu-Xiang Wang

Feature-based dynamic pricing is an increasingly popular model of setting prices for highly differentiated products with applications in digital marketing, online sales, real estate and so on. The problem was formally studied as an online learning problem [Javanmard & Nazerzadeh, 2019] where a seller needs to propose prices on the fly for a sequence of $T$ products based on their features $x$ while having a small regret relative to the best ---"omniscient"--- pricing strategy she could have come up with in hindsight. We revisit this problem and provide two algorithms (EMLP and ONSP) for stochastic and adversarial feature settings, respectively, and prove the optimal $O(d\log{T})$ regret bounds for both. In comparison, the best existing results are $O\left(\min\left\{\frac{1}{\lambda_{\min}^2}\log{T}, \sqrt{T}\right\}\right)$ and $O(T^{2/3})$ respectively, with $\lambda_{\min}$ being the smallest eigenvalue of $\mathbb{E}[xx^T]$ that could be arbitrarily close to $0$. We also prove an $\Omega(\sqrt{T})$ information-theoretic lower bound for a slightly more general setting, which demonstrates that "knowing-the-demand-curve" leads to an exponential improvement in feature-based dynamic pricing.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Zihang Meng · Rudrasis Chakraborty · Vikas Singh

We present an efficient stochastic algorithm (RSG+) for canonical correlation analysis (CCA) using a reparametrization of the projection matrices. We show how this reparametrization (into structured matrices), simple in hindsight, directly presents an opportunity to repurpose/adjust mature techniques for numerical optimization on Riemannian manifolds. Our developments nicely complement existing methods for this problem which either require $O(d^3)$ time complexity per iteration with $O(\frac{1}{\sqrt{t}})$ convergence rate (where $d$ is the dimensionality) or only extract the top $1$ component with $O(\frac{1}{t})$ convergence rate. In contrast, our algorithm offers a strict improvement for this classical problem: it achieves $O(d^2k)$ runtime complexity per iteration for extracting the top $k$ canonical components with $O(\frac{1}{t})$ convergence rate. While the paper primarily focuses on the formulation and technical analysis of its properties, our experiments show that the empirical behavior on common datasets is quite promising, We also explore a potential application in training fair models where the label of protected attribute is missing or otherwise unavailable.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Chung-Wei Lee · Christian Kroer · Haipeng Luo

Regret-based algorithms are highly efficient at finding approximate Nash equilibria in sequential games such as poker games. However, most regret-based algorithms, including counterfactual regret minimization (CFR) and its variants, rely on iterate averaging to achieve convergence. Inspired by recent advances on last-iterate convergence of optimistic algorithms in zero-sum normal-form games, we study this phenomenon in sequential games, and provide a comprehensive study of last-iterate convergence for zero-sum extensive-form games with perfect recall (EFGs), using various optimistic regret-minimization algorithms over treeplexes. This includes algorithms using the vanilla entropy or squared Euclidean norm regularizers, as well as their dilated versions which admit more efficient implementation. In contrast to CFR, we show that all of these algorithms enjoy last-iterate convergence, with some of them even converging exponentially fast. We also provide experiments to further support our theoretical results.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Seyed Esmaeili · Brian Brubach · Aravind Srinivasan · John Dickerson

Clustering is a fundamental unsupervised learning problem where a dataset is partitioned into clusters that consist of nearby points in a metric space. A recent variant, fair clustering, associates a color with each point representing its group membership and requires that each color has (approximately) equal representation in each cluster to satisfy group fairness. In this model, the cost of the clustering objective increases due to enforcing fairness in the algorithm. The relative increase in the cost, the ```````''price of fairness,'' can indeed be unbounded. Therefore, in this paper we propose to treat an upper bound on the clustering objective as a constraint on the clustering problem, and to maximize equality of representation subject to it. We consider two fairness objectives: the group utilitarian objective and the group egalitarian objective, as well as the group leximin objective which generalizes the group egalitarian objective. We derive fundamental lower bounds on the approximation of the utilitarian and egalitarian objectives and introduce algorithms with provable guarantees for them. For the leximin objective we introduce an effective heuristic algorithm. We further derive impossibility results for other natural fairness objectives. We conclude with experimental results on real-world datasets that demonstrate the validity of our algorithms.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Arvind Mahankali · David Woodruff

We study linear and kernel classification in the streaming model. For linear classification, we improve upon the algorithm of (Tai, et al. 2018), which solves the $\ell_1$ point query problem on the optimal weight vector $w_* \in \mathbb{R}^d$ in sublinear space. We first give an algorithm solving the more difficult $\ell_2$ point query problem on $w_*$, also in sublinear space. We also give an algorithm which solves the $\ell_2$ heavy hitter problem on $w_*$, in sublinear space and running time. Finally, we give an algorithm which can $\textit{deterministically}$ solve the $\ell_1$ point query problem on $w_*$, with sublinear space improving upon that of (Tai, et al. 2018). For kernel classification, if $w_* \in \mathbb{R}^{d^p}$ is the optimal weight vector classifying points in the stream according to their $p^{th}$-degree polynomial kernel, then we give an algorithm solving the $\ell_2$ point query problem on $w_*$ in $\text{poly}(\frac{p \log d}{\varepsilon})$ space, and an algorithm solving the $\ell_2$ heavy hitter problem in $\text{poly}(\frac{p \log d}{\varepsilon})$ space and running time. Note that our space and running time are polynomial in $p$, making our algorithms well-suited to high-degree polynomial kernels and the Gaussian kernel (approximated by the polynomial kernel of degree $p = \Theta(\log T)$).

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

DJ Strouse · Kevin McKee · Matt Botvinick · Edward Hughes · Richard Everett

Collaborating with humans requires rapidly adapting to their individual strengths, weaknesses, and preferences. Unfortunately, most standard multi-agent reinforcement learning techniques, such as self-play (SP) or population play (PP), produce agents that overfit to their training partners and do not generalize well to humans. Alternatively, researchers can collect human data, train a human model using behavioral cloning, and then use that model to train "human-aware" agents ("behavioral cloning play", or BCP). While such an approach can improve the generalization of agents to new human co-players, it involves the onerous and expensive step of collecting large amounts of human data first. Here, we study the problem of how to train agents that collaborate well with human partners without using human data. We argue that the crux of the problem is to produce a diverse set of training partners. Drawing inspiration from successful multi-agent approaches in competitive domains, we find that a surprisingly simple approach is highly effective. We train our agent partner as the best response to a population of self-play agents and their past checkpoints taken throughout training, a method we call Fictitious Co-Play (FCP). Our experiments focus on a two-player collaborative cooking simulator that has recently been proposed as a challenge problem for coordination with humans. We find that FCP agents score significantly higher than SP, PP, and BCP when paired with novel agent and human partners. Furthermore, humans also report a strong subjective preference to partnering with FCP agents over all baselines.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Aritra Mitra · Rayana Jaafar · George J. Pappas · Hamed Hassani

We consider a standard federated learning (FL) setup where a group of clients periodically coordinate with a central server to train a statistical model. We develop a general algorithmic framework called FedLin to tackle some of the key challenges intrinsic to FL, namely objective heterogeneity, systems heterogeneity, and infrequent and imprecise communication. Our framework is motivated by the observation that under these challenges, various existing FL algorithms suffer from a fundamental speed-accuracy conflict: they either guarantee linear convergence but to an incorrect point, or convergence to the global minimum but at a sub-linear rate, i.e., fast convergence comes at the expense of accuracy. In contrast, when the clients' local loss functions are smooth and strongly convex, we show that FedLin guarantees linear convergence to the global minimum, despite arbitrary objective and systems heterogeneity. We then establish matching upper and lower bounds on the convergence rate of FedLin that highlight the effects of infrequent, periodic communication. Finally, we show that FedLin preserves linear convergence rates under aggressive gradient sparsification, and quantify the effect of the compression level on the convergence rate. Notably, our work is the first to provide tight linear convergence rate guarantees, and constitutes the first comprehensive analysis of gradient sparsification in FL.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Rishav Chourasia · Jiayuan Ye · Reza Shokri

What is the information leakage of an iterative randomized learning algorithm about its training data, when the internal state of the algorithm is \emph{private}? How much is the contribution of each specific training epoch to the information leakage through the released model? We study this problem for noisy gradient descent algorithms, and model the \emph{dynamics} of R\'enyi differential privacy loss throughout the training process. Our analysis traces a provably \emph{tight} bound on the R\'enyi divergence between the pair of probability distributions over parameters of models trained on neighboring datasets. We prove that the privacy loss converges exponentially fast, for smooth and strongly convex loss functions, which is a significant improvement over composition theorems (which over-estimate the privacy loss by upper-bounding its total value over all intermediate gradient computations). For Lipschitz, smooth, and strongly convex loss functions, we prove optimal utility with a small gradient complexity for noisy gradient descent algorithms.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Maria-Florina Balcan · Dravyansh Sharma

We consider a novel data driven approach for designing semi-supervised learning algorithms that can effectively learn with only a small number of labeled examples. We focus on graph-based techniques, where the unlabeled examples are connected in a graph under the implicit assumption that similar nodes likely have similar labels. Over the past two decades, several elegant graph-based semi-supervised learning algorithms for inferring the labels of the unlabeled examples given the graph and a few labeled examples have been proposed. However, the problem of how to create the graph (which impacts the practical usefulness of these methods significantly) has been relegated to heuristics and domain-specific art, and no general principles have been proposed. In this work we present a novel data driven approach for learning the graph and provide strong formal guarantees in both the distributional and online learning formalizations. We show how to leverage problem instances coming from an underlying problem domain to learn the graph hyperparameters for commonly used parametric families of graphs that provably perform well on new instances from the same domain. We obtain low regret and efficient algorithms in the online setting, and generalization guarantees in the distributional setting. We also show how to combine several very different similarity metrics and learn multiple hyperparameters, our results hold for large classes of problems. We expect some of the tools and techniques we develop along the way to be of independent interest, for data driven algorithms more generally.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Ulrich Aïvodji · Hiromi Arai · Sébastien Gambs · Satoshi Hara

Fairwashing refers to the risk that an unfair black-box model can be explained by a fairer model through post-hoc explanation manipulation. In this paper, we investigate the capability of fairwashing attacks by analyzing their fidelity-unfairness trade-offs. In particular, we show that fairwashed explanation models can generalize beyond the suing group (i.e., data points that are being explained), meaning that a fairwashed explainer can be used to rationalize subsequent unfair decisions of a black-box model. We also demonstrate that fairwashing attacks can transfer across black-box models, meaning that other black-box models can perform fairwashing without explicitly using their predictions. This generalization and transferability of fairwashing attacks imply that their detection will be difficult in practice. Finally, we propose an approach to quantify the risk of fairwashing, which is based on the computation of the range of the unfairness of high-fidelity explainers.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

J Terry · Benjamin Black · Nathaniel Grammel · Mario Jayakumar · Ananth Hari · Ryan Sullivan · Luis S Santos · Clemens Dieffendahl · Caroline Horsch · Rodrigo Perez-Vicente · Niall Williams · Yashas Lokesh · Praveen Ravi

This paper introduces the PettingZoo library and the accompanying Agent Environment Cycle (`"AEC") games model. PettingZoo is a library of diverse sets of multi-agent environments with a universal, elegant Python API. PettingZoo was developed with the goal of accelerating research in Multi-Agent Reinforcement Learning (`

"MARL"), by making work more interchangeable, accessible and reproducible akin to what OpenAI's Gym library did for single-agent reinforcement learning. PettingZoo's API, while inheriting many features of Gym, is unique amongst MARL APIs in that it's based around the novel AEC games model. We argue, in part through case studies on major problems in popular MARL environments, that the popular game models are poor conceptual models of the games commonly used with MARL, that they promote severe bugs that are hard to detect, and that the AEC games model addresses these problems.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Lili Chen · Kevin Lu · Aravind Rajeswaran · Kimin Lee · Aditya Grover · Misha Laskin · Pieter Abbeel · Aravind Srinivas · Igor Mordatch

We introduce a framework that abstracts Reinforcement Learning (RL) as a sequence modeling problem. This allows us to draw upon the simplicity and scalability of the Transformer architecture, and associated advances in language modeling such as GPT-x and BERT. In particular, we present Decision Transformer, an architecture that casts the problem of RL as conditional sequence modeling. Unlike prior approaches to RL that fit value functions or compute policy gradients, Decision Transformer simply outputs the optimal actions by leveraging a causally masked Transformer. By conditioning an autoregressive model on the desired return (reward), past states, and actions, our Decision Transformer model can generate future actions that achieve the desired return. Despite its simplicity, Decision Transformer matches or exceeds the performance of state-of-the-art model-free offline RL baselines on Atari, OpenAI Gym, and Key-to-Door tasks.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Sakshi Varshney · Vinay Kumar Verma · P. K. Srijith · Lawrence Carin · Piyush Rai

We present a continual learning approach for generative adversarial networks (GANs), by designing and leveraging parameter-efficient feature map transformations. Our approach is based on learning a set of global and task-specific parameters. The global parameters are fixed across tasks whereas the task-specific parameters act as local adapters for each task, and help in efficiently obtaining task-specific feature maps. Moreover, we propose an element-wise addition of residual bias in the transformed feature space, which further helps stabilize GAN training in such settings. Our approach also leverages task similarities based on the Fisher information matrix. Leveraging this knowledge from previous tasks significantly improves the model performance. In addition, the similarity measure also helps reduce the parameter growth in continual adaptation and helps to learn a compact model. In contrast to the recent approaches for continually-learned GANs, the proposed approach provides a memory-efficient way to perform effective continual data generation. Through extensive experiments on challenging and diverse datasets, we show that the feature-map-transformation approach outperforms state-of-the-art methods for continually-learned GANs, with substantially fewer parameters. The proposed method generates high-quality samples that can also improve the generative-replay-based continual learning for discriminative tasks.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Tijana Zrnic · Eric Mazumdar · Shankar Sastry · Michael Jordan

As predictive models are deployed into the real world, they must increasingly contend with strategic behavior. A growing body of work on strategic classification treats this problem as a Stackelberg game: the decision-maker "leads" in the game by deploying a model, and the strategic agents "follow" by playing their best response to the deployed model. Importantly, in this framing, the burden of learning is placed solely on the decision-maker, while the agents’ best responses are implicitly treated as instantaneous. In this work, we argue that the order of play in strategic classification is fundamentally determined by the relative frequencies at which the decision-maker and the agents adapt to each other’s actions. In particular, by generalizing the standard model to allow both players to learn over time, we show that a decision-maker that makes updates faster than the agents can reverse the order of play, meaning that the agents lead and the decision-maker follows. We observe in standard learning settings that such a role reversal can be desirable for both the decision-maker and the strategic agents. Finally, we show that a decision-maker with the freedom to choose their update frequency can induce learning dynamics that converge to Stackelberg equilibria with either order of play.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Xuanqing Liu · Wei-Cheng Chang · Hsiang-Fu Yu · Cho-Jui Hsieh · Inderjit Dhillon

Partition-based methods are increasingly-used in extreme multi-label classification (XMC) problems due to their scalability to large output spaces (e.g., millions or more). However, existing methods partition the large label space into mutually exclusive clusters, which is sub-optimal when labels have multi-modality and rich semantics. For instance, the label “Apple” can be the fruit or the brand name, which leads to the following research question: can we disentangle these multi-modal labels with non-exclusive clustering tailored for downstream XMC tasks? In this paper, we show that the label assignment problem in partition-based XMC can be formulated as an optimization problem, with the objective of maximizing precision rates. This leads to an efficient algorithm to form flexible and overlapped label clusters, and a method that can alternatively optimizes the cluster assignments and the model parameters for partition-based XMC. Experimental results on synthetic and real datasets show that our method can successfully disentangle multi-modal labels, leading to state-of-the-art (SOTA) results on four XMC benchmarks.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Andreea-Ioana Deac · Petar Veličković · Ognjen Milinkovic · Pierre-Luc Bacon · Jian Tang · Mladen Nikolic

Implicit planning has emerged as an elegant technique for combining learned models of the world with end-to-end model-free reinforcement learning. We study the class of implicit planners inspired by value iteration, an algorithm that is guaranteed to yield perfect policies in fully-specified tabular environments. We find that prior approaches either assume that the environment is provided in such a tabular form---which is highly restrictive---or infer "local neighbourhoods" of states to run value iteration over---for which we discover an algorithmic bottleneck effect. This effect is caused by explicitly running the planning algorithm based on scalar predictions in every state, which can be harmful to data efficiency if such scalars are improperly predicted. We propose eXecuted Latent Value Iteration Networks (XLVINs), which alleviate the above limitations. Our method performs all planning computations in a high-dimensional latent space, breaking the algorithmic bottleneck. It maintains alignment with value iteration by carefully leveraging neural graph-algorithmic reasoning and contrastive self-supervised learning. Across seven low-data settings---including classical control, navigation and Atari---XLVINs provide significant improvements to data efficiency against value iteration-based implicit planners, as well as relevant model-free baselines. Lastly, we empirically verify that XLVINs can closely align with value iteration.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Yilun Du · Shuang Li · Yash Sharma · Josh Tenenbaum · Igor Mordatch

Humans are able to rapidly understand scenes by utilizing concepts extracted from prior experience. Such concepts are diverse, and include global scene descriptors, such as the weather or lighting, as well as local scene descriptors, such as the color or size of a particular object. So far, unsupervised discovery of concepts has focused on either modeling the global scene-level or the local object-level factors of variation, but not both. In this work, we propose COMET, which discovers and represents concepts as separate energy functions, enabling us to represent both global concepts as well as objects under a unified framework. COMET discovers energy functions through recomposing the input image, which we find captures independent factors without additional supervision. Sample generation in COMET is formulated as an optimization process on underlying energy functions, enabling us to generate images with permuted and composed concepts. Finally, discovered visual concepts in COMET generalize well, enabling us to compose concepts between separate modalities of images as well as with other concepts discovered by a separate instance of COMET trained on a different dataset. Code and data available at https://energy-based-model.github.io/comet/.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Jonathan Bragg · Arman Cohan · Kyle Lo · Iz Beltagy

Few-shot NLP research is highly active, yet conducted in disjoint research threads with evaluation suites that lack challenging-yet-realistic testing setups and fail to employ careful experimental design. Consequently, the community does not know which techniques perform best or even if they outperform simple baselines. In response, we formulate the FLEX Principles, a set of requirements and best practices for unified, rigorous, valid, and cost-sensitive few-shot NLP evaluation. These principles include Sample Size Design, a novel approach to benchmark design that optimizes statistical accuracy and precision while keeping evaluation costs manageable. Following the principles, we release the FLEX benchmark, which includes four few-shot transfer settings, zero-shot evaluation, and a public leaderboard that covers diverse NLP tasks. In addition, we present UniFew, a prompt-based model for few-shot learning that unifies pretraining and finetuning prompt formats, eschewing complex machinery of recent prompt-based approaches in adapting downstream task formats to language model pretraining objectives. We demonstrate that despite simplicity, UniFew achieves results competitive with both popular meta-learning and prompt-based approaches.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Edgar Minasyan · Paula Gradu · Max Simchowitz · Elad Hazan

We study online control of time-varying linear systems with unknown dynamics in the nonstochastic control model. At a high level, we demonstrate that this setting is \emph{qualitatively harder} than that of either unknown time-invariant or known time-varying dynamics, and complement our negative results with algorithmic upper bounds in regimes where sublinear regret is possible. More specifically, we study regret bounds with respect to common classes of policies: Disturbance Action (SLS), Disturbance Response (Youla), and linear feedback policies. While these three classes are essentially equivalent for LTI systems, we demonstrate that these equivalences break down for time-varying systems. We prove a lower bound that no algorithm can obtain sublinear regret with respect to the first two classes unless a certain measure of system variability also scales sublinearly in the horizon. Furthermore, we show that offline planning over the state linear feedback policies is NP-hard, suggesting hardness of the online learning problem. On the positive side, we give an efficient algorithm that attains a sublinear regret bound against the class of Disturbance Response policies up to the aforementioned system variability term. In fact, our algorithm enjoys sublinear \emph{adaptive} regret bounds, which is a strictly stronger metric than standard regret and is more appropriate for time-varying systems. We sketch extensions to Disturbance Action policies and partial observation, and propose an inefficient algorithm for regret against linear state feedback policies.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Gabriel Poesia · WenXin Dong · Noah Goodman

