Skip to yearly menu bar Skip to main content


Timezone: America/Los_Angeles
Filter Events
Oral
12:00 AM - 1:00 AM
6 Events in this session
Go to Event Page
Oral
6 Events in this session
Thomas Langlois · Haicheng Zhao · Erin Grant · Ishita Dasgupta · Tom Griffiths · Nori Jacoby
Q&A
Songyou Peng · Chiyu Jiang · Yiyi Liao · Michael Niemeyer · Marc Pollefeys · Andreas Geiger
Q&A
Uri Sherman · Tomer Koren · Yishay Mansour
Q&A
Go to Event Page
Datasets and Benchmarks

Dataset and Benchmark Track 3

Joaquin Vanschoren · Serena Yeung-Levy
12:00 AM - 1:00 AM

The Datasets and Benchmarks track serves as a novel venue for high-quality publications, talks, and posters on highly valuable machine learning datasets and benchmarks, as well as a forum for discussions on how to improve dataset development. Datasets and benchmarks are crucial for the development of machine learning methods, but also require their own publishing and reviewing guidelines. For instance, datasets can often not be reviewed in a double-blind fashion, and hence full anonymization will not be required. On the other hand, they do require additional specific checks, such as a proper description of how the data was collected, whether they show intrinsic bias, and whether they will remain accessible.

... more
Competition

Competition Track Day 4: Overviews + Breakout Sessions

Douwe Kiela · Marco Ciccone · Barbara Caputo
2:00 AM - 6:44 AM

The program includes a wide variety of exciting competitions in different domains, with some focusing more on applications and others trying to unify fields, focusing on technical challenges or directly tackling important problems in the world. The aim is for the broad program to make it so that anyone who wants to work on or learn from a competition can find something to their liking.

In this session, we have the following competitions:
* The Image Similarity Challenge
* Enhanced Zero-Resource Speech Challenge 2021: Language Modelling from Speech and Images
* The BEETL Competition: Benchmarks for EEG Transfer Learning
* Multimodal Single-Cell Data Integration
* The AI Driving Olympics

... more
Affinity Workshop

WiML Workshop 3

Soomin Aga Lee · Meera Desai · Nezihe Merve Gürel · Boyi Li · Linh Tran · Akiko Eriguchi · Jieyu Zhao · Salomey Osei · Sirisha Rambhatla · Geeticka Chauhan · Nwamaka (Amaka) Okafor · Mariya Vasileva
2:00 AM - 7:00 AM

WiML’s purpose is to enhance the experience of women in machine learning. Our flagship event is the annual Women in Machine Learning (WiML) Workshop, typically co-located with NeurIPS. We also organize an “un-workshop” at ICML, as well as small events at other machine learning conferences such as AISTATS, ICLR, etc.

Our mission is to enhance the experience of women in machine learning, and thereby

Increase the number of women in machine learning
Help women in machine learning succeed professionally
Increase the impact of women in machine learning in the community

Toward this goal, we create opportunities for women to engage in substantive technical and professional conversations in a positive, supportive environment (e.g. annual workshop, small events, mentoring program). We also work to increase awareness and appreciation of the achievements of women in machine learning (e.g. directory and profiles of women in machine learning). Our programs help women build their technical confidence and their voice, and our publicity efforts help ensure that women in machine learning and their achievements are known in the community.

... more
Affinity Workshop

Black in AI Workshop

Irene Nandutu · Hameed Abdul-Rashid · Foutse Yuehgoh · Mírian Silva · Salomey Osei · Victor Silva
2:00 AM - 7:00 AM

Black in AI exists to create a space for sharing ideas, foster collaborations, and discuss initiatives to increase the presence of Black individuals in the field of AI. To this end, we hold an annual technical workshop series, run mentoring programs, and maintain various fora for fostering partnerships and collaborations with and among black AI researchers. The 5th Black in AI workshop and 2nd virtual Black in AI workshop will consist of selected oral presentations, invited keynote speakers, a joint poster session with other affinity groups, sponsorship sessions, and startups showcases. Our workshop exists to amplify the voices of black researchers at NeurIPS.

... more
Invited Talk

In nature, groups of thousands of individuals cooperate to create complex structure purely through local interactions – from cells that form complex organisms, to social insects like termites that build meter-high mounds and army ants that self-assemble entire nests, to the complex and mesmerizing motion of fish schools and bird flocks. What makes these systems so fascinating to scientists and engineers alike, is that even though each individual has limited ability, as a collective they achieve tremendous complexity.