Abstract symbolic reasoning, as required in domains such as mathematics and logic, is a key component of human intelligence. Solvers for these domains have important applications, especially to computer-assisted education. But learning to solve symbolic problems is challenging for machine learning algorithms. Existing models either learn from human solutions or use hand-engineered features, making them expensive to apply in new domains. In this paper, we instead consider symbolic domains as simple environments where states and actions are given as unstructured text, and binary rewards indicate whether a problem is solved. This flexible setup makes it easy to specify new domains, but search and planning become challenging. We introduce five environments inspired by the Mathematics Common Core Curriculum, and observe that existing Reinforcement Learning baselines perform poorly. We then present a novel learning algorithm, Contrastive Policy Learning (ConPoLe) that explicitly optimizes the InfoNCE loss, which lower bounds the mutual information between the current state and next states that continue on a path to the solution. ConPoLe successfully solves all four domains. Moreover, problem representations learned by ConPoLe enable accurate prediction of the categories of problems in a real mathematics curriculum. Our results suggest new directions for reinforcement learning in symbolic domains, as well as applications to mathematics education.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Yiliang Zhang · Qi Long

Missing data are prevalent and present daunting challenges in real data analysis. While there is a growing body of literature on fairness in analysis of fully observed data, there has been little theoretical work on investigating fairness in analysis of incomplete data. In practice, a popular analytical approach for dealing with missing data is to use only the set of complete cases, i.e., observations with all features fully observed to train a prediction algorithm. However, depending on the missing data mechanism, the distribution of complete cases and the distribution of the complete data may be substantially different. When the goal is to develop a fair algorithm in the complete data domain where there are no missing values, an algorithm that is fair in the complete case domain may show disproportionate bias towards some marginalized groups in the complete data domain. To fill this significant gap, we study the problem of estimating fairness in the complete data domain for an arbitrary model evaluated merely using complete cases. We provide upper and lower bounds on the fairness estimation error and conduct numerical experiments to assess our theoretical results. Our work provides the first known theoretical results on fairness guarantee in analysis of incomplete data.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Ho Chit Siu · Jaime Peña · Edenna Chen · Yutai Zhou · Victor Lopez · Kyle Palko · Kimberlee Chang · Ross Allen

Deep reinforcement learning has generated superhuman AI in competitive games such as Go and StarCraft. Can similar learning techniques create a superior AI teammate for human-machine collaborative games? Will humans prefer AI teammates that improve objective team performance or those that improve subjective metrics of trust? In this study, we perform a single-blind evaluation of teams of humans and AI agents in the cooperative card game Hanabi, with both rule-based and learning-based agents. In addition to the game score, used as an objective metric of the human-AI team performance, we also quantify subjective measures of the human's perceived performance, teamwork, interpretability, trust, and overall preference of AI teammate. We find that humans have a clear preference toward a rule-based AI teammate (SmartBot) over a state-of-the-art learning-based AI teammate (Other-Play) across nearly all subjective metrics, and generally view the learning-based agent negatively, despite no statistical difference in the game score. This result has implications for future AI design and reinforcement learning benchmarking, highlighting the need to incorporate subjective metrics of human-AI teaming rather than a singular focus on objective task performance.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Wouter Van Gansbeke · Simon Vandenhende · Stamatios Georgoulis · Luc V Gool

Contrastive self-supervised learning has outperformed supervised pretraining on many downstream tasks like segmentation and object detection. However, current methods are still primarily applied to curated datasets like ImageNet. In this paper, we first study how biases in the dataset affect existing methods. Our results show that an approach like MoCo works surprisingly well across: (i) object- versus scene-centric, (ii) uniform versus long-tailed and (iii) general versus domain-specific datasets. Second, given the generality of the approach, we try to realize further gains with minor modifications. We show that learning additional invariances - through the use of multi-scale cropping, stronger augmentations and nearest neighbors - improves the representations. Finally, we observe that MoCo learns spatially structured representations when trained with a multi-crop strategy. The representations can be used for semantic segment retrieval and video instance segmentation without finetuning. Moreover, the results are on par with specialized models. We hope this work will serve as a useful study for other researchers.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Varun Gupta · Christopher Jung · Seth Neel · Aaron Roth · Saeed Sharifi-Malvajerdi · Chris Waites

Data deletion algorithms aim to remove the influence of deleted data points from trained models at a cheaper computational cost than fully retraining those models. However, for sequences of deletions, most prior work in the non-convex setting gives valid guarantees only for sequences that are chosen independently of the models that are published. If people choose to delete their data as a function of the published models (because they don’t like what the models reveal about them, for example), then the update sequence is adaptive. In this paper, we give a general reduction from deletion guarantees against adaptive sequences to deletion guarantees against non-adaptive sequences, using differential privacy and its connection to max information. Combined with ideas from prior work which give guarantees for non-adaptive deletion sequences, this leads to extremely flexible algorithms able to handle arbitrary model classes and training methodologies, giving strong provable deletion guarantees for adaptive deletion sequences. We show in theory how prior work for non-convex models fails against adaptive deletion sequences, and use this intuition to design a practical attack against the SISA algorithm of Bourtoule et al. [2021] on CIFAR-10, MNIST, Fashion-MNIST.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Huan Ling · Karsten Kreis · Daiqing Li · Seung Wook Kim · Antonio Torralba · Sanja Fidler

Generative adversarial networks (GANs) have recently found applications in image editing. However, most GAN-based image editing methods often require large-scale datasets with semantic segmentation annotations for training, only provide high-level control, or merely interpolate between different images. Here, we propose EditGAN, a novel method for high-quality, high-precision semantic image editing, allowing users to edit images by modifying their highly detailed part segmentation masks, e.g., drawing a new mask for the headlight of a car. EditGAN builds on a GAN framework that jointly models images and their semantic segmentation, requiring only a handful of labeled examples – making it a scalable tool for editing. Specifically, we embed an image into the GAN’s latent space and perform conditional latent code optimization according to the segmentation edit, which effectively also modifies the image. To amortize optimization, we find “editing vectors” in latent space that realize the edits. The framework allows us to learn an arbitrary number of editing vectors, which can then be directly applied on other images at interactive rates. We experimentally show that EditGAN can manipulate images with an unprecedented level of detail and freedom while preserving full image quality. We can also easily combine multiple edits and perform plausible edits beyond EditGAN’s training data. We demonstrate EditGAN on a wide variety of image types and quantitatively outperform several previous editing methods on standard editing benchmark tasks.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Stefano Massaroli · Michael Poli · Sho Sonoda · Taiji Suzuki · Jinkyoo Park · Atsushi Yamashita · Hajime Asama

We detail a novel class of implicit neural models. Leveraging time-parallel methods for differential equations, Multiple Shooting Layers (MSLs) seek solutions of initial value problems via parallelizable root-finding algorithms. MSLs broadly serve as drop-in replacements for neural ordinary differential equations (Neural ODEs) with improved efficiency in number of function evaluations (NFEs) and wall-clock inference time. We develop the algorithmic framework of MSLs, analyzing the different choices of solution methods from a theoretical and computational perspective. MSLs are showcased in long horizon optimal control of ODEs and PDEs and as latent models for sequence generation. Finally, we investigate the speedups obtained through application of MSL inference in neural controlled differential equations (Neural CDEs) for time series classification of medical data.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Minsuk Shin · Hyungjoo Cho · Hyun-seok Min · Sungbin Lim

Bootstrapping has been a primary tool for ensemble and uncertainty quantification in machine learning and statistics. However, due to its nature of multiple training and resampling, bootstrapping deep neural networks is computationally burdensome; hence it has difficulties in practical application to the uncertainty estimation and related tasks. To overcome this computational bottleneck, we propose a novel approach called Neural Bootstrapper (NeuBoots), which learns to generate bootstrapped neural networks through single model training. NeuBoots injects the bootstrap weights into the high-level feature layers of the backbone network and outputs the bootstrapped predictions of the target, without additional parameters and the repetitive computations from scratch. We apply NeuBoots to various machine learning tasks related to uncertainty quantification, including prediction calibrations in image classification and semantic segmentation, active learning, and detection of out-of-distribution samples. Our empirical results show that NeuBoots outperforms other bagging based methods under a much lower computational cost without losing the validity of bootstrapping.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Jimmy Smith · Scott Linderman · David Sussillo

Recurrent neural networks (RNNs) are powerful models for processing time-series data, but it remains challenging to understand how they function. Improving this understanding is of substantial interest to both the machine learning and neuroscience communities. The framework of reverse engineering a trained RNN by linearizing around its fixed points has provided insight, but the approach has significant challenges. These include difficulty choosing which fixed point to expand around when studying RNN dynamics and error accumulation when reconstructing the nonlinear dynamics with the linearized dynamics. We present a new model that overcomes these limitations by co-training an RNN with a novel switching linear dynamical system (SLDS) formulation. A first-order Taylor series expansion of the co-trained RNN and an auxiliary function trained to pick out the RNN's fixed points govern the SLDS dynamics. The results are a trained SLDS variant that closely approximates the RNN, an auxiliary function that can produce a fixed point for each point in state-space, and a trained nonlinear RNN whose dynamics have been regularized such that its first-order terms perform the computation, if possible. This model removes the post-training fixed point optimization and allows us to unambiguously study the learned dynamics of the SLDS at any point in state-space. It also generalizes SLDS models to continuous manifolds of switching points while sharing parameters across switches. We validate the utility of the model on two synthetic tasks relevant to previous work reverse engineering RNNs. We then show that our model can be used as a drop-in in more complex architectures, such as LFADS, and apply this LFADS hybrid to analyze single-trial spiking activity from the motor system of a non-human primate.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Antonios Antoniadis · Christian Coester · Marek Elias · Adam Polak · Bertrand Simon

We study the online problem of minimizing power consumption in systems with multiple power-saving states. During idle periods of unknown lengths, an algorithm has to choose between power-saving states of different energy consumption and wake-up costs. We develop a learning-augmented online algorithm that makes decisions based on (potentially inaccurate) predicted lengths of the idle periods. The algorithm's performance is near-optimal when predictions are accurate and degrades gracefully with increasing prediction error, with a worst-case guarantee almost identical to the optimal classical online algorithm for the problem. A key ingredient in our approach is a new algorithm for the online ski-rental problem in the learning augmented setting with tight dependence on the prediction error. We support our theoretical findings with experiments.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Dongxian Wu · Yisen Wang

As deep neural networks (DNNs) are growing larger, their requirements for computational resources become huge, which makes outsourcing training more popular. Training in a third-party platform, however, may introduce potential risks that a malicious trainer will return backdoored DNNs, which behave normally on clean samples but output targeted misclassifications whenever a trigger appears at the test time. Without any knowledge of the trigger, it is difficult to distinguish or recover benign DNNs from backdoored ones. In this paper, we first identify an unexpected sensitivity of backdoored DNNs, that is, they are much easier to collapse and tend to predict the target label on clean samples when their neurons are adversarially perturbed. Based on these observations, we propose a novel model repairing method, termed Adversarial Neuron Pruning (ANP), which prunes some sensitive neurons to purify the injected backdoor. Experiments show, even with only an extremely small amount of clean data (e.g., 1%), ANP effectively removes the injected backdoor without causing obvious performance degradation.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Arnaud Fickinger · Hengyuan Hu · Brandon Amos · Stuart Russell · Noam Brown

Lookahead search has been a critical component of recent AI successes, such as in the games of chess, go, and poker. However, the search methods used in these games, and in many other settings, are tabular. Tabular search methods do not scale well with the size of the search space, and this problem is exacerbated by stochasticity and partial observability. In this work we replace tabular search with online model-based fine-tuning of a policy neural network via reinforcement learning, and show that this approach outperforms state-of-the-art search algorithms in benchmark settings. In particular, we use our search algorithm to achieve a new state-of-the-art result in self-play Hanabi, and show the generality of our algorithm by also showing that it outperforms tabular search in the Atari game Ms. Pacman.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Tam Le · Truyen Nguyen · Makoto Yamada · Jose Blanchet · Viet Anh Nguyen

Many machine learning tasks that involve predicting an output response can be solved by training a weighted regression model. Unfortunately, the predictive power of this type of models may severely deteriorate under low sample sizes or under covariate perturbations. Reweighting the training samples has aroused as an effective mitigation strategy to these problems. In this paper, we propose a novel and coherent scheme for kernel-reweighted regression by reparametrizing the sample weights using a doubly non-negative matrix. When the weighting matrix is confined in an uncertainty set using either the log-determinant divergence or the Bures-Wasserstein distance, we show that the adversarially reweighted estimate can be solved efficiently using first-order methods. Numerical experiments show that our reweighting strategy delivers promising results on numerous datasets.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Rachel Redberg · Yu-Xiang Wang

We consider how to privately share the personalized privacy losses incurred by objective perturbation, using per-instance differential privacy (pDP). Standard differential privacy (DP) gives us a worst-case bound that might be orders of magnitude larger than the privacy loss to a particular individual relative to a fixed dataset. The pDP framework provides a more fine-grained analysis of the privacy guarantee to a target individual, but the per-instance privacy loss itself might be a function of sensitive data. In this paper, we analyze the per-instance privacy loss of releasing a private empirical risk minimizer learned via objective perturbation, and propose a group of methods to privately and accurately publish the pDP losses at little to no additional privacy cost.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Corinna Cortes · Mehryar Mohri · Dmitry Storcheus · Ananda Theertha Suresh

We study the problem of learning accurate ensemble predictors, in particular boosting, in the presence of multiple source domains. We show that the standard convex combination ensembles in general cannot succeed in this scenario and adopt instead a domain-weighted combination. We introduce and analyze a new boosting algorithm, MULTIBOOST, for this scenario and show that it benefits from favorable theoretical guarantees. We also report the results of several experiments with our algorithm demonstrating that it outperforms natural baselines on multi-source text-based, image-based and tabular data. We further present an extension of our algorithm to the federated learning scenario and report favorable experimental results for that setting as well. Additionally, we describe in detail an extension of our algorithm to the multi-class setting, MCMULTIBOOST, for which we also report experimental results.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Zhixuan Yu · Haozheng Yu · Long Sha · Sujoy Ganguly · Hyun Soo Park

This paper presents a new end-to-end semi-supervised framework to learn a dense keypoint detector using unlabeled multiview images. A key challenge lies in ﬁnding the exact correspondences between the dense keypoints in multiple views since the inverse of the keypoint mapping can be neither analytically derived nor differentiated. This limits applying existing multiview supervision approaches used to learn sparse keypoints that rely on the exact correspondences. To address this challenge, we derive a new probabilistic epipolar constraint that encodes the two desired properties. (1) Soft correspondence: we deﬁne a matchability, which measures a likelihood of a point matching to the other image’s corresponding point, thus relaxing the requirement of the exact correspondences. (2) Geometric consistency: every point in the continuous correspondence ﬁelds must satisfy the multiview consistency collectively. We formulate a probabilistic epipolar constraint using a weighted average of epipolar errors through the matchability thereby generalizing the point-to-point geometric error to the ﬁeld-to-ﬁeld geometric error. This generalization facilitates learning a geometrically coherent dense keypoint detection model by utilizing a large number of unlabeled multiview images. Additionally, to prevent degenerative cases, we employ a distillation-based regularization by using a pretrained model. Finally, we design a new neural network architecture, made of twin networks, that effectively minimizes the probabilistic epipolar errors of all possible correspondences between two view images by building afﬁnity matrices. Our method shows superior performance compared to existing methods, including non-differentiable bootstrapping in terms of keypoint accuracy, multiview consistency, and 3D reconstruction accuracy.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Yang Liu · Jialu Wang

In this paper, we answer the question of when inserting label noise (less informative labels) can instead return us more accurate and fair models. We are primarily inspired by three observations: 1) In contrast to reducing label noise rates, increasing the noise rates is easy to implement; 2) Increasing a certain class of instances' label noise to balance the noise rates (increasing-to-balancing) results in an easier learning problem; 3) Increasing-to-balancing improves fairness guarantees against label bias. In this paper, we first quantify the trade-offs introduced by increasing a certain group of instances' label noise rate w.r.t. the loss of label informativeness and the lowered learning difficulties. We analytically demonstrate when such an increase is beneficial, in terms of either improved generalization power or the fairness guarantees. Then we present a method to insert label noise properly for the task of learning with noisy labels, either without or with a fairness constraint. The primary technical challenge we face is due to the fact that we would not know which data instances are suffering from higher noise, and we would not have the ground truth labels to verify any possible hypothesis. We propose a detection method that informs us which group of labels might suffer from higher noise without using ground truth labels. We formally establish the effectiveness of the proposed solution and demonstrate it with extensive experiments.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Neehar Peri · Michael Curry · Samuel Dooley · John Dickerson

The design of optimal auctions is a problem of interest in economics, game theory and computer science. Despite decades of effort, strategyproof, revenue-maximizing auction designs are still not known outside of restricted settings. However, recent methods using deep learning have shown some success in approximating optimal auctions, recovering several known solutions and outperforming strong baselines when optimal auctions are not known. In addition to maximizing revenue, auction mechanisms may also seek to encourage socially desirable constraints such as allocation fairness or diversity. However, these philosophical notions neither have standardization nor do they have widely accepted formal definitions. In this paper, we propose PreferenceNet, an extension of existing neural-network-based auction mechanisms to encode constraints using (potentially human-provided) exemplars of desirable allocations. In addition, we introduce a new metric to evaluate an auction allocations' adherence to such socially desirable constraints and demonstrate that our proposed method is competitive with current state-of-the-art neural-network based auction designs. We validate our approach through human subject research and show that we are able to effectively capture real human preferences.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Dominic Richards · Sahand Negahban · Patrick Rebeschini

Motivated by distributed machine learning settings such as Federated Learning, we consider the problem of fitting a statistical model across a distributed collection of heterogeneous data sets whose similarity structure is encoded by a graph topology. Precisely, we analyse the case where each node is associated with fitting a sparse linear model, and edges join two nodes if the difference of their solutions is also sparse. We propose a method based on Basis Pursuit Denoising with a total variation penalty, and provide finite sample guarantees for sub-Gaussian design matrices. Taking the root of the tree as a reference node, we show that if the sparsity of the differences across nodes is smaller than the sparsity at the root, then recovery is successful with fewer samples than by solving the problems independently, or by using methods that rely on a large overlap in the signal supports, such as the group Lasso. We consider both the noiseless and noisy setting, and numerically investigate the performance of distributed methods based on Distributed Alternating Direction Methods of Multipliers (ADMM) and hyperspectral unmixing.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Harikrishna Narasimhan · Aditya Menon

Many modern machine learning applications come with complex and nuanced design goals such as minimizing the worst-case error, satisfying a given precision or recall target, or enforcing group-fairness constraints. Popular techniques for optimizing such non-decomposable objectives reduce the problem into a sequence of cost-sensitive learning tasks, each of which is then solved by re-weighting the training loss with example-specific costs. We point out that the standard approach of re-weighting the loss to incorporate label costs can produce unsatisfactory results when used to train over-parameterized models. As a remedy, we propose new cost- sensitive losses that extend the classical idea of logit adjustment to handle more general cost matrices. Our losses are calibrated, and can be further improved with distilled labels from a teacher model. Through experiments on benchmark image datasets, we showcase the effectiveness of our approach in training ResNet models with common robust and constrained optimization objectives.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Mateusz Ostaszewski · Lea M. Trenkwalder · Wojciech Masarczyk · Eleanor Scerri · Vedran Dunjko

The study of Variational Quantum Eigensolvers (VQEs) has been in the spotlight in recent times as they may lead to real-world applications of near-term quantum devices. However, their performance depends on the structure of the used variational ansatz, which requires balancing the depth and expressivity of the corresponding circuit. At the same time, near-term restrictions limit the depth of the circuit we can expect to run. Thus, the optimization of the VQE ansatz requires maximizing the expressivity of the circuit while maintaining low depth. In recent years, various methods for VQE structure optimization have been introduced but the capacities of machine learning to aid with this problem have not yet been extensively investigated. In this work, we propose a reinforcement learning algorithm that autonomously explores the space of possible ansatzes, identifying economic circuits which still yield accurate ground energy estimates. The algorithm uses a feedback-driven curriculum learning method that autonomously adapts the complexity of the learning problem to the current performance of the learning algorithm and it incrementally improves the accuracy of the result while minimizing the circuit depth. We showcase the performance of our algorithm on the problem of estimating the ground-state energy of lithium hydride (LiH) in various configurations. In this well-known benchmark problem, we achieve chemical accuracy and state-of-the-art results in terms of circuit depth.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Evgenii Chzhen · Christophe Giraud · Gilles Stoltz

We provide a setting and a general approach to fair online learning with stochastic sensitive and non-sensitive contexts.The setting is a repeated game between the Player and Nature, where at each stage both pick actions based on the contexts. Inspired by the notion of unawareness, we assume that the Player can only access the non-sensitive context before making a decision, while we discuss both cases of Nature accessing the sensitive contexts and Nature unaware of the sensitive contexts. Adapting Blackwell's approachability theory to handle the case of an unknown contexts' distribution, we provide a general necessary and sufficient condition for learning objectives to be compatible with some fairness constraints. This condition is instantiated on (group-wise) no-regret and (group-wise) calibration objectives, and on demographic parity as an additional constraint. When the objective is not compatible with the constraint, the provided framework permits to characterise the optimal trade-off between the two.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Xiang Wang · Yingxin Wu · An Zhang · Xiangnan He · Tat-Seng Chua

When a graph neural network (GNN) made a prediction, one raises question about explainability: “Which fraction of the input graph is most inﬂuential to the model’s decision?” Producing an answer requires understanding the model’s inner workings in general and emphasizing the insights on the decision for the instance at hand. Nonetheless, most of current approaches focus only on one aspect: (1) local explainability, which explains each instance independently, thus hardly exhibits the class-wise patterns; and (2) global explainability, which systematizes the globally important patterns, but might be trivial in the local context. This dichotomy limits the ﬂexibility and effectiveness of explainers greatly. A performant paradigm towards multi-grained explainability is until-now lacking and thus a focus of our work. In this work, we exploit the pre-training and ﬁne-tuning idea to develop our explainer and generate multi-grained explanations. Speciﬁcally, the pre-training phase accounts for the contrastivity among different classes, so as to highlight the class-wise characteristics from a global view; afterwards, the ﬁne-tuning phase adapts the explanations in the local context. Experiments on both synthetic and real-world datasets show the superiority of our explainer, in terms of AUC on explaining graph classiﬁcation over the leading baselines. Our codes and datasets are available at https://github.com/Wuyxin/ReFine.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Gabriele Corso · Zhitao Ying · Michal Pándy · Petar Veličković · Jure Leskovec · Pietro Liò

The development of data-dependent heuristics and representations for biological sequences that reflect their evolutionary distance is critical for large-scale biological research. However, popular machine learning approaches, based on continuous Euclidean spaces, have struggled with the discrete combinatorial formulation of the edit distance that models evolution and the hierarchical relationship that characterises real-world datasets. We present Neural Distance Embeddings (NeuroSEED), a general framework to embed sequences in geometric vector spaces, and illustrate the effectiveness of the hyperbolic space that captures the hierarchical structure and provides an average 38% reduction in embedding RMSE against the best competing geometry. The capacity of the framework and the significance of these improvements are then demonstrated devising supervised and unsupervised NeuroSEED approaches to multiple core tasks in bioinformatics. Benchmarked with common baselines, the proposed approaches display significant accuracy and/or runtime improvements on real-world datasets. As an example for hierarchical clustering, the proposed pretrained and from-scratch methods match the quality of competing baselines with 30x and 15x runtime reduction, respectively.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Alberto Bietti · Luca Venturi · Joan Bruna

Many supervised learning problems involve high-dimensional data such as images, text, or graphs. In order to make efficient use of data, it is often useful to leverage certain geometric priors in the problem at hand, such as invariance to translations, permutation subgroups, or stability to small deformations. We study the sample complexity of learning problems where the target function presents such invariance and stability properties, by considering spherical harmonic decompositions of such functions on the sphere. We provide non-parametric rates of convergence for kernel methods, and show improvements in sample complexity by a factor equal to the size of the group when using an invariant kernel over the group, compared to the corresponding non-invariant kernel. These improvements are valid when the sample size is large enough, with an asymptotic behavior that depends on spectral properties of the group. Finally, these gains are extended beyond invariance groups to also cover geometric stability to small deformations, modeled here as subsets (not necessarily subgroups) of permutations.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Han Xie · Jing Ma · Li Xiong · Carl Yang

Federated learning has emerged as an important paradigm for training machine learning models in different domains. For graph-level tasks such as graph classification, graphs can also be regarded as a special type of data samples, which can be collected and stored in separate local systems. Similar to other domains, multiple local systems, each holding a small set of graphs, may benefit from collaboratively training a powerful graph mining model, such as the popular graph neural networks (GNNs). To provide more motivation towards such endeavors, we analyze real-world graphs from different domains to confirm that they indeed share certain graph properties that are statistically significant compared with random graphs. However, we also find that different sets of graphs, even from the same domain or same dataset, are non-IID regarding both graph structures and node features. To handle this, we propose a graph clustered federated learning (GCFL) framework that dynamically finds clusters of local systems based on the gradients of GNNs, and theoretically justify that such clusters can reduce the structure and feature heterogeneity among graphs owned by the local systems. Moreover, we observe the gradients of GNNs to be rather fluctuating in GCFL which impedes high-quality clustering, and design a gradient sequence-based clustering mechanism based on dynamic time warping (GCFL+). Extensive experimental results and in-depth analysis demonstrate the effectiveness of our proposed frameworks.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Talip Ucar · Ehsan Hajiramezanali · Lindsay Edwards

Self-supervised learning has been shown to be very effective in learning useful representations, and yet much of the success is achieved in data types such as images, audio, and text. The success is mainly enabled by taking advantage of spatial, temporal, or semantic structure in the data through augmentation. However, such structure may not exist in tabular datasets commonly used in fields such as healthcare, making it difficult to design an effective augmentation method, and hindering a similar progress in tabular data setting. In this paper, we introduce a new framework, Subsetting features of Tabular data (SubTab), that turns the task of learning from tabular data into a multi-view representation learning problem by dividing the input features to multiple subsets. We argue that reconstructing the data from the subset of its features rather than its corrupted version in an autoencoder setting can better capture its underlying latent representation. In this framework, the joint representation can be expressed as the aggregate of latent variables of the subsets at test time, which we refer to as collaborative inference. Our experiments show that the SubTab achieves the state of the art (SOTA) performance of 98.31% on MNIST in tabular setting, on par with CNN-based SOTA models, and surpasses existing baselines on three other real-world datasets by a significant margin.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Ganesh Ramachandra Kini · Orestis Paraskevas · Samet Oymak · Christos Thrampoulidis

The goal in label-imbalanced and group-sensitive classification is to optimize relevant metrics such as balanced error and equal opportunity. Classical methods, such as weighted cross-entropy, fail when training deep nets to the terminal phase of training (TPT), that is training beyond zero training error. This observation has motivated recent flurry of activity in developing heuristic alternatives following the intuitive mechanism of promoting larger margin for minorities. In contrast to previous heuristics, we follow a principled analysis explaining how different loss adjustments affect margins. First, we prove that for all linear classifiers trained in TPT, it is necessary to introduce multiplicative, rather than additive, logit adjustments so that the interclass margins change appropriately. To show this, we discover a connection of the multiplicative CE modification to the cost-sensitive support-vector machines. Perhaps counterintuitively, we also find that, at the start of training, the same multiplicative weights can actually harm the minority classes. Thus, while additive adjustments are ineffective in the TPT, we show that they can speed up convergence by countering the initial negative effect of the multiplicative weights. Motivated by these findings, we formulate the vector-scaling (VS) loss, that captures existing techniques as special cases. Moreover, we introduce a natural extension of the VS-loss to group-sensitive classification, thus treating the two common types of imbalances (label/group) in a unifying way. Importantly, our experiments on state-of-the-art datasets are fully consistent with our theoretical insights and confirm the superior performance of our algorithms. Finally, for imbalanced Gaussian-mixtures data, we perform a generalization analysis, revealing tradeoffs between balanced / standard error and equal opportunity.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Hilal Asi · Daniel Levy · John Duchi

We develop algorithms for private stochastic convex optimization that adapt to the hardness of the specific function we wish to optimize. While previous work provide worst-case bounds for arbitrary convex functions, it is often the case that the function at hand belongs to a smaller class that enjoys faster rates. Concretely, we show that for functions exhibiting $\kappa$-growth around the optimum, i.e., $f(x) \ge f(x^\star) + \lambda \kappa^{-1} \|x-x^\star\|_2^\kappa$ for $\kappa > 1$, our algorithms improve upon the standard ${\sqrt{d}}/{n\varepsilon}$ privacy rate to the faster $({\sqrt{d}}/{n\varepsilon})^{\tfrac{\kappa}{\kappa - 1}}$. Crucially, they achieve these rates without knowledge of the growth constant $\kappa$ of the function. Our algorithms build upon the inverse sensitivity mechanism, which adapts to instance difficulty [2], and recent localization techniques in private optimization [25]. We complement our algorithms with matching lower bounds for these function classes and demonstrate that our adaptive algorithm is simultaneously (minimax) optimal over all $\kappa \ge 1+c$ whenever $c = \Theta(1)$.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Nicolas Loizou · Hugo Berard · Gauthier Gidel · Ioannis Mitliagkas · Simon Lacoste-Julien

Two of the most prominent algorithms for solving unconstrained smooth games are the classical stochastic gradient descent-ascent (SGDA) and the recently introduced stochastic consensus optimization (SCO) [Mescheder et al., 2017]. SGDA is known to converge to a stationary point for specific classes of games, but current convergence analyses require a bounded variance assumption. SCO is used successfully for solving large-scale adversarial problems, but its convergence guarantees are limited to its deterministic variant. In this work, we introduce the expected co-coercivity condition, explain its benefits, and provide the first last-iterate convergence guarantees of SGDA and SCO under this condition for solving a class of stochastic variational inequality problems that are potentially non-monotone. We prove linear convergence of both methods to a neighborhood of the solution when they use constant step-size, and we propose insightful stepsize-switching rules to guarantee convergence to the exact solution. In addition, our convergence guarantees hold under the arbitrary sampling paradigm, and as such, we give insights into the complexity of minibatching.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

peng gao · Jiasen Lu · Hongsheng Li · Roozbeh Mottaghi · Aniruddha Kembhavi

Convolutional neural networks (CNNs) are ubiquitous in computer vision, with a myriad of effective and efficient variations. Recently, Transformers -- originally introduced in natural language processing -- have been increasingly adopted in computer vision. While early adopters continued to employ CNN backbones, the latest networks are end-to-end CNN-free Transformer solutions. A recent surprising finding now shows that a simple MLP based solution without any traditional convolutional or Transformer components can produce effective visual representations. While CNNs, Transformers and MLP-Mixers may be considered as completely disparate architectures, we provide a unified view showing that they are in fact special cases of a more general method to aggregate spatial context in a neural network stack. We present the \model (CONText AggregatIon NEtwoRk), a general-purpose building block for multi-head context aggregation that can exploit long-range interactions \emph{a la} Transformers while still exploiting the inductive bias of the local convolution operation leading to faster convergence speeds, often seen in CNNs. Our \model architecture achieves 82.7 \% Top-1 accuracy on ImageNet using 22M parameters, +2.8 improvement compared with DeiT-Small, and can converge to 79.9 \% Top-1 accuracy in just 200 epochs. In contrast to Transformer-based methods that do not scale well to downstream tasks that rely on larger input image resolutions, our efficient network, named \modellight, can be employed in object detection and instance segmentation networks such as DETR, RetinaNet and Mask-RCNN to obtain an impressive detection mAP of 38.9, 43.8, 45.1 and mask mAP of 41.3, providing large improvements of 6.6, 7.3, 6.9 and 6.6 pts respectively, compared to a ResNet-50 backbone with a comparable compute and parameter size. Our method also achieves promising results on self-supervised learning compared to DeiT on the DINO framework. Code is released at https://github.com/allenai/container.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Mikhail Khodak · Renbo Tu · Tian Li · Liam Li · Maria-Florina Balcan · Virginia Smith · Ameet Talwalkar

Tuning hyperparameters is a crucial but arduous part of the machine learning pipeline. Hyperparameter optimization is even more challenging in federated learning, where models are learned over a distributed network of heterogeneous devices; here, the need to keep data on device and perform local training makes it difficult to efficiently train and evaluate configurations. In this work, we investigate the problem of federated hyperparameter tuning. We first identify key challenges and show how standard approaches may be adapted to form baselines for the federated setting. Then, by making a novel connection to the neural architecture search technique of weight-sharing, we introduce a new method, FedEx, to accelerate federated hyperparameter tuning that is applicable to widely-used federated optimization methods such as FedAvg and recent variants. Theoretically, we show that a FedEx variant correctly tunes the on-device learning rate in the setting of online convex optimization across devices. Empirically, we show that FedEx can outperform natural baselines for federated hyperparameter tuning by several percentage points on the Shakespeare, FEMNIST, and CIFAR-10 benchmarks—obtaining higher accuracy using the same training budget.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Aurelien Bibaut · Nathan Kallus · Maria Dimakopoulou · Antoine Chambaz · Mark van der Laan

Empirical risk minimization (ERM) is the workhorse of machine learning, whether for classification and regression or for off-policy policy learning, but its model-agnostic guarantees can fail when we use adaptively collected data, such as the result of running a contextual bandit algorithm. We study a generic importance sampling weighted ERM algorithm for using adaptively collected data to minimize the average of a loss function over a hypothesis class and provide first-of-their-kind generalization guarantees and fast convergence rates. Our results are based on a new maximal inequality that carefully leverages the importance sampling structure to obtain rates with the good dependence on the exploration rate in the data. For regression, we provide fast rates that leverage the strong convexity of squared-error loss. For policy learning, we provide regret guarantees that close an open gap in the existing literature whenever exploration decays to zero, as is the case for bandit-collected data. An empirical investigation validates our theory.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Vincent Sitzmann · Semon Rezchikov · Bill Freeman · Josh Tenenbaum · Fredo Durand

Inferring representations of 3D scenes from 2D observations is a fundamental problem of computer graphics, computer vision, and artificial intelligence. Emerging 3D-structured neural scene representations are a promising approach to 3D scene understanding. In this work, we propose a novel neural scene representation, Light Field Networks or LFNs, which represent both geometry and appearance of the underlying 3D scene in a 360-degree, four-dimensional light field parameterized via a neural implicit representation. Rendering a ray from an LFN requires only a *single* network evaluation, as opposed to hundreds of evaluations per ray for ray-marching or volumetric based renderers in 3D-structured neural scene representations. In the setting of simple scenes, we leverage meta-learning to learn a prior over LFNs that enables multi-view consistent light field reconstruction from as little as a single image observation. This results in dramatic reductions in time and memory complexity, and enables real-time rendering. The cost of storing a 360-degree light field via an LFN is two orders of magnitude lower than conventional methods such as the Lumigraph. Utilizing the analytical differentiability of neural implicit representations and a novel parameterization of light space, we further demonstrate the extraction of sparse depth maps from LFNs.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Gengshan Yang · Deqing Sun · Varun Jampani · Daniel Vlasic · Forrester Cole · Ce Liu · Deva Ramanan

We introduce ViSER, a method for recovering articulated 3D shapes and dense3D trajectories from monocular videos. Previous work on high-quality reconstruction of dynamic 3D shapes typically relies on multiple camera views, strong category-specific priors, or 2D keypoint supervision. We show that none of these are required if one can reliably estimate long-range correspondences in a video, making use of only 2D object masks and two-frame optical flow as inputs. ViSER infers correspondences by matching 2D pixels to a canonical, deformable 3D mesh via video-specific surface embeddings that capture the pixel appearance of each surface point. These embeddings behave as a continuous set of keypoint descriptors defined over the mesh surface, which can be used to establish dense long-range correspondences across pixels. The surface embeddings are implemented as coordinate-based MLPs that are fit to each video via self-supervised losses.Experimental results show that ViSER compares favorably against prior work on challenging videos of humans with loose clothing and unusual poses as well as animals videos from DAVIS and YTVOS. Project page: viser-shape.github.io.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Louis-Pascal Xhonneux · Andreea-Ioana Deac · Petar Veličković · Jian Tang

Learning to execute algorithms is a fundamental problem that has been widely studied. Prior work (Veličković et al., 2019) has shown that to enable systematic generalisation on graph algorithms it is critical to have access to the intermediate steps of the program/algorithm. In many reasoning tasks, where algorithmic-style reasoning is important, we only have access to the input and output examples. Thus, inspired by the success of pre-training on similar tasks or data in Natural Language Processing (NLP) and Computer vision, we set out to study how we can transfer algorithmic reasoning knowledge. Specifically, we investigate how we can use algorithms for which we have access to the execution trace to learn to solve similar tasks for which we do not. We investigate two major classes of graph algorithms, parallel algorithms such as breadth-first search and Bellman-Ford and sequential greedy algorithms such as Prims and Dijkstra. Due to the fundamental differences between algorithmic reasoning knowledge and feature extractors such as used in Computer vision or NLP, we hypothesis that standard transfer techniques will not be sufficient to achieve systematic generalisation. To investigate this empirically we create a dataset including 9 algorithms and 3 different graph types. We validate this empirically and show how instead multi-task learning can be used to achieve the transfer of algorithmic reasoning knowledge.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Zhiqi Bu · Sivakanth Gopi · Janardhan Kulkarni · Yin Tat Lee · Judy Hanwen Shen · Uthaipon Tantipongpipat

Differentially Private-SGD (DP-SGD) of Abadi et al. and its variations are the only known algorithms for private training of large scale neural networks. This algorithm requires computation of per-sample gradients norms which is extremely slow and memory intensive in practice. In this paper, we present a new framework to design differentially private optimizers called DP-SGD-JL and DP-Adam-JL. Our approach uses Johnson–Lindenstrauss (JL) projections to quickly approximate the per-sample gradient norms without exactly computing them, thus making the training time and memory requirements of our optimizers closer to that of their non-DP versions. Unlike previous attempts to make DP-SGD faster which work only on a subset of network architectures or use compiler techniques, we propose an algorithmic solution which works for any network in a black-box manner which is the main contribution of this paper. To illustrate this, on IMDb dataset, we train a Recurrent Neural Network (RNN) to achieve good privacy-vs-accuracy tradeoff, while being significantly faster than DP-SGD and with a similar memory footprint as non-private SGD.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Guillaume Baudart · Martin Hirzel · Kiran Kate · Parikshit Ram · Avi Shinnar · Jason Tsay

Automated machine learning (AutoML) can make data scientists more productive. But if machine learning is totally automated, that leaves no room for data scientists to apply their intuition. Hence, data scientists often prefer not total but gradual automation, where they control certain choices and AutoML explores the rest. Unfortunately, gradual AutoML is cumbersome with state-of-the-art tools, requiring large non-compositional code changes. More concise compositional code can be achieved with combinators, a powerful concept from functional programming. This paper introduces a small set of orthogonal combinators for composing machine-learning operators into pipelines. It describes a translation scheme from pipelines and associated hyperparameter schemas to search spaces for AutoML optimizers. On that foundation, this paper presents Lale, an open-source sklearn-compatible AutoML library, and evaluates it with a user study.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Ming Ding · Zhuoyi Yang · Wenyi Hong · Wendi Zheng · Chang Zhou · Da Yin · Junyang Lin · Xu Zou · Zhou Shao · Hongxia Yang · Jie Tang

Text-to-Image generation in the general domain has long been an open problem, which requires both a powerful generative model and cross-modal understanding. We propose CogView, a 4-billion-parameter Transformer with VQ-VAE tokenizer to advance this problem. We also demonstrate the finetuning strategies for various downstream tasks, e.g. style learning, super-resolution, text-image ranking and fashion design, and methods to stabilize pretraining, e.g. eliminating NaN losses. CogView achieves the state-of-the-art FID on the blurred MS COCO dataset, outperforming previous GAN-based models and a recent similar work DALL-E.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

HaiYing Wang · Aonan Zhang · Chong Wang

We investigate the issue of parameter estimation with nonuniform negative sampling for imbalanced data. We first prove that, with imbalanced data, the available information about unknown parameters is only tied to the relatively small number of positive instances, which justifies the usage of negative sampling. However, if the negative instances are subsampled to the same level of the positive cases, there is information loss. To maintain more information, we derive the asymptotic distribution of a general inverse probability weighted (IPW) estimator and obtain the optimal sampling probability that minimizes its variance. To further improve the estimation efficiency over the IPW method, we propose a likelihood-based estimator by correcting log odds for the sampled data and prove that the improved estimator has the smallest asymptotic variance among a large class of estimators. It is also more robust to pilot misspecification. We validate our approach on simulated data as well as a real click-through rate dataset with more than 0.3 trillion instances, collected over a period of a month. Both theoretical and empirical results demonstrate the effectiveness of our method.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Badih Ghazi · Ravi Kumar · Pasin Manurangsi

Most works in learning with differential privacy (DP) have focused on the setting where each user has a single sample. In this work, we consider the setting where each user holds $m$ samples and the privacy protection is enforced at the level of each user's data. We show that, in this setting, we may learn with a much fewer number of users. Specifically, we show that, as long as each user receives sufficiently many samples, we can learn any privately learnable class via an $(\epsilon, \delta)$-DP algorithm using only $O(\log(1/\delta)/\epsilon)$ users. For $\epsilon$-DP algorithms, we show that we can learn using only $O_{\epsilon}(d)$ users even in the local model, where $d$ is the probabilistic representation dimension. In both cases, we show a nearly-matching lower bound on the number of users required.A crucial component of our results is a generalization of global stability [Bun, Livni, Moran, FOCS 2020] that allows the use of public randomness. Under this relaxed notion, we employ a correlated sampling strategy to show that the global stability can be boosted to be arbitrarily close to one, at a polynomial expense in the number of samples.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

David Applegate · Mateo Diaz · Oliver Hinder · Haihao Lu · Miles Lubin · Brendan O'Donoghue · Warren Schudy

We present PDLP, a practical first-order method for linear programming (LP) that can solve to the high levels of accuracy that are expected in traditional LP applications. In addition, it can scale to very large problems because its core operation is matrix-vector multiplications. PDLP is derived by applying the primal-dual hybrid gradient (PDHG) method, popularized by Chambolle and Pock (2011), to a saddle-point formulation of LP. PDLP enhances PDHG for LP by combining several new techniques with older tricks from the literature; the enhancements include diagonal preconditioning, presolving, adaptive step sizes, and adaptive restarting. PDLP improves the state of the art for first-order methods applied to LP. We compare PDLP with SCS, an ADMM-based solver, on a set of 383 LP instances derived from MIPLIB 2017. With a target of $10^{-8}$ relative accuracy and 1 hour time limit, PDLP achieves a 6.3x reduction in the geometric mean of solve times and a 4.6x reduction in the number of instances unsolved (from 227 to 49). Furthermore, we highlight standard benchmark instances and a large-scale application (PageRank) where our open-source prototype of PDLP, written in Julia, outperforms a commercial LP solver.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Zachary Charles · Zachary Garrett · Zhouyuan Huo · Sergei Shmulyian · Virginia Smith

Federated learning methods typically learn a model by iteratively sampling updates from a population of clients. In this work, we explore how the number of clients sampled at each round (the cohort size) impacts the quality of the learned model and the training dynamics of federated learning algorithms. Our work poses three fundamental questions. First, what challenges arise when trying to scale federated learning to larger cohorts? Second, what parallels exist between cohort sizes in federated learning, and batch sizes in centralized learning? Last, how can we design federated learning methods that effectively utilize larger cohort sizes? We give partial answers to these questions based on extensive empirical evaluation. Our work highlights a number of challenges stemming from the use of larger cohorts. While some of these (such as generalization issues and diminishing returns) are analogs of large-batch training challenges, others (including catastrophic training failures and fairness concerns) are unique to federated learning.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Simone Parisi · Victoria Dean · Deepak Pathak · Abhinav Gupta

Common approaches for task-agnostic exploration learn tabula-rasa --the agent assumes isolated environments and no prior knowledge or experience. However, in the real world, agents learn in many environments and always come with prior experiences as they explore new ones. Exploration is a lifelong process. In this paper, we propose a paradigm change in the formulation and evaluation of task-agnostic exploration. In this setup, the agent first learns to explore across many environments without any extrinsic goal in a task-agnostic manner.Later on, the agent effectively transfers the learned exploration policy to better explore new environments when solving tasks. In this context, we evaluate several baseline exploration strategies and present a simple yet effective approach to learning task-agnostic exploration policies. Our key idea is that there are two components of exploration: (1) an agent-centric component encouraging exploration of unseen parts of the environment based on an agent’s belief; (2) an environment-centric component encouraging exploration of inherently interesting objects. We show that our formulation is effective and provides the most consistent exploration across several training-testing environment pairs. We also introduce benchmarks and metrics for evaluating task-agnostic exploration strategies. The source code is available at https://github.com/sparisi/cbet/.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Mansheej Paul · Surya Ganguli · Gintare Karolina Dziugaite

Recent success in deep learning has partially been driven by training increasingly overparametrized networks on ever larger datasets. It is therefore natural to ask: how much of the data is superfluous, which examples are important for generalization, and how do we find them? In this work, we make the striking observation that, in standard vision datasets, simple scores averaged over several weight initializations can be used to identify important examples very early in training. We propose two such scores—the Gradient Normed (GraNd) and the Error L2-Norm (EL2N) scores—and demonstrate their efficacy on a range of architectures and datasets by pruning significant fractions of training data without sacrificing test accuracy. In fact, using EL2N scores calculated a few epochs into training, we can prune half of the CIFAR10 training set while slightly improving test accuracy. Furthermore, for a given dataset, EL2N scores from one architecture or hyperparameter configuration generalize to other configurations. Compared to recent work that prunes data by discarding examples that are rarely forgotten over the course of training, our scores use only local information early in training. We also use our scores to detect noisy examples and study training dynamics through the lens of important examples—we investigate how the data distribution shapes the loss surface and identify subspaces of the model’s data representation that are relatively stable over training.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Ryan McKenna · Siddhant Pradhan · Daniel Sheldon · Gerome Miklau

Many differentially private algorithms for answering database queries involve astep that reconstructs a discrete data distribution from noisy measurements. Thisprovides consistent query answers and reduces error, but often requires space thatgrows exponentially with dimension. PRIVATE-PGM is a recent approach that usesgraphical models to represent the data distribution, with complexity proportional tothat of exact marginal inference in a graphical model with structure determined bythe co-occurrence of variables in the noisy measurements. PRIVATE-PGM is highlyscalable for sparse measurements, but may fail to run in high dimensions with densemeasurements. We overcome the main scalability limitation of PRIVATE-PGMthrough a principled approach that relaxes consistency constraints in the estimationobjective. Our new approach works with many existing private query answeringalgorithms and improves scalability or accuracy with no privacy cost.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Itay Hubara · Brian Chmiel · Moshe Island · Ron Banner · Joseph Naor · Daniel Soudry

Unstructured pruning reduces the memory footprint in deep neural networks (DNNs). Recently, researchers proposed different types of structural pruning intending to reduce also the computation complexity. In this work, we first suggest a new measure called mask-diversity which correlates with the expected accuracy of the different types of structural pruning. We focus on the recently suggested N:M fine-grained block sparsity mask, in which for each block of M weights, we have at least N zeros. While N:M fine-grained block sparsity allows acceleration in actual modern hardware, it can be used only to accelerate the inference phase. In order to allow for similar accelerations in the training phase, we suggest a novel transposable fine-grained sparsity mask, where the same mask can be used for both forward and backward passes. Our transposable mask guarantees that both the weight matrix and its transpose follow the same sparsity pattern; thus, the matrix multiplication required for passing the error backward can also be accelerated. We formulate the problem of finding the optimal transposable-mask as a minimum-cost flow problem. Additionally, to speed up the minimum-cost flow computation, we also introduce a fast linear-time approximation that can be used when the masks dynamically change during training. Our experiments suggest a 2x speed-up in the matrix multiplications with no accuracy degradation over vision and language models. Finally, to solve the problem of switching between different structure constraints, we suggest a method to convert a pre-trained model with unstructured sparsity to an N:M fine-grained block sparsity model with little to no training. A reference implementation can be found at https://github.com/papers-submission/structured*transposable*masks.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Bingcong Li · Alireza Sadeghi · Georgios Giannakis

Conditional gradient, aka Frank Wolfe (FW) algorithms, have well-documented merits in machine learning and signal processing applications. Unlike projection-based methods, momentum cannot improve the convergence rate of FW, in general. This limitation motivates the present work, which deals with heavy ball momentum, and its impact to FW. Specifically, it is established that heavy ball offers a unifying perspective on the primal-dual (PD) convergence, and enjoys a tighter \textit{per iteration} PD error rate, for multiple choices of step sizes, where PD error can serve as the stopping criterion in practice. In addition, it is asserted that restart, a scheme typically employed jointly with Nesterov's momentum, can further tighten this PD error bound. Numerical results demonstrate the usefulness of heavy ball momentum in FW iterations.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Ido Galil · Ran El-Yaniv

Deep neural networks (DNNs) have proven to be powerful predictors and are widely used for various tasks. Credible uncertainty estimation of their predictions, however, is crucial for their deployment in many risk-sensitive applications. In this paper we present a novel and simple attack, which unlike adversarial attacks, does not cause incorrect predictions but instead cripples the network's capacity for uncertainty estimation. The result is that after the attack, the DNN is more confident of its incorrect predictions than about its correct ones without having its accuracy reduced. We present two versions of the attack. The first scenario focuses on a black-box regime (where the attacker has no knowledge of the target network) and the second scenario attacks a white-box setting. The proposed attack is only required to be of minuscule magnitude for its perturbations to cause severe uncertainty estimation damage, with larger magnitudes resulting in completely unusable uncertainty estimations.We demonstrate successful attacks on three of the most popular uncertainty estimation methods: the vanilla softmax score, Deep Ensembles and MC-Dropout. Additionally, we show an attack on SelectiveNet, the selective classification architecture. We test the proposed attack on several contemporary architectures such as MobileNetV2 and EfficientNetB0, all trained to classify ImageNet.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Lawrence Saul

We investigate a low-rank model of quadratic classification inspired by previous work on factorization machines, polynomial networks, and capsule-based architectures for visual object recognition. The model is parameterized by a pair of affine transformations, and it classifies examples by comparing the magnitudes of vectors that these transformations produce. The model is also over-parameterized in the sense that different pairs of affine transformations can describe classifiers with the same decision boundary and confidence scores. We show that such pairs arise from discrete and continuous symmetries of the model’s parameter space: in particular, the latter define symmetry groups of rotations and Lorentz transformations, and we use these group structures to devise appropriately invariant procedures for model alignment and averaging. We also leverage the form of the model’s decision boundary to derive simple margin-based updates for online learning. Here we explore a strategy of passive-aggressive learning: for each example, we compute the minimum change in parameters that is required to predict its correct label with high confidence. We derive these updates by solving a quadratically constrained quadratic program (QCQP); interestingly, this QCQP is nonconvex but tractable, and it can be solved efficiently by elementary methods. We highlight the conceptual and practical contributions of this approach. Conceptually, we show that it extends the paradigm of passive-aggressive learning to a larger family of nonlinear models for classification. Practically, we show that these models perform well on large-scale problems in online learning.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Yan Luo · Yongkang Wong · Mohan Kankanhalli · Qi Zhao

Understanding the trustworthiness of a prediction yielded by a classifier is critical for the safe and effective use of AI models. Prior efforts have been proven to be reliable on small-scale datasets. In this work, we study the problem of predicting trustworthiness on real-world large-scale datasets, where the task is more challenging due to high-dimensional features, diverse visual concepts, and a large number of samples. In such a setting, we observe that the trustworthiness predictors trained with prior-art loss functions, i.e., the cross entropy loss, focal loss, and true class probability confidence loss, are prone to view both correct predictions and incorrect predictions to be trustworthy. The reasons are two-fold. Firstly, correct predictions are generally dominant over incorrect predictions. Secondly, due to the data complexity, it is challenging to differentiate the incorrect predictions from the correct ones on real-world large-scale datasets. To improve the generalizability of trustworthiness predictors, we propose a novel steep slope loss to separate the features w.r.t. correct predictions from the ones w.r.t. incorrect predictions by two slide-like curves that oppose each other. The proposed loss is evaluated with two representative deep learning models, i.e., Vision Transformer and ResNet, as trustworthiness predictors. We conduct comprehensive experiments and analyses on ImageNet, which show that the proposed loss effectively improves the generalizability of trustworthiness predictors. The code and pre-trained trustworthiness predictors for reproducibility are available at \url{https://github.com/luoyan407/predict_trustworthiness}.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Hao Chen · Bo He · Hanyu Wang · Yixuan Ren · Ser Nam Lim · Abhinav Shrivastava

We propose a novel neural representation for videos (NeRV) which encodes videos in neural networks. Unlike conventional representations that treat videos as frame sequences, we represent videos as neural networks taking frame index as input. Given a frame index, NeRV outputs the corresponding RGB image. Video encoding in NeRV is simply fitting a neural network to video frames and decoding process is a simple feedforward operation. As an image-wise implicit representation, NeRV output the whole image and shows great efficiency compared to pixel-wise implicit representation, improving the encoding speed by $\textbf{25}\times$ to $\textbf{70}\times$, the decoding speed by $\textbf{38}\times$ to $\textbf{132}\times$, while achieving better video quality. With such a representation, we can treat videos as neural networks, simplifying several video-related tasks. For example, conventional video compression methods are restricted by a long and complex pipeline, specifically designed for the task. In contrast, with NeRV, we can use any neural network compression method as a proxy for video compression, and achieve comparable performance to traditional frame-based video compression approaches (H.264, HEVC \etc). Besides compression, we demonstrate the generalization of NeRV for video denoising. The source code and pre-trained model can be found at https://github.com/haochen-rye/NeRV.git.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Rafael Frongillo · Bo Waggoner

Surrogate risk minimization is an ubiquitous paradigm in supervised machine learning, wherein a target problem is solved by minimizing a surrogate loss on a dataset. Surrogate regret bounds, also called excess risk bounds, are a common tool to prove generalization rates for surrogate risk minimization. While surrogate regret bounds have been developed for certain classes of loss functions, such as proper losses, general results are relatively sparse. We provide two general results. The first gives a linear surrogate regret bound for any polyhedral (piecewise-linear and convex) surrogate, meaning that surrogate generalization rates translate directly to target rates. The second shows that for sufficiently non-polyhedral surrogates, the regret bound is a square root, meaning fast surrogate generalization rates translate to slow rates for the target. Together, these results suggest polyhedral surrogates are optimal in many cases.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Nico Gürtler · Dieter Büchler · Georg Martius

Hierarchical reinforcement learning (HRL) holds great potential for sample-efficient learning on challenging long-horizon tasks. In particular, letting a higher level assign subgoals to a lower level has been shown to enable fast learning on difficult problems. However, such subgoal-based methods have been designed with static reinforcement learning environments in mind and consequently struggle with dynamic elements beyond the immediate control of the agent even though they are ubiquitous in real-world problems. In this paper, we introduce Hierarchical reinforcement learning with Timed Subgoals (HiTS), an HRL algorithm that enables the agent to adapt its timing to a dynamic environment by not only specifying what goal state is to be reached but also when. We discuss how communicating with a lower level in terms of such timed subgoals results in a more stable learning problem for the higher level. Our experiments on a range of standard benchmarks and three new challenging dynamic reinforcement learning environments show that our method is capable of sample-efficient learning where an existing state-of-the-art subgoal-based HRL method fails to learn stable solutions.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Bo Li · Minming Li · Ruilong Zhang

We study a fair resource scheduling problem, where a set of interval jobs are to be allocated to heterogeneous machines controlled by intellectual agents.Each job is associated with release time, deadline, and processing time such that it can be processed if its complete processing period is between its release time and deadline. The machines gain possibly different utilities by processing different jobs, and all jobs assigned to the same machine should be processed without overlap.We consider two widely studied solution concepts, namely, maximin share fairness and envy-freeness.For both criteria, we discuss the extent to which fair allocations exist and present constant approximation algorithms for various settings.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Chao Ma · José Miguel Hernández-Lobato

Bayesian inference in the space of functions has been an important topic for Bayesian modeling in the past. In this paper, we propose a new solution to this problem called Functional Variational Inference (FVI). In FVI, we minimize a divergence in function space between the variational distribution and the posterior process. This is done by using as functional variational family a new class of flexible distributions called Stochastic Process Generators (SPGs), which are cleverly designed so that the functional ELBO can be estimated efficiently using analytic solutions and mini-batch sampling. FVI can be applied to stochastic process priors when random function samples from those priors are available. Our experiments show that FVI consistently outperforms weight-space and function space VI methods on several tasks, which validates the effectiveness of our approach.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Yaofeng Desmond Zhong · Biswadip Dey · Amit Chakraborty

The incorporation of appropriate inductive bias plays a critical role in learning dynamics from data. A growing body of work has been exploring ways to enforce energy conservation in the learned dynamics by encoding Lagrangian or Hamiltonian dynamics into the neural network architecture. These existing approaches are based on differential equations, which do not allow discontinuity in the states and thereby limit the class of systems one can learn. However, in reality, most physical systems, such as legged robots and robotic manipulators, involve contacts and collisions, which introduce discontinuities in the states. In this paper, we introduce a differentiable contact model, which can capture contact mechanics: frictionless/frictional, as well as elastic/inelastic. This model can also accommodate inequality constraints, such as limits on the joint angles. The proposed contact model extends the scope of Lagrangian and Hamiltonian neural networks by allowing simultaneous learning of contact and system properties. We demonstrate this framework on a series of challenging 2D and 3D physical systems with different coefficients of restitution and friction. The learned dynamics can be used as a differentiable physics simulator for downstream gradient-based optimization tasks, such as planning and control.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Cristóbal Guzmán · Nishant Mehta · Ali Mortazavi

Much of the work in online learning focuses on the study of sublinear upper bounds on the regret. In this work, we initiate the study of best-case lower bounds in online convex optimization, wherein we bound the largest \emph{improvement} an algorithm can obtain relative to the single best action in hindsight. This problem is motivated by the goal of better understanding the adaptivity of a learning algorithm. Another motivation comes from fairness: it is known that best-case lower bounds are instrumental in obtaining algorithms for decision-theoretic online learning (DTOL) that satisfy a notion of group fairness. Our contributions are a general method to provide best-case lower bounds in Follow The Regularized Leader (FTRL) algorithms with time-varying regularizers, which we use to show that best-case lower bounds are of the same order as existing upper regret bounds: this includes situations with a fixed learning rate, decreasing learning rates, timeless methods, and adaptive gradient methods. In stark contrast, we show that the linearized version of FTRL can attain negative linear regret. Finally, in DTOL with two experts and binary losses, we fully characterize the best-case sequences, which provides a finer understanding of the best-case lower bounds.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Ruben Ohana · Hamlet Medina · Julien Launay · Alessandro Cappelli · Iacopo Poli · Liva Ralaivola · Alain Rakotomamonjy

Optical Processing Units (OPUs) -- low-power photonic chips dedicated to large scale random projections -- have been used in previous work to train deep neural networks using Direct Feedback Alignment (DFA), an effective alternative to backpropagation. Here, we demonstrate how to leverage the intrinsic noise of optical random projections to build a differentially private DFA mechanism, making OPUs a solution of choice to provide a \emph{private-by-design} training. We provide a theoretical analysis of our adaptive privacy mechanism, carefully measuring how the noise of optical random projections propagates in the process and gives rise to provable Differential Privacy. Finally, we conduct experiments demonstrating the ability of our learning procedure to achieve solid end-task performance.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Jayant Jain · Vrittika Bagadia · Sahil Manchanda · Sayan Ranu

Predicting the most likely route from a source location to a destination is a core functionality in mapping services. Although the problem has been studied in the literature, two key limitations remain to be addressed. First, our study reveals that a significant portion of the routes recommended by existing methods fail to reach the destination. Second, existing techniques are transductive in nature; hence, they fail to recommend routes if unseen roads are encountered at inference time. In this paper, we address these limitations through an inductive algorithm called NeuroMLR. NeuroMLR learns a generative model from historical trajectories by conditioning on three explanatory factors: the current location, the destination, and real-time traffic conditions. The conditional distributions are learned through a novel combination of Lipschitz embedding with Graph Convolutional Networks (GCN) using historical trajectory data. Through in-depth experiments on real-world datasets, we establish that NeuroMLR imparts significant improvement in accuracy over the state of the art. More importantly, NeuroMLR generalizes dramatically better to unseen data and the recommended routes reach the destination with much higher likelihood than existing techniques.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Boris van Breugel · Trent Kyono · Jeroen Berrevoets · Mihaela van der Schaar

Machine learning models have been criticized for reflecting unfair biases in the training data. Instead of solving for this by introducing fair learning algorithms directly, we focus on generating fair synthetic data, such that any downstream learner is fair. Generating fair synthetic data from unfair data - while remaining truthful to the underlying data-generating process (DGP) - is non-trivial. In this paper, we introduce DECAF: a GAN-based fair synthetic data generator for tabular data. With DECAF we embed the DGP explicitly as a structural causal model in the input layers of the generator, allowing each variable to be reconstructed conditioned on its causal parents. This procedure enables inference time debiasing, where biased edges can be strategically removed for satisfying user-defined fairness requirements. The DECAF framework is versatile and compatible with several popular definitions of fairness. In our experiments, we show that DECAF successfully removes undesired bias and - in contrast to existing methods - is capable of generating high-quality synthetic data. Furthermore, we provide theoretical guarantees on the generator's convergence and the fairness of downstream models.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Esther Derman · Matthieu Geist · Shie Mannor

Robust Markov decision processes (MDPs) aim to handle changing or partially known system dynamics. To solve them, one typically resorts to robust optimization methods. However, this significantly increases computational complexity and limits scalability in both learning and planning. On the other hand, regularized MDPs show more stability in policy learning without impairing time complexity. Yet, they generally do not encompass uncertainty in the model dynamics. In this work, we aim to learn robust MDPs using regularization. We first show that regularized MDPs are a particular instance of robust MDPs with uncertain reward. We thus establish that policy iteration on reward-robust MDPs can have the same time complexity as on regularized MDPs. We further extend this relationship to MDPs with uncertain transitions: this leads to a regularization term with an additional dependence on the value function. We finally generalize regularized MDPs to twice regularized MDPs (R${}^2$ MDPs), i.e., MDPs with $\textit{both}$ value and policy regularization. The corresponding Bellman operators enable developing policy iteration schemes with convergence and robustness guarantees. It also reduces planning and learning in robust MDPs to regularized MDPs.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Sreenivas Gollapudi · Guru Guruganesh · Kostas Kollias · Pasin Manurangsi · Renato Leme · Jon Schneider

We consider the following variant of contextual linear bandits motivated by routing applications in navigational engines and recommendation systems. We wish to learn a hidden $d$-dimensional value $w^*$. Every round, we are presented with a subset $\mathcal{X}_t \subseteq \mathbb{R}^d$ of possible actions. If we choose (i.e. recommend to the user) action $x_t$, we obtain utility $\langle x_t, w^* \rangle$ but only learn the identity of the best action $\arg\max_{x \in \X_t} \langle x, w^* \rangle$.We design algorithms for this problem which achieve regret $O(d\log T)$ and $\exp(O(d \log d))$. To accomplish this, we design novel cutting-plane algorithms with low “regret” -- the total distance between the true point $w^*$ and the hyperplanes the separation oracle returns. We also consider the variant where we are allowed to provide a list of several recommendations. In this variant, we give an algorithm with $O(d^2 \log d)$ regret and list size $\poly(d)$. Finally, we construct nearly tight algorithms for a weaker variant of this problem where the learner only learns the identity of an action that is better than the recommendation. Our results rely on new algorithmic techniques in convex geometry (including a variant of Steiner’s formula for the centroid of a convex set) which may be of independent interest.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Caihua Shan · Yifei Shen · Yao Zhang · Xiang Li · Dongsheng Li

Graph neural networks (GNNs) have recently emerged as revolutionary technologies for machine learning tasks on graphs. In GNNs, the graph structure is generally incorporated with node representation via the message passing scheme, making the explanation much more challenging. Given a trained GNN model, a GNN explainer aims to identify a most influential subgraph to interpret the prediction of an instance (e.g., a node or a graph), which is essentially a combinatorial optimization problem over graph. The existing works solve this problem by continuous relaxation or search-based heuristics. But they suffer from key issues such as violation of message passing and hand-crafted heuristics, leading to inferior interpretability. To address these issues, we propose a RL-enhanced GNN explainer, RG-Explainer, which consists of three main components: starting point selection, iterative graph generation and stopping criteria learning. RG-Explainer could construct a connected explanatory subgraph by sequentially adding nodes from the boundary of the current generated graph, which is consistent with the message passing scheme. Further, we design an effective seed locator to select the starting point, and learn stopping criteria to generate superior explanations. Extensive experiments on both synthetic and real datasets show that RG-Explainer outperforms state-of-the-art GNN explainers. Moreover, RG-Explainer can be applied in the inductive setting, demonstrating its better generalization ability.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Greg Lewis · Vasilis Syrgkanis

We consider the estimation of treatment effects in settings when multiple treatments are assigned over time and treatments can have a causal effect on future outcomes. We propose an extension of the double/debiased machine learning framework to estimate the dynamic effects of treatments and apply it to a concrete linear Markovian high-dimensional state space model and to general structural nested mean models. Our method allows the use of arbitrary machine learning methods to control for the high dimensional state, subject to a mean square error guarantee, while still allowing parametric estimation and construction of confidence intervals for the dynamic treatment effect parameters of interest. Our method is based on a sequential regression peeling process, which we show can be equivalently interpreted as a Neyman orthogonal moment estimator. This allows us to show root-n asymptotic normality of the estimated causal effects.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Travers Rhodes · Daniel Lee

There have been many recent advances in representation learning; however, unsupervised representation learning can still struggle with model identification issues related to rotations of the latent space. Variational Auto-Encoders (VAEs) and their extensions such as $\beta$-VAEs have been shown to improve local alignment of latent variables with PCA directions, which can help to improve model disentanglement under some conditions. Borrowing inspiration from Independent Component Analysis (ICA) and sparse coding, we propose applying an $L_1$ loss to the VAE's generative Jacobian during training to encourage local latent variable alignment with independent factors of variation in images of multiple objects or images with multiple parts. We demonstrate our results on a variety of datasets, giving qualitative and quantitative results using information theoretic and modularity measures that show our added $L_1$ cost encourages local axis alignment of the latent representation with individual factors of variation.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Yi Wan · Abhishek Naik · Rich Sutton

We extend the options framework for temporal abstraction in reinforcement learning from discounted Markov decision processes (MDPs) to average-reward MDPs. Our contributions include general convergent off-policy inter-option learning algorithms, intra-option algorithms for learning values and models, as well as sample-based planning variants of our learning algorithms. Our algorithms and convergence proofs extend those recently developed by Wan, Naik, and Sutton. We also extend the notion of option-interrupting behaviour from the discounted to the average-reward formulation. We show the efficacy of the proposed algorithms with experiments on a continuing version of the Four-Room domain.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Giorgia Ramponi · Alberto Maria Metelli · Alessandro Concetti · Marcello Restelli

The Configurable Markov Decision Process framework includes two entities: a Reinforcement Learning agent and a configurator that can modify some environmental parameters to improve the agent's performance. This presupposes that the two actors have the same reward functions. What if the configurator does not have the same intentions as the agent? This paper introduces the Non-Cooperative Configurable Markov Decision Process, a setting that allows having two (possibly different) reward functions for the configurator and the agent. Then, we consider an online learning problem, where the configurator has to find the best among a finite set of possible configurations. We propose two learning algorithms to minimize the configurator's expected regret, which exploits the problem's structure, depending on the agent's feedback. While a naive application of the UCB algorithm yields a regret that grows indefinitely over time, we show that our approach suffers only bounded regret. Furthermore, we empirically show the performance of our algorithm in simulated domains.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Maximilian Seitzer · Bernhard Schölkopf · Georg Martius

Many reinforcement learning (RL) environments consist of independent entities that interact sparsely. In such environments, RL agents have only limited influence over other entities in any particular situation. Our idea in this work is that learning can be efficiently guided by knowing when and what the agent can influence with its actions. To achieve this, we introduce a measure of situation-dependent causal influence based on conditional mutual information and show that it can reliably detect states of influence. We then propose several ways to integrate this measure into RL algorithms to improve exploration and off-policy learning. All modified algorithms show strong increases in data efficiency on robotic manipulation tasks.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Satchit Sivakumar · Mark Bun · Marco Gaboardi

We show a generic reduction from multiclass differentially private PAC learning to binary private PAC learning. We apply this transformation to a recently proposed binary private PAC learner to obtain a private multiclass learner with sample complexity that has a polynomial dependence on the multiclass Littlestone dimension and a poly-logarithmic dependence on the number of classes. This yields a doubly exponential improvement in the dependence on both parameters over learners from previous work. Our proof extends the notion of $\Psi$-dimension defined in work of Ben-David et al. [JCSS, 1995] to the online setting and explores its general properties.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Yuchao Qin · Fergus Imrie · Alihan Hüyük · Daniel Jarrett · alexander gimson · Mihaela van der Schaar

Significant effort has been placed on developing decision support tools to improve patient care. However, drivers of real-world clinical decisions in complex medical scenarios are not yet well-understood, resulting in substantial gaps between these tools and practical applications. In light of this, we highlight that more attention on understanding clinical decision-making is required both to elucidate current clinical practices and to enable effective human-machine interactions. This is imperative in high-stakes scenarios with scarce available resources. Using organ transplantation as a case study, we formalize the desiderata of methods for understanding clinical decision-making. We show that most existing machine learning methods are insufficient to meet these requirements and propose iTransplant, a novel data-driven framework to learn the factors affecting decisions on organ offers in an instance-wise fashion directly from clinical data, as a possible solution. Through experiments on real-world liver transplantation data from OPTN, we demonstrate the use of iTransplant to: (1) discover which criteria are most important to clinicians for organ offer acceptance; (2) identify patient-specific organ preferences of clinicians allowing automatic patient stratification; and (3) explore variations in transplantation practices between different transplant centers. Finally, we emphasize that the insights gained by iTransplant can be used to inform the development of future decision support tools.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Adarsh Barik · Jean Honorio

In this paper, we study the problem of fair sparse regression on a biased dataset where bias depends upon a hidden binary attribute. The presence of a hidden attribute adds an extra layer of complexity to the problem by combining sparse regression and clustering with unknown binary labels. The corresponding optimization problem is combinatorial, but we propose a novel relaxation of it as an invex optimization problem. To the best of our knowledge, this is the first invex relaxation for a combinatorial problem. We show that the inclusion of the debiasing/fairness constraint in our model has no adverse effect on the performance. Rather, it enables the recovery of the hidden attribute. The support of our recovered regression parameter vector matches exactly with the true parameter vector. Moreover, we simultaneously solve the clustering problem by recovering the exact value of the hidden attribute for each sample. Our method uses carefully constructed primal dual witnesses to provide theoretical guarantees for the combinatorial problem. To that end, we show that the sample complexity of our method is logarithmic in terms of the dimension of the regression parameter vector.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Daniel LeJeune · Hamid Javadi · Richard Baraniuk

Among the most successful methods for sparsifying deep (neural) networks are those that adaptively mask the network weights throughout training. By examining this masking, or dropout, in the linear case, we uncover a duality between such adaptive methods and regularization through the so-called “η-trick” that casts both as iteratively reweighted optimizations. We show that any dropout strategy that adapts to the weights in a monotonic way corresponds to an effective subquadratic regularization penalty, and therefore leads to sparse solutions. We obtain the effective penalties for several popular sparsification strategies, which are remarkably similar to classical penalties commonly used in sparse optimization. Considering variational dropout as a case study, we demonstrate similar empirical behavior between the adaptive dropout method and classical methods on the task of deep network sparsification, validating our theory.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Shobha Vasudevan · Wenjie (Joe) Jiang · David Bieber · Rishabh Singh · hamid shojaei · C. Richard Ho · Charles Sutton

Verification is a serious bottleneck in the industrial hardware design cycle, routinely requiring person-years of effort. Practical verification relies on a "best effort" process that simulates the design on test inputs. This suggests a new research question: Can this simulation data be exploited to learn a continuous representation of a hardware design that allows us to predict its functionality? As a first approach to this new problem, we introduce Design2Vec, a deep architecture that learns semantic abstractions of hardware designs. The key idea is to work at a higher level of abstraction than the gate or the bit level, namely the Register Transfer Level (RTL), which is somewhat analogous to software source code, and can be represented by a graph that incorporates control and data flow. This allows us to learn representations of RTL syntax and semantics using a graph neural network. We apply these representations to several tasks within verification, including predicting what cover points of the design will be exercised by a test, and generating new tests that will exercise desired cover points. We evaluate Design2Vec on three real-world hardware designs, including an industrial chip used in commercial data centers. Our results demonstrate that Design2Vec dramatically outperforms baseline approaches that do not incorporate the RTL semantics, scales to industrial designs, and can generate tests that exercise design points that are currently hard to cover with manually written tests by design verification experts.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Xingchao Liu · Xin Tong · Qiang Liu

Sampling-based inference and learning techniques, especially Bayesian inference, provide an essential approach to handling uncertainty in machine learning (ML). As these techniques are increasingly used in daily life, it becomes essential to safeguard the ML systems with various trustworthy-related constraints, such as fairness, safety, interpretability. Mathematically, enforcing these constraints in probabilistic inference can be cast into sampling from intractable distributions subject to general nonlinear constraints, for which practical efficient algorithms are still largely missing. In this work, we propose a family of constrained sampling algorithms which generalize Langevin Dynamics (LD) and Stein Variational Gradient Descent (SVGD) to incorporate a moment constraint specified by a general nonlinear function. By exploiting the gradient flow structure of LD and SVGD, we derive two types of algorithms for handling constraints, including a primal-dual gradient approach and the constraint controlled gradient descent approach. We investigate the continuous-time mean-field limit of these algorithms and show that they have O(1/t) convergence under mild conditions. Moreover, the LD variant converges linearly assuming that a log Sobolev like inequality holds. Various numerical experiments are conducted to demonstrate the efficiency of our algorithms in trustworthy settings.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Rowan Zellers · Ximing Lu · Jack Hessel · Youngjae Yu · Jae Sung Park · Jize Cao · Ali Farhadi · Yejin Choi

As humans, we understand events in the visual world contextually, performing multimodal reasoning across time to make inferences about the past, present, and future. We introduce MERLOT, a model that learns multimodal script knowledge by watching millions of YouTube videos with transcribed speech -- in an entirely label-free, self-supervised manner. By pretraining with a mix of both frame-level (spatial) and video-level (temporal) objectives, our model not only learns to match images to temporally corresponding words, but also to contextualize what is happening globally over time. As a result, MERLOT exhibits strong out-of-the-box representations of temporal commonsense, and achieves state-of-the-art performance on 12 different video QA datasets when finetuned. It also transfers well to the world of static images, allowing models to reason about the dynamic context behind visual scenes. On Visual Commonsense Reasoning, MERLOT~answers questions correctly with 80.6\% accuracy, outperforming state-of-the-art models of similar size by over 3\%, even those that make heavy use of auxiliary supervised data (like object bounding boxes).Ablation analyses demonstrate the complementary importance of: 1) training on videos versus static images; 2) scaling the magnitude and diversity of the pretraining video corpus; and 3) using diverse objectives that encourage full-stack multimodal reasoning, from the recognition to cognition level.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Mohamad Amin Sharifi Kolarijani · Gyula Max · Peyman Mohajerin Esfahani

In this study, we consider the infinite-horizon, discounted cost, optimal control of stochastic nonlinear systems with separable cost and constraints in the state and input variables. Using the linear-time Legendre transform, we propose a novel numerical scheme for implementation of the corresponding value iteration (VI) algorithm in the conjugate domain. Detailed analyses of the convergence, time complexity, and error of the proposed algorithm are provided. In particular, with a discretization of size $X$ and $U$ for the state and input spaces, respectively, the proposed approach reduces the time complexity of each iteration in the VI algorithm from $O(XU)$ to $O(X+U)$, by replacing the minimization operation in the primal domain with a simple addition in the conjugate domain.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Rémi Jézéquel · Pierre Gaillard · Alessandro Rudi

Mixability has been shown to be a powerful tool to obtain algorithms with optimal regret. However, the resulting methods often suffer from high computational complexity which has reduced their practical applicability. For example, in the case of multiclass logistic regression, the aggregating forecaster (see Foster et al. 2018) achieves a regret of $O(\log(Bn))$ whereas Online Newton Step achieves $O(e^B\log(n))$ obtaining a double exponential gain in $B$ (a bound on the norm of comparative functions). However, this high statistical performance is at the price of a prohibitive computational complexity $O(n^{37})$.In this paper, we use quadratic surrogates to make aggregating forecasters more efficient. We show that the resulting algorithm has still high statistical performance for a large class of losses. In particular, we derive an algorithm for multiclass regression with a regret bounded by $O(B\log(n))$ and computational complexity of only $O(n^4)$.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Sidak Pal Singh · Gregor Bachmann · Thomas Hofmann

The Hessian of a neural network captures parameter interactions through second-order derivatives of the loss. It is a fundamental object of study, closely tied to various problems in deep learning, including model design, optimization, and generalization. Most prior work has been empirical, typically focusing on low-rank approximations and heuristics that are blind to the network structure. In contrast, we develop theoretical tools to analyze the range of the Hessian map, which provide us with a precise understanding of its rank deficiency and the structural reasons behind it. This yields exact formulas and tight upper bounds for the Hessian rank of deep linear networks --- allowing for an elegant interpretation in terms of rank deficiency. Moreover, we demonstrate that our bounds remain faithful as an estimate of the numerical Hessian rank, for a larger class of models such as rectified and hyperbolic tangent networks. Further, we also investigate the implications of model architecture (e.g.~width, depth, bias) on the rank deficiency. Overall, our work provides novel insights into the source and extent of redundancy in overparameterized neural networks.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Safwan Hossain · Evi Micha · Nisarg Shah

We propose a multi-agent variant of the classical multi-armed bandit problem, in which there are $N$ agents and $K$ arms, and pulling an arm generates a (possibly different) stochastic reward for each agent. Unlike the classical multi-armed bandit problem, the goal is not to learn the "best arm"; indeed, each agent may perceive a different arm to be the best for her personally. Instead, we seek to learn a fair distribution over the arms. Drawing on a long line of research in economics and computer science, we use the Nash social welfare as our notion of fairness. We design multi-agent variants of three classic multi-armed bandit algorithms and show that they achieve sublinear regret, which is now measured in terms of the lost Nash social welfare. We also extend a classical lower bound, establishing the optimality of one of our algorithms.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Ke Wang · Vidya Muthukumar · Christos Thrampoulidis

The growing literature on "benign overfitting" in overparameterized models has been mostly restricted to regression or binary classification settings; however, most success stories of modern machine learning have been recorded in multiclass settings. Motivated by this discrepancy, we study benign overfitting in multiclass linear classification. Specifically, we consider the following popular training algorithms on separable data: (i) empirical risk minimization (ERM) with cross-entropy loss, which converges to the multiclass support vector machine (SVM) solution; (ii) ERM with least-squares loss, which converges to the min-norm interpolating (MNI) solution; and, (iii) the one-vs-all SVM classifier. Our first key finding is that under a simple sufficient condition, all three algorithms lead to classifiers that interpolate the training data and have equal accuracy. When the data is generated from Gaussian mixtures or a multinomial logistic model, this condition holds under high enough effective overparameterization. Second, we derive novel error bounds on the accuracy of the MNI classifier, thereby showing that all three training algorithms lead to benign overfitting under sufficient overparameterization. Ultimately, our analysis shows that good generalization is possible for SVM solutions beyond the realm in which typical margin-based bounds apply.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Antonia Chmiela · Elias Khalil · Ambros Gleixner · Andrea Lodi · Sebastian Pokutta

Primal heuristics play a crucial role in exact solvers for Mixed Integer Programming (MIP). While solvers are guaranteed to find optimal solutions given sufficient time, real-world applications typically require finding good solutions early on in the search to enable fast decision-making. While much of MIP research focuses on designing effective heuristics, the question of how to manage multiple MIP heuristics in a solver has not received equal attention. Generally, solvers follow hard-coded rules derived from empirical testing on broad sets of instances. Since the performance of heuristics is problem-dependent, using these general rules for a particular problem might not yield the best performance. In this work, we propose the first data-driven framework for scheduling heuristics in an exact MIP solver. By learning from data describing the performance of primal heuristics, we obtain a problem-specific schedule of heuristics that collectively find many solutions at minimal cost. We formalize the learning task and propose an efficient algorithm for computing such a schedule. Compared to the default settings of a state-of-the-art academic MIP solver, we are able to reduce the average primal integral by up to 49% on two classes of challenging instances.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Romain Laroche · Remi Tachet des Combes

The policy gradient theorem states that the policy should only be updated in states that are visited by the current policy, which leads to insufficient planning in the off-policy states, and thus to convergence to suboptimal policies. We tackle this planning issue by extending the policy gradient theory to policy updates with respect to any state density. Under these generalized policy updates, we show convergence to optimality under a necessary and sufficient condition on the updates’ state densities, and thereby solve the aforementioned planning issue. We also prove asymptotic convergence rates that significantly improve those in the policy gradient literature. To implement the principles prescribed by our theory, we propose an agent, Dr Jekyll & Mr Hyde (J&H), with a double personality: Dr Jekyll purely exploits while Mr Hyde purely explores. J&H’s independent policies allow to record two separate replay buffers: one on-policy (Dr Jekyll’s) and one off-policy (Mr Hyde’s), and therefore to update J&H’s models with a mixture of on-policy and off-policy updates. More than an algorithm, J&H defines principles for actor-critic algorithms to satisfy the requirements we identify in our analysis. We extensively test on finite MDPs where J&H demonstrates a superior ability to recover from converging to a suboptimal policy without impairing its speed of convergence. We also implement a deep version of the algorithm and test it on a simple problem where it shows promising results.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Jeongyeol Kwon · Yonathan Efroni · Constantine Caramanis · Shie Mannor

In this work, we consider the regret minimization problem for reinforcement learning in latent Markov Decision Processes (LMDP). In an LMDP, an MDP is randomly drawn from a set of $M$ possible MDPs at the beginning of the interaction, but the identity of the chosen MDP is not revealed to the agent. We first show that a general instance of LMDPs requires at least $\Omega((SA)^M)$ episodes to even approximate the optimal policy. Then, we consider sufficient assumptions under which learning good policies requires polynomial number of episodes. We show that the key link is a notion of separation between the MDP system dynamics. With sufficient separation, we provide an efficient algorithm with local guarantee, {\it i.e.,} providing a sublinear regret guarantee when we are given a good initialization. Finally, if we are given standard statistical sufficiency assumptions common in the Predictive State Representation (PSR) literature (e.g., \cite{boots2011online}) and a reachability assumption, we show that the need for initialization can be removed.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Shubhanshu Shekhar · Greg Fields · Mohammad Ghavamzadeh · Tara Javidi

Machine learning models trained on uncurated datasets can often end up adversely affecting inputs belonging to underrepresented groups. To address this issue, we consider the problem of adaptively constructing training sets which allow us to learn classifiers that are fair in a {\em minimax} sense. We first propose an adaptive sampling algorithm based on the principle of \emph{optimism}, and derive theoretical bounds on its performance. We also propose heuristic extensions of this algorithm suitable for application to large scale, practical problems. Next, by deriving algorithm independent lower-bounds for a specific class of problems, we show that the performance achieved by our adaptive scheme cannot be improved in general. We then validate the benefits of adaptively constructing training sets via experiments on synthetic tasks with logistic regression classifiers, as well as on several real-world tasks using convolutional neural networks (CNNs).

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Marco Bagatella · Miroslav Olšák · Michal Rolínek · Georg Martius

The ability to form complex plans based on raw visual input is a litmus test for current capabilities of artificial intelligence, as it requires a seamless combination of visual processing and abstract algorithmic execution, two traditionally separate areas of computer science. A recent surge of interest in this field brought advances that yield good performance in tasks ranging from arcade games to continuous control; these methods however do not come without significant issues, such as limited generalization capabilities and difficulties when dealing with combinatorially hard planning instances. Our contribution is two-fold: (i) we present a method that learns to represent its environment as a latent graph and leverages state reidentification to reduce the complexity of finding a good policy from exponential to linear (ii) we introduce a set of lightweight environments with an underlying discrete combinatorial structure in which planning is challenging even for humans. Moreover, we show that our methods achieves strong empirical generalization to variations in the environment, even across highly disadvantaged regimes, such as “one-shot” planning, or in an offline RL paradigm which only provides low-quality trajectories.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Cristina Butucea · Yann ISSARTEL

We study the problem of estimating non-linear functionals of discrete distributions in the context of local differential privacy. The initial data $x_1,\ldots,x_n \in[K]$ are supposed i.i.d. and distributed according to an unknown discrete distribution $p = (p_1,\ldots,p_K)$. Only $\alpha$-locally differentially private (LDP) samples $z_1,...,z_n$ are publicly available, where the term 'local' means that each $z_i$ is produced using one individual attribute $x_i$. We exhibit privacy mechanisms (PM) that are interactive (i.e. they are allowed to use already published confidential data) or non-interactive. We describe the behavior of the quadratic risk for estimating the power sum functional $F_{\gamma} = \sum_{k=1}^K p_k^{\gamma}$, $\gamma >0$ as a function of $K, \, n$ and $\alpha$. In the non-interactive case, we study twol plug-in type estimators of $F_{\gamma}$, for all $\gamma >0$, that are similar to the MLE analyzed by Jiao et al. (2017) in the multinomial model. However, due to the privacy constraint the rates we attain are slower and similar to those obtained in the Gaussian model by Collier et al. (2020). In the sequentially interactive case, we introduce for all $\gamma >1$ a two-step procedure which attains the parametric rate $(n \alpha^2)^{-1/2}$ when $\gamma \geq 2$. We give lower bounds results over all $\alpha-$LDP mechanisms and over all estimators using the private samples.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Jacob Zavatone-Veth · Abdulkadir Canatar · Ben Ruben · Cengiz Pehlevan

Recent works have suggested that finite Bayesian neural networks may sometimes outperform their infinite cousins because finite networks can flexibly adapt their internal representations. However, our theoretical understanding of how the learned hidden layer representations of finite networks differ from the fixed representations of infinite networks remains incomplete. Perturbative finite-width corrections to the network prior and posterior have been studied, but the asymptotics of learned features have not been fully characterized. Here, we argue that the leading finite-width corrections to the average feature kernels for any Bayesian network with linear readout and Gaussian likelihood have a largely universal form. We illustrate this explicitly for three tractable network architectures: deep linear fully-connected and convolutional networks, and networks with a single nonlinear hidden layer. Our results begin to elucidate how task-relevant learning signals shape the hidden layer representations of wide Bayesian neural networks.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Hang Wang · Sen Lin · Junshan Zhang

The ensemble method is a promising way to mitigate the overestimation issue in Q-learning, where multiple function approximators are used to estimate the action values. It is known that the estimation bias hinges heavily on the ensemble size (i.e., the number of Q-function approximators used in the target), and that determining the 'right' ensemble size is highly nontrivial, because of the time-varying nature of the function approximation errors during the learning process. To tackle this challenge, we first derive an upper bound and a lower bound on the estimation bias, based on which the ensemble size is adapted to drive the bias to be nearly zero, thereby coping with the impact of the time-varying approximation errors accordingly. Motivated by the theoretic findings, we advocate that the ensemble method can be combined with Model Identification Adaptive Control (MIAC) for effective ensemble size adaptation. Specifically, we devise Adaptive Ensemble Q-learning (AdaEQ), a generalized ensemble method with two key steps: (a) approximation error characterization which serves as the feedback for flexibly controlling the ensemble size, and (b) ensemble size adaptation tailored towards minimizing the estimation bias. Extensive experiments are carried out to show that AdaEQ can improve the learning performance than the existing methods for the MuJoCo benchmark.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

James Kotary · Ferdinando Fioretto · Pascal Van Hentenryck

Optimization problems are ubiquitous in our societies and are present in almost every segment of the economy. Most of these optimization problems are NP-hard and computationally demanding, often requiring approximate solutions for large-scale instances. Machine learning frameworks that learn to approximate solutions to such hard optimization problems are a potentially promising avenue to address these difficulties, particularly when many closely related problem instances must be solved repeatedly. Supervised learning frameworks can train a model using the outputs of pre-solved instances. However, when the outputs are themselves approximations, when the optimization problem has symmetric solutions, and/or when the solver uses randomization, solutions to closely related instances may exhibit large differences and the learning task can become inherently more difficult. This paper demonstrates this critical challenge, connects the volatility of the training data to the ability of a model to approximate it, and proposes a method for producing (exact or approximate) solutions to optimization problems that are more amenable to supervised learning tasks. The effectiveness of the method is tested on hard non-linear nonconvex and discrete combinatorial problems.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Weiwei Sun · Andrea Tagliasacchi · Boyang Deng · Sara Sabour · Soroosh Yazdani · Geoffrey Hinton · Kwang Moo Yi

We propose a self-supervised capsule architecture for 3D point clouds. We compute capsule decompositions of objects through permutation-equivariant attention, and self-supervise the process by training with pairs of randomly rotated objects. Our key idea is to aggregate the attention masks into semantic keypoints, and use these to supervise a decomposition that satisfies the capsule invariance/equivariance properties. This not only enables the training of a semantically consistent decomposition, but also allows us to learn a canonicalization operation that enables object-centric reasoning. To train our neural network we require neither classification labels nor manually-aligned training datasets. Yet, by learning an object-centric representation in a self-supervised manner, our method outperforms the state-of-the-art on 3D point cloud reconstruction, canonicalization, and unsupervised classification.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Timo Milbich · Karsten Roth · Samarth Sinha · Ludwig Schmidt · Marzyeh Ghassemi · Bjorn Ommer

Deep Metric Learning (DML) aims to find representations suitable for zero-shot transfer to a priori unknown test distributions. However, common evaluation protocols only test a single, fixed data split in which train and test classes are assigned randomly. More realistic evaluations should consider a broad spectrum of distribution shifts with potentially varying degree and difficulty.In this work, we systematically construct train-test splits of increasing difficulty and present the ooDML benchmark to characterize generalization under out-of-distribution shifts in DML. ooDML is designed to probe the generalization performance on much more challenging, diverse train-to-test distribution shifts. Based on our new benchmark, we conduct a thorough empirical analysis of state-of-the-art DML methods. We find that while generalization tends to consistently degrade with difficulty, some methods are better at retaining performance as the distribution shift increases. Finally, we propose few-shot DML as an efficient way to consistently improve generalization in response to unknown test shifts presented in ooDML.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Idan Amir · Yair Carmon · Tomer Koren · Roi Livni

We study the generalization performance of $\text{\emph{full-batch}}$ optimization algorithms for stochastic convex optimization: these are first-order methods that only access the exact gradient of the empirical risk (rather than gradients with respect to individual data points), that include a wide range of algorithms such as gradient descent, mirror descent, and their regularized and/or accelerated variants. We provide a new separation result showing that, while algorithms such as stochastic gradient descent can generalize and optimize the population risk to within $\epsilon$ after $O(1/\epsilon^2)$ iterations, full-batch methods either need at least $\Omega(1/\epsilon^4)$ iterations or exhibit a dimension-dependent sample complexity.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Vignesh Ram Somnath · Charlotte Bunne · Andreas Krause

Proteins are fundamental biological entities mediating key roles in cellular function and disease. This paper introduces a multi-scale graph construction of a protein –HoloProt– connecting surface to structure and sequence. The surface captures coarser details of the protein, while sequence as primary component and structure –comprising secondary and tertiary components– capture finer details. Our graph encoder then learns a multi-scale representation by allowing each level to integrate the encoding from level(s) below with the graph at that level. We test the learned representation on different tasks, (i.) ligand binding affinity (regression), and (ii.) protein function prediction (classification).On the regression task, contrary to previous methods, our model performs consistently and reliably across different dataset splits, outperforming all baselines on most splits. On the classification task, it achieves a performance close to the top-performing model while using 10x fewer parameters. To improve the memory efficiency of our construction, we segment the multiplex protein surface manifold into molecular superpixels and substitute the surface with these superpixels at little to no performance loss.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Tommaso d'Orsi · Chih-Hung Liu · Rajai Nasser · Gleb Novikov · David Steurer · Stefan Tiegel

We develop machinery to design efficiently computable and \emph{consistent} estimators, achieving estimation error approaching zero as the number of observations grows, when facing an oblivious adversary that may corrupt responses in all but an $\alpha$ fraction of the samples.As concrete examples, we investigate two problems: sparse regression and principal component analysis (PCA).For sparse regression, we achieve consistency for optimal sample size $n\gtrsim (k\log d)/\alpha^2$ and optimal error rate $O(\sqrt{(k\log d)/(n\cdot \alpha^2)})$where $n$ is the number of observations, $d$ is the number of dimensions and $k$ is the sparsity of the parameter vector, allowing the fraction of inliers to be inverse-polynomial in the number of samples.Prior to this work, no estimator was known to be consistent when the fraction of inliers $\alpha$ is $o(1/\log \log n)$, even for (non-spherical) Gaussian design matrices.Results holding under weak design assumptions and in the presence of such general noise have only been shown in dense setting (i.e., general linear regression) very recently by d'Orsi et al.~\cite{ICML-linear-regression}.In the context of PCA, we attain optimal error guarantees under broad spikiness assumptions on the parameter matrix (usually used in matrix completion). Previous works could obtain non-trivial guarantees only under the assumptions that the measurement noise corresponding to the inliers is polynomially small in $n$ (e.g., Gaussian with variance $1/n^2$).To devise our estimators, we equip the Huber loss with non-smooth regularizers such as the $\ell_1$ norm or the nuclear norm, and extend d'Orsi et al.'s approach~\cite{ICML-linear-regression} in a novel way to analyze the loss function.Our machinery appears to be easily applicable to a wide range of estimation problems.We complement these algorithmic results with statistical lower bounds showing that the fraction of inliers that our PCA estimator can deal with is optimal up to a constant factor.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Bailey Flanigan · Gregory Kehne · Ariel Procaccia

Sortition is an age-old democratic paradigm, widely manifested today through the random selection of citizens' assemblies. Recently-deployed algorithms select assemblies \textit{maximally fairly}, meaning that subject to demographic quotas, they give all potential participants as equal a chance as possible of being chosen. While these fairness gains can bolster the legitimacy of citizens' assemblies and facilitate their uptake, existing algorithms remain limited by their lack of transparency. To overcome this hurdle, in this work we focus on panel selection by uniform lottery, which is easy to realize in an observable way. By this approach, the final assembly is selected by uniformly sampling some pre-selected set of $m$ possible assemblies.We provide theoretical guarantees on the fairness attainable via this type of uniform lottery, as compared to the existing maximally fair but opaque algorithms, for two different fairness objectives. We complement these results with experiments on real-world instances that demonstrate the viability of the uniform lottery approach as a method of selecting assemblies both fairly and transparently.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Felix Petersen · Debarghya Mukherjee · Yuekai Sun · Mikhail Yurochkin

Post-processing in algorithmic fairness is a versatile approach for correcting bias in ML systems that are already used in production. The main appeal of post-processing is that it avoids expensive retraining. In this work, we propose general post-processing algorithms for individual fairness (IF). We consider a setting where the learner only has access to the predictions of the original model and a similarity graph between individuals, guiding the desired fairness constraints. We cast the IF post-processing problem as a graph smoothing problem corresponding to graph Laplacian regularization that preserves the desired "treat similar individuals similarly" interpretation. Our theoretical results demonstrate the connection of the new objective function to a local relaxation of the original individual fairness. Empirically, our post-processing algorithms correct individual biases in large-scale NLP models such as BERT, while preserving accuracy.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Kuniaki Saito · Donghyun Kim · Kate Saenko

Semi-supervised learning (SSL) is an effective means to leverage unlabeled data to improve a model’s performance. Typical SSL methods like FixMatch assume that labeled and unlabeled data share the same label space. However, in practice, unlabeled data can contain categories unseen in the labeled set, i.e., outliers, which can significantly harm the performance of SSL algorithms. To address this problem, we propose a novel Open-set Semi-Supervised Learning (OSSL) approach called OpenMatch.Learning representations of inliers while rejecting outliers is essential for the success of OSSL. To this end, OpenMatch unifies FixMatch with novelty detection based on one-vs-all (OVA) classifiers. The OVA-classifier outputs the confidence score of a sample being an inlier, providing a threshold to detect outliers. Another key contribution is an open-set soft-consistency regularization loss, which enhances the smoothness of the OVA-classifier with respect to input transformations and greatly improves outlier detection. \ours achieves state-of-the-art performance on three datasets, and even outperforms a fully supervised model in detecting outliers unseen in unlabeled data on CIFAR10. The code is available at \url{https://github.com/VisionLearningGroup/OP_Match}.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Thomas FEL · Remi Cadene · Mathieu Chalvidal · Matthieu Cord · David Vigouroux · Thomas Serre

We describe a novel attribution method which is grounded in Sensitivity Analysis and uses Sobol indices. Beyond modeling the individual contributions of image regions, Sobol indices provide an efficient way to capture higher-order interactions between image regions and their contributions to a neural network's prediction through the lens of variance.We describe an approach that makes the computation of these indices efficient for high-dimensional problems by using perturbation masks coupled with efficient estimators to handle the high dimensionality of images.Importantly, we show that the proposed method leads to favorable scores on standard benchmarks for vision (and language models) while drastically reducing the computing time compared to other black-box methods -- even surpassing the accuracy of state-of-the-art white-box methods which require access to internal representations. Our code is freely available:github.com/fel-thomas/Sobol-Attribution-Method.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Tim Janke · Mohamed Ghanmi · Florian Steinke

Copulas are a powerful tool for modeling multivariate distributions as they allow to separately estimate the univariate marginal distributions and the joint dependency structure. However, known parametric copulas offer limited flexibility especially in high dimensions, while commonly used non-parametric methods suffer from the curse of dimensionality. A popular remedy is to construct a tree-based hierarchy of conditional bivariate copulas.In this paper, we propose a flexible, yet conceptually simple alternative based on implicit generative neural networks.The key challenge is to ensure marginal uniformity of the estimated copula distribution.We achieve this by learning a multivariate latent distribution with unspecified marginals but the desired dependency structure.By applying the probability integral transform, we can then obtain samples from the high-dimensional copula distribution without relying on parametric assumptions or the need to find a suitable tree structure.Experiments on synthetic and real data from finance, physics, and image generation demonstrate the performance of this approach.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Charles Jin · Martin Rinard

We propose a novel setting for learning, where the input domain is the image of a map defined on the product of two sets, one of which completely determines the labels. We derive a new risk bound for this setting that decomposes into a bias and an error term, and exhibits a surprisingly weak dependence on the true labels. Inspired by these results, we present an algorithm aimed at minimizing the bias term by exploiting the ability to sample from each set independently. We apply our setting to visual classification tasks, where our approach enables us to train classifiers on datasets that consist entirely of a single synthetic example of each class. On several standard benchmarks for real-world image classification, we achieve robust performance in the context-agnostic setting, with good generalization to real world domains, whereas training directly on real world data without our techniques yields classifiers that are brittle to perturbations of the background.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Jeffrey Negrea · Blair Bilodeau · Nicolò Campolongo · Francesco Orabona · Dan Roy

Quantile (and, more generally, KL) regret bounds, such as those achieved by NormalHedge (Chaudhuri, Freund, and Hsu 2009) and its variants, relax the goal of competing against the best individual expert to only competing against a majority of experts on adversarial data. More recently, the semi-adversarial paradigm (Bilodeau, Negrea, and Roy 2020) provides an alternative relaxation of adversarial online learning by considering data that may be neither fully adversarial nor stochastic (I.I.D.). We achieve the minimax optimal regret in both paradigms using FTRL with separate, novel, root-logarithmic regularizers, both of which can be interpreted as yielding variants of NormalHedge. We extend existing KL regret upper bounds, which hold uniformly over target distributions, to possibly uncountable expert classes with arbitrary priors; provide the first full-information lower bounds for quantile regret on finite expert classes (which are tight); and provide an adaptively minimax optimal algorithm for the semi-adversarial paradigm that adapts to the true, unknown constraint faster, leading to uniformly improved regret bounds over existing methods.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Junjiao Tian · Dylan Yung · Yen-Chang Hsu · Zsolt Kira

It is well known that vision classification models suffer from poor calibration in the face of data distribution shifts. In this paper, we take a geometric approach to this problem. We propose Geometric Sensitivity Decomposition (GSD) which decomposes the norm of a sample feature embedding and the angular similarity to a target classifier into an instance-dependent and an instance-independent com-ponent. The instance-dependent component captures the sensitive information about changes in the input while the instance-independent component represents the insensitive information serving solely to minimize the loss on the training dataset. Inspired by the decomposition, we analytically derive a simple extension to current softmax-linear models, which learns to disentangle the two components during training. On several common vision models, the disentangled model out-performs other calibration methods on standard calibration metrics in the face of out-of-distribution (OOD) data and corruption with significantly less complexity. Specifically, we surpass the current state of the art by 30.8% relative improvement on corrupted CIFAR100 in Expected Calibration Error.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Pranav Subramani · Nicholas Vadivelu · Gautam Kamath

A common pain point in differentially private machine learning is the significant runtime overhead incurred when executing Differentially Private Stochastic Gradient Descent (DPSGD), which may be as large as two orders of magnitude. We thoroughly demonstrate that by exploiting powerful language primitives, including vectorization, just-in-time compilation, and static graph optimization, one can dramatically reduce these overheads, in many cases nearly matching the best non-private running times. These gains are realized in two frameworks: one is JAX, which provides rich support for these primitives through the XLA compiler. We also rebuild core parts of TensorFlow Privacy, integrating more effective vectorization as well as XLA compilation, granting significant memory and runtime improvements over previous release versions. Our proposed approaches allow us to achieve up to 50x speedups compared to the best alternatives. Our code is available at https://github.com/TheSalon/fast-dpsgd.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Quentin Rebjock · Baris Kurt · Tim Januschowski · Laurent Callot

This article proposes novel rules for false discovery rate control (FDRC) geared towards online anomaly detection in time series. Online FDRC rules allow to control the properties of a sequence of statistical tests. In the context of anomaly detection, the null hypothesis is that an observation is normal and the alternative is that it is anomalous. FDRC rules allow users to target a lower bound on precision in unsupervised settings. The methods proposed in this article overcome short-comings of previous FDRC rules in the context of anomaly detection, in particular ensuring that power remains high even when the alternative is exceedingly rare (typical in anomaly detection) and the test statistics are serially dependent (typical in time series). We show the soundness of these rules in both theory and experiments.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Mike Wu · Noah Goodman · Stefano Ermon

In traditional software programs, it is easy to trace program logic from variables back to input, apply assertion statements to block erroneous behavior, and compose programs together. Although deep learning programs have demonstrated strong performance on novel applications, they sacrifice many of the functionalities of traditional software programs. With this as motivation, we take a modest first step towards improving deep learning programs by jointly training a generative model to constrain neural network activations to "decode" back to inputs. We call this design a Decodable Neural Network, or DecNN. Doing so enables a form of compositionality in neural networks, where one can recursively compose DecNN with itself to create an ensemble-like model with uncertainty. In our experiments, we demonstrate applications of this uncertainty to out-of-distribution detection, adversarial example detection, and calibration --- while matching standard neural networks in accuracy. We further explore this compositionality by combining DecNN with pretrained models, where we show promising results that neural networks can be regularized from using protected features.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Yutong Bai · Jieru Mei · Alan Yuille · Cihang Xie

Transformer emerges as a powerful tool for visual recognition. In addition to demonstrating competitive performance on a broad range of visual benchmarks, recent works also argue that Transformers are much more robust than Convolutions Neural Networks (CNNs). Nonetheless, surprisingly, we find these conclusions are drawn from unfair experimental settings, where Transformers and CNNs are compared at different scales and are applied with distinct training frameworks. In this paper, we aim to provide the first fair & in-depth comparisons between Transformers and CNNs, focusing on robustness evaluations. With our unified training setup, we first challenge the previous belief that Transformers outshine CNNs when measuring adversarial robustness. More surprisingly, we find CNNs can easily be as robust as Transformers on defending against adversarial attacks, if they properly adopt Transformers' training recipes. While regarding generalization on out-of-distribution samples, we show pre-training on (external) large-scale datasets is not a fundamental request for enabling Transformers to achieve better performance than CNNs. Moreover, our ablations suggest such stronger generalization is largely benefited by the Transformer's self-attention-like architectures per se, rather than by other training setups. We hope this work can help the community better understand and benchmark the robustness of Transformers and CNNs. The code and models are publicly available at: https://github.com/ytongbai/ViTs-vs-CNNs.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Zhen Dai · Mina Karzand · Nathan Srebro

For different parameterizations (mappings from parameters to predictors), we study the regularization cost in predictor space induced by $l_2$ regularization on the parameters (weights). We focus on linear neural networks as parameterizations of linear predictors. We identify the representation cost of certain sparse linear ConvNets and residual networks. In order to get a better understanding of how the architecture and parameterization affect the representation cost, we also study the reverse problem, identifying which regularizers on linear predictors (e.g., $l_p$ norms, group norms, the $k$-support-norm, elastic net) can be the representation cost induced by simple $l_2$ regularization, and designing the parameterizations that do so.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Badih Ghazi · Noah Golowich · Ravi Kumar · Pasin Manurangsi · Chiyuan Zhang

The Randomized Response (RR) algorithm is a classical technique to improve robustness in survey aggregation, and has been widely adopted in applications with differential privacy guarantees. We propose a novel algorithm, Randomized Response with Prior (RRWithPrior), which can provide more accurate results while maintaining the same level of privacy guaranteed by RR. We then apply RRWithPrior to learn neural networks with label differential privacy (LabelDP), and show that when only the label needs to be protected, the model performance can be significantly improved over the previous state-of-the-art private baselines. Moreover, we study different ways to obtain priors, which when used with RRWithPrior can additionally improve the model performance, further reducing the accuracy gap between private and non-private models. We complement the empirical results with theoretical analysis showing that LabelDP is provably easier than protecting both the inputs and labels.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Peng Wang · Lingjie Liu · Yuan Liu · Christian Theobalt · Taku Komura · Wenping Wang

We present a novel neural surface reconstruction method, called NeuS, for reconstructing objects and scenes with high fidelity from 2D image inputs. Existing neural surface reconstruction approaches, such as DVR [Niemeyer et al., 2020] and IDR [Yariv et al., 2020], require foreground mask as supervision, easily get trapped in local minima, and therefore struggle with the reconstruction of objects with severe self-occlusion or thin structures. Meanwhile, recent neural methods for novel view synthesis, such as NeRF [Mildenhall et al., 2020] and its variants, use volume rendering to produce a neural scene representation with robustness of optimization, even for highly complex objects. However, extracting high-quality surfaces from this learned implicit representation is difficult because there are not sufficient surface constraints in the representation. In NeuS, we propose to represent a surface as the zero-level set of a signed distance function (SDF) and develop a new volume rendering method to train a neural SDF representation. We observe that the conventional volume rendering method causes inherent geometric errors (i.e. bias) for surface reconstruction, and therefore propose a new formulation that is free of bias in the first order of approximation, thus leading to more accurate surface reconstruction even without the mask supervision. Experiments on the DTU dataset and the BlendedMVS dataset show that NeuS outperforms the state-of-the-arts in high-quality surface reconstruction, especially for objects and scenes with complex structures and self-occlusion.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Brian Brubach · Nathaniel Grammel · Will Ma · Aravind Srinivasan

Matching is one of the most fundamental and broadly applicable problems across many domains. In these diverse real-world applications, there is often a degree of uncertainty in the input which has led to the study of stochastic matching models. Here, each edge in the graph has a known, independent probability of existing derived from some prediction. Algorithms must probe edges to determine existence and match them irrevocably if they exist. Further, each vertex may have a patience constraint denoting how many of its neighboring edges can be probed. We present new ordered contention resolution schemes yielding improved approximation guarantees for some of the foundational problems studied in this area. For stochastic matching with patience constraints in general graphs, we provide a $0.382$-approximate algorithm, significantly improving over the previous best $0.31$-approximation of Baveja et al. (2018). When the vertices do not have patience constraints, we describe a $0.432$-approximate random order probing algorithm with several corollaries such as an improved guarantee for the Prophet Secretary problem under Edge Arrivals. Finally, for the special case of bipartite graphs with unit patience constraints on one of the partitions, we show a $0.632$-approximate algorithm that improves on the recent $1/3$-guarantee of Hikima et al. (2021).

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Yuan Gao · Alex Peysakhovich · Christian Kroer

Computing market equilibria is a problem of both theoretical and applied interest. Much research to date focuses on the case of static Fisher markets with full information on buyers' utility functions and item supplies. Motivated by real-world markets, we consider an online setting: individuals have linear, additive utility functions; items arrive sequentially and must be allocated and priced irrevocably. We define the notion of an online market equilibrium in such a market as time-indexed allocations and prices which guarantee buyer optimality and market clearance in hindsight. We propose a simple, scalable and interpretable allocation and pricing dynamics termed as PACE. When items are drawn i.i.d. from an unknown distribution (with a possibly continuous support), we show that PACE leads to an online market equilibrium asymptotically. In particular, PACE ensures that buyers' time-averaged utilities converge to the equilibrium utilities w.r.t. a static market with item supplies being the unknown distribution and that buyers' time-averaged expenditures converge to their per-period budget. Hence, many desirable properties of market equilibrium-based fair division such as envy-freeness, Pareto optimality, and the proportional-share guarantee are also attained asymptotically in the online setting. Next, we extend the dynamics to handle quasilinear buyer utilities, which gives the first online algorithm for computing first-price pacing equilibria. Finally, numerical experiments on real and synthetic datasets show that the dynamics converges quickly under various metrics.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Alex Damian · Tengyu Ma · Jason Lee

In overparametrized models, the noise in stochastic gradient descent (SGD) implicitly regularizes the optimization trajectory and determines which local minimum SGD converges to. Motivated by empirical studies that demonstrate that training with noisy labels improves generalization, we study the implicit regularization effect of SGD with label noise. We show that SGD with label noise converges to a stationary point of a regularized loss $L(\theta) +\lambda R(\theta)$, where $L(\theta)$ is the training loss, $\lambda$ is an effective regularization parameter depending on the step size, strength of the label noise, and the batch size, and $R(\theta)$ is an explicit regularizer that penalizes sharp minimizers. Our analysis uncovers an additional regularization effect of large learning rates beyond the linear scaling rule that penalizes large eigenvalues of the Hessian more than small ones. We also prove extensions to classification with general loss functions, significantly strengthening the prior work of Blanc et al. to global convergence and large learning rates and of HaoChen et al. to general models.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Arantxa Casanova · Marlene Careil · Jakob Verbeek · Michal Drozdzal · Adriana Romero Soriano

Generative Adversarial Networks (GANs) can generate near photo realistic images in narrow domains such as human faces. Yet, modeling complex distributions of datasets such as ImageNet and COCO-Stuff remains challenging in unconditional settings. In this paper, we take inspiration from kernel density estimation techniques and introduce a non-parametric approach to modeling distributions of complex datasets. We partition the data manifold into a mixture of overlapping neighborhoods described by a datapoint and its nearest neighbors, and introduce a model, called instance-conditioned GAN (IC-GAN), which learns the distribution around each datapoint. Experimental results on ImageNet and COCO-Stuff show that IC-GAN significantly improves over unconditional models and unsupervised data partitioning baselines. Moreover, we show that IC-GAN can effortlessly transfer to datasets not seen during training by simply changing the conditioning instances, and still generate realistic images. Finally, we extend IC-GAN to the class-conditional case and show semantically controllable generation and competitive quantitative results on ImageNet; while improving over BigGAN on ImageNet-LT. Code and trained models to reproduce the reported results are available at https://github.com/facebookresearch/ic_gan.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Cuong Tran · My Dinh · Ferdinando Fioretto

Differential Privacy (DP) is an important privacy-enhancing technology for private machine learning systems. It allows to measure and bound the risk associated with an individual participation in a computation. However, it was recently observed that DP learning systems may exacerbate bias and unfairness for different groups of individuals. This paper builds on these important observations and sheds light on the causes of the disparate impacts arising in the problem of differentially private empirical risk minimization. It focuses on the accuracy disparity arising among groups of individuals in two well-studied DP learning methods: output perturbation and differentially private stochastic gradient descent. The paper analyzes which data and model properties are responsible for the disproportionate impacts, why these aspects are affecting different groups disproportionately, and proposes guidelines to mitigate these effects. The proposed approach is evaluated on several datasets and settings.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Constantinos Daskalakis · Maxwell Fishelson · Noah Golowich

We show that Optimistic Hedge -- a common variant of multiplicative-weights-updates with recency bias -- attains ${\rm poly}(\log T)$ regret in multi-player general-sum games. In particular, when every player of the game uses Optimistic Hedge to iteratively update her action in response to the history of play so far, then after $T$ rounds of interaction, each player experiences total regret that is ${\rm poly}(\log T)$. Our bound improves, exponentially, the $O(T^{1/2})$ regret attainable by standard no-regret learners in games, the $O(T^{1/4})$ regret attainable by no-regret learners with recency bias (Syrgkanis et al., NeurIPS 2015), and the $O(T^{1/6})$ bound that was recently shown for Optimistic Hedge in the special case of two-player games (Chen & Peng, NeurIPS 2020). A direct corollary of our bound is that Optimistic Hedge converges to coarse correlated equilibrium in general games at a rate of $\tilde{O}(1/T)$.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Michael Iuzzolino · Michael Mozer · Samy Bengio

Although deep feedforward neural networks share some characteristics with the primate visual system, a key distinction is their dynamics. Deep nets typically operate in serial stages wherein each layer completes its computation before processing begins in subsequent layers. In contrast, biological systems have cascaded dynamics: information propagates from neurons at all layers in parallel but transmission occurs gradually over time, leading to speed-accuracy trade offs even in feedforward architectures. We explore the consequences of biologically inspired parallel hardware by constructing cascaded ResNets in which each residual block has propagation delays but all blocks update in parallel in a stateful manner. Because information transmitted through skip connections avoids delays, the functional depth of the architecture increases over time, yielding anytime predictions that improve with internal-processing time. We introduce a temporal-difference training loss that achieves a strictly superior speed-accuracy profile over standard losses and enables the cascaded architecture to outperform state-of-the-art anytime-prediction methods. The cascaded architecture has intriguing properties, including: it classifies typical instances more rapidly than atypical instances; it is more robust to both persistent and transient noise than is a conventional ResNet; and its time-varying output trace provides a signal that can be exploited to improve information processing and inference.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Kimon Fountoulakis · Pan Li · Shenghao Yang

Recently, hypergraphs have attracted a lot of attention due to their ability to capture complex relations among entities. The insurgence of hypergraphs has resulted in data of increasing size and complexity that exhibit interesting small-scale and local structure, e.g., small-scale communities and localized node-ranking around a given set of seed nodes. Popular and principled ways to capture the local structure are the local hypergraph clustering problem and the related seed set expansion problem. In this work, we propose the first local diffusion method that achieves edge-size-independent Cheeger-type guarantee for the problem of local hypergraph clustering while applying to a rich class of higher-order relations that covers a number of previously studied special cases. Our method is based on a primal-dual optimization formulation where the primal problem has a natural network flow interpretation, and the dual problem has a cut-based interpretation using the $\ell_2$-norm penalty on associated cut-costs. We demonstrate the new technique is significantly better than state-of-the-art methods on both synthetic and real-world data.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Alexei Baevski · Wei-Ning Hsu · Alexis CONNEAU · Michael Auli

Despite rapid progress in the recent past, current speech recognition systems still require labeled training data which limits this technology to a small fraction of the languages spoken around the globe. This paper describes wav2vec-U, short for wav2vec Unsupervised, a method to train speech recognition models without any labeled data. We leverage self-supervised speech representations to segment unlabeled audio and learn a mapping from these representations to phonemes via adversarial training. The right representations are key to the success of our method. Compared to the best previous unsupervised work, wav2vec-U reduces the phone error rate on the TIMIT benchmark from 26.1 to 11.3. On the larger English Librispeech benchmark, wav2vec-U achieves a word error rate of 5.9 on test-other, rivaling some of the best published systems trained on 960 hours of labeled data from only two years ago. We also experiment on nine other languages, including low-resource languages such as Kyrgyz, Swahili and Tatar.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Vitaly Feldman · Tijana Zrnic

We consider a sequential setting in which a single dataset of individuals is used to perform adaptively-chosen analyses, while ensuring that the differential privacy loss of each participant does not exceed a pre-specified privacy budget. The standard approach to this problem relies on bounding a worst-case estimate of the privacy loss over all individuals and all possible values of their data, for every single analysis. Yet, in many scenarios this approach is overly conservative, especially for "typical" data points which incur little privacy loss by participation in most of the analyses. In this work, we give a method for tighter privacy loss accounting based on the value of a personalized privacy loss estimate for each individual in each analysis. To implement the accounting method we design a filter for Rényi differential privacy. A filter is a tool that ensures that the privacy parameter of a composed sequence of algorithms with adaptively-chosen privacy parameters does not exceed a pre-specified budget. Our filter is simpler and tighter than the known filter for $(\epsilon,\delta)$-differential privacy by Rogers et al. (2016). We apply our results to the analysis of noisy gradient descent and show that personalized accounting can be practical, easy to implement, and can only make the privacy-utility tradeoff tighter.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Aditya Bhaskara · Ashok Cutkosky · Ravi Kumar · Manish Purohit

We consider the online linear optimization problem, where at every step the algorithm plays a point $x_t$ in the unit ball, and suffers loss $\langle c_t, x_t \rangle$ for some cost vector $c_t$ that is then revealed to the algorithm. Recent work showed that if an algorithm receives a _hint_ $h_t$ that has non-trivial correlation with $c_t$ before it plays $x_t$, then it can achieve a regret guarantee of $O(\log T)$, improving on the bound of $\Theta(\sqrt{T})$ in the standard setting. In this work, we study the question of whether an algorithm really requires a hint at _every_ time step. Somewhat surprisingly, we show that an algorithm can obtain $O(\log T)$ regret with just $O(\sqrt{T})$ hints under a natural query model; in contrast, we also show that $o(\sqrt{T})$ hints cannot guarantee better than $\Omega(\sqrt{T})$ regret. We give two applications of our result, to the well-studied setting of {\em optimistic} regret bounds, and to the problem of online learning with abstention.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Menachem Sadigurschi · Uri Stemmer

We revisit the fundamental problem of learning Axis-Aligned-Rectangles over a finite grid $X^d\subseteq\mathbb{R}^d$ with differential privacy. Existing results show that the sample complexity of this problem is at most $\min\left\{ d{\cdot}\log|X| \;,\; d^{1.5}{\cdot}\left(\log^*|X| \right)^{1.5}\right\}$. That is, existing constructions either require sample complexity that grows linearly with $\log|X|$, or else it grows super linearly with the dimension $d$. We present a novel algorithm that reduces the sample complexity to only $\tilde{O}\left\{d{\cdot}\left(\log^*|X|\right)^{1.5}\right\}$, attaining a dimensionality optimal dependency without requiring the sample complexity to grow with $\log|X|$. The technique used in order to attain this improvement involves the deletion of "exposed" data-points on the go, in a fashion designed to avoid the cost of the adaptive composition theorems.The core of this technique may be of individual interest, introducing a new method for constructing statistically-efficient private algorithms.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Liad Erez · Tomer Koren

We study the online learning with feedback graphs framework introduced by Mannor and Shamir (2011), in which the feedback received by the online learner is specified by a graph $G$ over the available actions. We develop an algorithm that simultaneously achieves regret bounds of the form: $O(\sqrt{\theta(G) T})$ with adversarial losses; $O(\theta(G)\mathrm{polylog}{T})$ with stochastic losses; and $O(\theta(G)\mathrm{polylog}{T} + \sqrt{\theta(G) C})$ with stochastic losses subject to $C$ adversarial corruptions. Here, $\theta(G)$ is the $clique~covering~number$ of the graph $G$. Our algorithm is an instantiation of Follow-the-Regularized-Leader with a novel regularization that can be seen as a product of a Tsallis entropy component (inspired by Zimmert and Seldin (2019)) and a Shannon entropy component (analyzed in the corrupted stochastic case by Amir et al. (2020)), thus subtly interpolating between the two forms of entropies. One of our key technical contributions is in establishing the convexity of this regularizer and controlling its inverse Hessian, despite its complex product structure.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Soledad Villar · David W Hogg · Kate Storey-Fisher · Weichi Yao · Ben Blum-Smith

There has been enormous progress in the last few years in designing neural networks that respect the fundamental symmetries and coordinate freedoms of physical law. Some of these frameworks make use of irreducible representations, some make use of high-order tensor objects, and some apply symmetry-enforcing constraints. Different physical laws obey different combinations of fundamental symmetries, but a large fraction (possibly all) of classical physics is equivariant to translation, rotation, reflection (parity), boost (relativity), and permutations. Here we show that it is simple to parameterize universally approximating polynomial functions that are equivariant under these symmetries, or under the Euclidean, Lorentz, and Poincaré groups, at any dimensionality $d$. The key observation is that nonlinear O($d$)-equivariant (and related-group-equivariant) functions can be universally expressed in terms of a lightweight collection of scalars---scalar products and scalar contractions of the scalar, vector, and tensor inputs. We complement our theory with numerical examples that show that the scalar-based method is simple, efficient, and scalable.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Tingran Wang · Sam Buchanan · Dar Gilboa · John Wright

Data with low-dimensional nonlinear structure are ubiquitous in engineering and scientific problems. We study a model problem with such structure---a binary classification task that uses a deep fully-connected neural network to classify data drawn from two disjoint smooth curves on the unit sphere. Aside from mild regularity conditions, we place no restrictions on the configuration of the curves. We prove that when (i) the network depth is large relative to certain geometric properties that set the difficulty of the problem and (ii) the network width and number of samples is polynomial in the depth, randomly-initialized gradient descent quickly learns to correctly classify all points on the two curves with high probability. To our knowledge, this is the first generalization guarantee for deep networks with nonlinear data that depends only on intrinsic data properties. Our analysis proceeds by a reduction to dynamics in the neural tangent kernel (NTK) regime, where the network depth plays the role of a fitting resource in solving the classification problem. In particular, via fine-grained control of the decay properties of the NTK, we demonstrate that when the network is sufficiently deep, the NTK can be locally approximated by a translationally invariant operator on the manifolds and stably inverted over smooth functions, which guarantees convergence and generalization.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Sofya Raskhodnikova · Satchit Sivakumar · Adam Smith · Marika Swanberg

We initiate an investigation of private sampling from distributions. Given a dataset with $n$ independent observations from an unknown distribution $P$, a sampling algorithm must output a single observation from a distribution that is close in total variation distance to $P$ while satisfying differential privacy. Sampling abstracts the goal of generating small amounts of realistic-looking data. We provide tight upper and lower bounds for the dataset size needed for this task for three natural families of distributions: arbitrary distributions on $\{1,\ldots ,k\}$, arbitrary product distributions on $\{0,1\}^d$, and product distributions on on $\{0,1\}^d$ with bias in each coordinate bounded away from 0 and 1. We demonstrate that, in some parameter regimes, private sampling requires asymptotically fewer observations than learning a description of $P$ nonprivately; in other regimes, however, private sampling proves to be as difficult as private learning. Notably, for some classes of distributions, the overhead in the number of observations needed for private learning compared to non-private learning is completely captured by the number of observations needed for private sampling.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Haoran Wang · Weitang Liu · Alex Bocchieri · Yixuan Li

Estimating out-of-distribution (OOD) uncertainty is a major challenge for safely deploying machine learning models in the open-world environment. Improved methods for OOD detection in multi-class classification have emerged, while OOD detection methods for multi-label classification remain underexplored and use rudimentary techniques. We propose JointEnergy, a simple and effective method, which estimates the OOD indicator scores by aggregating label-wise energy scores from multiple labels. We show that JointEnergy can be mathematically interpreted from a joint likelihood perspective. Our results show consistent improvement over previous methods that are based on the maximum-valued scores, which fail to capture joint information from multiple labels. We demonstrate the effectiveness of our method on three common multi-label classification benchmarks, including MS-COCO, PASCAL-VOC, and NUS-WIDE. We show that JointEnergy can reduce the FPR95 by up to 10.05% compared to the previous best baseline, establishing state-of-the-art performance.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Guru Guruganesh · Allen Liu · Jon Schneider · Joshua Wang

We consider the problem of multi-class classification, where a stream of adversarially chosen queries arrive and must be assigned a label online. Unlike traditional bounds which seek to minimize the misclassification rate, we minimize the total distance from each query to the region corresponding to its assigned label. When the true labels are determined via a nearest neighbor partition -- i.e. the label of a point is given by which of $k$ centers it is closest to in Euclidean distance -- we show that one can achieve a loss that is independent of the total number of queries. We complement this result by showing that learning general convex sets requires an almost linear loss per query. Our results build off of regret guarantees for the problem of contextual search. In addition, we develop a novel reduction technique from multiclass classification to binary classification which may be of independent interest.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Antonious Girgis · Deepesh Data · Suhas Diggavi

We study privacy in a distributed learning framework, where clients collaboratively build a learning model iteratively throughinteractions with a server from whom we need privacy. Motivated by stochastic optimization and the federated learning (FL) paradigm, we focus on the case where a small fraction of data samples are randomly sub-sampled in each round to participate in the learning process, which also enables privacy amplification. To obtain even stronger local privacy guarantees, we study this in the shuffle privacy model, where each client randomizes its response using a local differentially private (LDP) mechanism and the server only receives a random permutation (shuffle) of the clients' responses without theirassociation to each client. The principal result of this paper is a privacy-optimization performance trade-off for discrete randomization mechanisms in this sub-sampled shuffle privacy model. This is enabledthrough a new theoretical technique to analyze the Renyi Differential Privacy (RDP) of the sub-sampled shuffle model. We numerically demonstrate that, for important regimes, with composition our boundyields significant improvement in privacy guarantee over the state-of-the-art approximate Differential Privacy (DP) guarantee (with strong composition) for sub-sampled shuffled models. We also demonstrate numerically significant improvement in privacy-learning performance operating point using real data sets. Despite these advances, an open question is to bridge the gap between lower and upper privacy bounds in our RDP analysis.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Steve Yadlowsky · Taedong Yun · Cory Y McLean · Alexander D'Amour

Logistic regression remains one of the most widely used tools in applied statistics, machine learning and data science. However, in moderately high-dimensional problems, where the number of features $d$ is a non-negligible fraction of the sample size $n$, the logistic regression maximum likelihood estimator (MLE), and statistical procedures based the large-sample approximation of its distribution, behave poorly. Recently, Sur and Candès (2019) showed that these issues can be corrected by applying a new approximation of the MLE's sampling distribution in this high-dimensional regime. Unfortunately, these corrections are difficult to implement in practice, because they require an estimate of the \emph{signal strength}, which is a function of the underlying parameters $\beta$ of the logistic regression. To address this issue, we propose SLOE, a fast and straightforward approach to estimate the signal strength in logistic regression. The key insight of SLOE is that the Sur and Candès (2019) correction can be reparameterized in terms of the corrupted signal strength, which is only a function of the estimated parameters $\widehat \beta$. We propose an estimator for this quantity, prove that it is consistent in the relevant high-dimensional regime, and show that dimensionality correction using SLOE is accurate in finite samples. Compared to the existing ProbeFrontier heuristic, SLOE is conceptually simpler and orders of magnitude faster, making it suitable for routine use. We demonstrate the importance of routine dimensionality correction in the Heart Disease dataset from the UCI repository, and a genomics application using data from the UK Biobank.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Aymeric Dieuleveut · Gersende Fort · Eric Moulines · Geneviève Robin

The Expectation Maximization (EM) algorithm is the default algorithm for inference in latent variable models. As in any other field of machine learning, applications of latent variable models to very large datasets make the use of advanced parallel and distributed architecture mandatory. This paper introduces FedEM, which is the first extension of the EM algorithm to the federated learning context. FedEM is a new communication efficient method, which handles partial participation of local devices, and is robust to heterogeneous distribution of the datasets. To alleviate the communication bottleneck, FedEM compresses appropriately defined complete data sufficient statistics. We also develop and analyze an extension of FedEM to further incorporate a variance reduction scheme. In all cases, we derive finite-time complexity bounds for smooth non-convex problems. Numerical results are presented to support our theoretical findings, as well as an application to federated missing values imputation for biodiversity monitoring.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Zeyu Shen · Lodewijk Gelauff · Ashish Goel · Aleksandra Korolova · Kamesh Munagala

We consider the problem of allocating divisible items among multiple agents, and consider the setting where any agent is allowed to introduce {\emph diversity constraints} on the items they are allocated. We motivate this via settings where the items themselves correspond to user ad slots or task workers with attributes such as race and gender on which the principal seeks to achieve demographic parity. We consider the following question: When an agent expresses diversity constraints into an allocation rule, is the allocation of other agents hurt significantly? If this happens, the cost of introducing such constraints is disproportionately borne by agents who do not benefit from diversity. We codify this via two desiderata capturing {\em robustness}. These are {\emph no negative externality} -- other agents are not hurt -- and {\emph monotonicity} -- the agent enforcing the constraint does not see a large increase in value. We show in a formal sense that the Nash Welfare rule that maximizes product of agent values is {\emph uniquely} positioned to be robust when diversity constraints are introduced, while almost all other natural allocation rules fail this criterion. We also show that the guarantees achieved by Nash Welfare are nearly optimal within a widely studied class of allocation rules. We finally perform an empirical simulation on real-world data that models ad allocations to show that this gap between Nash Welfare and other rules persists in the wild.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Tushar Nagarajan · Kristen Grauman

Complex physical tasks entail a sequence of object interactions, each with its own preconditions -- which can be difficult for robotic agents to learn efficiently solely through their own experience. We introduce an approach to discover activity-context priors from in-the-wild egocentric video captured with human worn cameras. For a given object, an activity-context prior represents the set of other compatible objects that are required for activities to succeed (e.g., a knife and cutting board brought together with a tomato are conducive to cutting). We encode our video-based prior as an auxiliary reward function that encourages an agent to bring compatible objects together before attempting an interaction. In this way, our model translates everyday human experience into embodied agent skills. We demonstrate our idea using egocentric EPIC-Kitchens video of people performing unscripted kitchen activities to benefit virtual household robotic agents performing various complex tasks in AI2-iTHOR, significantly accelerating agent learning.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Fan-Keng Sun · Chris Lang · Duane Boning

An increasing body of research focuses on using neural networks to model time series. A common assumption in training neural networks via maximum likelihood estimation on time series is that the errors across time steps are uncorrelated. However, errors are actually autocorrelated in many cases due to the temporality of the data, which makes such maximum likelihood estimations inaccurate. In this paper, in order to adjust for autocorrelated errors, we propose to learn the autocorrelation coefficient jointly with the model parameters. In our experiments, we verify the effectiveness of our approach on time series forecasting. Results across a wide range of real-world datasets with various state-of-the-art models show that our method enhances performance in almost all cases. Based on these results, we suggest empirical critical values to determine the severity of autocorrelated errors. We also analyze several aspects of our method to demonstrate its advantages. Finally, other time series tasks are also considered to validate that our method is not restricted to only forecasting.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Abdul Fatir Ansari · Konstantinos Benidis · Richard Kurle · Ali Caner Turkmen · Harold Soh · Alexander Smola · Bernie Wang · Tim Januschowski

Many complex time series can be effectively subdivided into distinct regimes that exhibit persistent dynamics. Discovering the switching behavior and the statistical patterns in these regimes is important for understanding the underlying dynamical system. We propose the Recurrent Explicit Duration Switching Dynamical System (RED-SDS), a flexible model that is capable of identifying both state- and time-dependent switching dynamics. State-dependent switching is enabled by a recurrent state-to-switch connection and an explicit duration count variable is used to improve the time-dependent switching behavior. We demonstrate how to perform efficient inference using a hybrid algorithm that approximates the posterior of the continuous states via an inference network and performs exact inference for the discrete switches and counts. The model is trained by maximizing a Monte Carlo lower bound of the marginal log-likelihood that can be computed efficiently as a byproduct of the inference routine. Empirical results on multiple datasets demonstrate that RED-SDS achieves considerable improvement in time series segmentation and competitive forecasting performance against the state of the art.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Hugo Richard · Pierre Ablin · Bertrand Thirion · Alexandre Gramfort · Aapo Hyvarinen

We consider shared response modeling, a multi-view learning problem where one wants to identify common components from multiple datasets or views. We introduce Shared Independent Component Analysis (ShICA) that models eachview as a linear transform of shared independent components contaminated by additive Gaussian noise. We show that this model is identifiable if the components are either non-Gaussian or have enough diversity in noise variances. We then show that in some cases multi-set canonical correlation analysis can recover the correct unmixing matrices, but that even a small amount of sampling noise makes Multiset CCA fail. To solve this problem, we propose to use joint diagonalization after Multiset CCA, leading to a new approach called ShICA-J. We show via simulations that ShICA-J leads to improved results while being very fast to fit. While ShICA-J is based on second-order statistics, we further propose to leverage non-Gaussianity of the components using a maximum-likelihood method, ShICA-ML, that is both more accurate and more costly. Further, ShICA comes with a principled method for shared components estimation. Finally, we provide empirical evidence on fMRI and MEG datasets that ShICA yields more accurate estimation of the componentsthan alternatives.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Ofir Nachum · Mengjiao (Sherry) Yang

In imitation learning, it is common to learn a behavior policy to match an unknown target policy via max-likelihood training on a collected set of target demonstrations. In this work, we consider using offline experience datasets -- potentially far from the target distribution -- to learn low-dimensional state representations that provably accelerate the sample-efficiency of downstream imitation learning. A central challenge in this setting is that the unknown target policy itself may not exhibit low-dimensional behavior, and so there is a potential for the representation learning objective to alias states in which the target policy acts differently. Circumventing this challenge, we derive a representation learning objective that provides an upper bound on the performance difference between the target policy and a low-dimensional policy trained with max-likelihood, and this bound is tight regardless of whether the target policy itself exhibits low-dimensional structure. Moving to the practicality of our method, we show that our objective can be implemented as contrastive learning, in which the transition dynamics are approximated by either an implicit energy-based model or, in some special cases, an implicit linear model with representations given by random Fourier features. Experiments on both tabular environments and high-dimensional Atari games provide quantitative evidence for the practical benefits of our proposed objective.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Suhas Kowshik · Dheeraj Nagaraj · Prateek Jain · Praneeth Netrapalli

We consider the problem of estimating a linear time-invariant (LTI) dynamical system from a single trajectory via streaming algorithms, which is encountered in several applications including reinforcement learning (RL) and time-series analysis. While the LTI system estimation problem is well-studied in the {\em offline} setting, the practically important streaming/online setting has received little attention. Standard streaming methods like stochastic gradient descent (SGD) are unlikely to work since streaming points can be highly correlated. In this work, we propose a novel streaming algorithm, SGD with Reverse Experience Replay (SGD-RER), that is inspired by the experience replay (ER) technique popular in the RL literature. SGD-RER divides data into small buffers and runs SGD backwards on the data stored in the individual buffers. We show that this algorithm exactly deconstructs the dependency structure and obtains information theoretically optimal guarantees for both parameter error and prediction error. Thus, we provide the first -- to the best of our knowledge -- optimal SGD-style algorithm for the classical problem of linear system identification with a first order oracle. Furthermore, SGD-RER can be applied to more general settings like sparse LTI identification with known sparsity pattern, and non-linear dynamical systems. Our work demonstrates that the knowledge of data dependency structure can aid us in designing statistically and computationally efficient algorithms which can ``decorrelate'' streaming samples.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Shangshu Qian · Viet Hung Pham · Thibaud Lutellier · Zeou Hu · Jungwon Kim · Lin Tan · Yaoliang Yu · Jiahao Chen · Sameena Shah

Deep learning (DL) systems have been gaining popularity in critical tasks such as credit evaluation and crime prediction. Such systems demand fairness. Recent work shows that DL software implementations introduce variance: identical DL training runs (i.e., identical network, data, configuration, software, and hardware) with a fixed seed produce different models. Such variance could make DL models and networks violate fairness compliance laws, resulting in negative social impact. In this paper, we conduct the first empirical study to quantify the impact of software implementation on the fairness and its variance of DL systems. Our study of 22 mitigation techniques and five baselines reveals up to 12.6% fairness variance across identical training runs with identical seeds. In addition, most debiasing algorithms have a negative impact on the model such as reducing model accuracy, increasing fairness variance, or increasing accuracy variance. Our literature survey shows that while fairness is gaining popularity in artificial intelligence (AI) related conferences, only 34.4% of the papers use multiple identical training runs to evaluate their approach, raising concerns about their results’ validity. We call for better fairness evaluation and testing protocols to improve fairness and fairness variance of DL systems as well as DL research validity and reproducibility at large.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Prashant Khanduri · Siliang Zeng · Mingyi Hong · Hoi-To Wai · Zhaoran Wang · Zhuoran Yang

This paper proposes a new algorithm -- the \underline{S}ingle-timescale Do\underline{u}ble-momentum \underline{St}ochastic \underline{A}pprox\underline{i}matio\underline{n} (SUSTAIN) -- for tackling stochastic unconstrained bilevel optimization problems. We focus on bilevel problems where the lower level subproblem is strongly-convex and the upper level objective function is smooth. Unlike prior works which rely on \emph{two-timescale} or \emph{double loop} techniques, we design a stochastic momentum-assisted gradient estimator for both the upper and lower level updates. The latter allows us to control the error in the stochastic gradient updates due to inaccurate solution to both subproblems. If the upper objective function is smooth but possibly non-convex, we show that {SUSTAIN}~requires $O(\epsilon^{-3/2})$ iterations (each using $O(1)$ samples) to find an $\epsilon$-stationary solution. The $\epsilon$-stationary solution is defined as the point whose squared norm of the gradient of the outer function is less than or equal to $\epsilon$. The total number of stochastic gradient samples required for the upper and lower level objective functions matches the best-known complexity for single-level stochastic gradient algorithms. We also analyze the case when the upper level objective function is strongly-convex.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Ibrahim Jubran · Ernesto Evgeniy Sanches Shayda · Ilan I Newman · Dan Feldman

A $k$-decision tree $t$ (or $k$-tree) is a recursive partition of a matrix (2D-signal) into $k\geq 1$ block matrices (axis-parallel rectangles, leaves) where each rectangle is assigned a real label. Its regression or classification loss to a given matrix $D$ of $N$ entries (labels) is the sum of squared differences over every label in $D$ and its assigned label by $t$.Given an error parameter $\varepsilon\in(0,1)$, a $(k,\varepsilon)$-coreset $C$ of $D$ is a small summarization that provably approximates this loss to \emph{every} such tree, up to a multiplicative factor of $1\pm\varepsilon$. In particular, the optimal $k$-tree of $C$ is a $(1+\varepsilon)$-approximation to the optimal $k$-tree of $D$.We provide the first algorithm that outputs such a $(k,\varepsilon)$-coreset for \emph{every} such matrix $D$. The size $|C|$ of the coreset is polynomial in $k\log(N)/\varepsilon$, and its construction takes $O(Nk)$ time.This is by forging a link between decision trees from machine learning -- to partition trees in computational geometry. Experimental results on \texttt{sklearn} and \texttt{lightGBM} show that applying our coresets on real-world data-sets boosts the computation time of random forests and their parameter tuning by up to x$10$, while keeping similar accuracy. Full open source code is provided.

Thu 9 Dec. 8:30 - 10:00 PST

(Poster)

Vivien Cabannes · Loucas Pillaud-Vivien · Francis Bach · Alessandro Rudi

As annotations of data can be scarce in large-scale practical problems, leveraging unlabelled examples is one of the most important aspects of machine learning. This is the aim of semi-supervised learning. To benefit from the access to unlabelled data, it is natural to diffuse smoothly knowledge of labelled data to unlabelled one. This induces to the use of Laplacian regularization. Yet, current implementations of Laplacian regularization suffer from several drawbacks, notably the well-known curse of dimensionality. In this paper, we design a new class of algorithms overcoming this issue, unveiling a large body of spectral filtering methods. Additionally, we provide a statistical analysis showing that our estimators exhibit desirable behaviors. They are implemented through (reproducing) kernel methods, for which we provide realistic computational guidelines in order to make our method usable with large amounts of data.