What would it take to create our own artificial collectives of the scale and complexity that nature achieves? My lab investigates this question by using inspiration from biological collectives to create robotic systems, e.g. the Kilobot thousand robot swarm inspired by cells, and the Termes robots inspired by mound-building termites. In this talk, I will discuss a recent project in my group – Eciton robotica - to create a self-assembling swarm of soft climbing robots inspired by the living architectures of army ants. Our work spans soft robotics, new theoretical models of self-organized self-assembly, and new field experiments in biology. Most critically, our work derives from the collective intelligence of engineers and scientists working together.

... more
Speaker Bio
Radhika Nagpal
Radhika Nagpal is currently the Kavli Professor of Computer Science at Harvard University and a founding faculty member of the Wyss Institute for Biologically Inspired Engineering. Starting January 2022, she will be moving to Princeton University to lead new robotics initiatives. Nagpal leads the Self-organizing Systems Research Group (SSR) and her research interests span computer science, robotics, and biology. Nagpal was chosen by the journal Nature as one of the top ten influential scientists and engineers of the year (Nature 10 award, Dec 2014). Other awards include the Microsoft New Faculty Fellowship (2005), NSF Career Award (2007), Borg Early Career Award (2010), Radcliffe Fellowship (2012), the McDonald Mentoring Award (2015), AAAI and ACM Fellow (2020), and being an invited TED speaker in 2017. Nagpal is the co-founder of ROOT Robotics, an educational robotics company aimed at democratizing AI and robotics through early education; her lab's Kilobots have been commercialized with over 8000 robots sold worldwide. Nagpal is also the author of a Scientific American blog article on tenure-track life ("the Awesomest 7-year Postdoc", 2013), and is dedicated to creating a diverse and inclusive culture in STEM and academia. Website: https://www.radhikanagpal.org
... more
Demonstration

Demonstrations 4

Douwe Kiela · Barbara Caputo · Marco Ciccone
8:30 AM - 9:50 AM

Demonstrations must show novel technology and must run online during the conference. Unlike poster presentations or slide shows, interaction with the audience is a critical element. Therefore, the creativity of demonstrators to propose new ways in which interaction and engagement can fully leverage this year’s virtual conference format will be particularly relevant for selection. This session has the following demonstrations:

  • Protopia AI: Taking on the Missing Link in AI Privacy and Data Protection
  • MEWS: Real-time Social Media Manipulation Detection and Analysis
  • An Interactive Visual Demo of Bias Mitigation Techniques for Word Representations
  • TripleBlind: A Privacy Preserving Framework for Decentralized Data and Algorithms
... more
Datasets and Benchmarks

Dataset and Benchmark Poster Session 4

Joaquin Vanschoren · Serena Yeung-Levy
8:30 AM - 10:00 AM

The Datasets and Benchmarks track serves as a novel venue for high-quality publications, talks, and posters on highly valuable machine learning datasets and benchmarks, as well as a forum for discussions on how to improve dataset development. Datasets and benchmarks are crucial for the development of machine learning methods, but also require their own publishing and reviewing guidelines. For instance, datasets can often not be reviewed in a double-blind fashion, and hence full anonymization will not be required. On the other hand, they do require additional specific checks, such as a proper description of how the data was collected, whether they show intrinsic bias, and whether they will remain accessible.

... more
Poster
8:30 AM - 10:00 AM
266 Events in this session
Maximilian Thiessen · Thomas Gaertner
Pouya Bashivan · Reza Bayat · Adam Ibrahim · Kartik Ahuja · Mojtaba Faramarzi · Touraj Laleh · Blake Richards · Irina Rish
Isha Puri · Amit Dhurandhar · Tejaswini Pedapati · Karthikeyan Shanmugam · Dennis Wei · Kush Varshney
Lucas Liebenwein · Alaa Maalouf · Dan Feldman · Daniela Rus
Grigorios Chrysos · Markos Georgopoulos · Yannis Panagakis
Oleksandr Shchur · Ali Caner Turkmen · Tim Januschowski · Jan Gasthaus · Stephan Günnemann
Michael Diskin · Alexey Bukhtiyarov · Max Ryabinin · Lucile Saulnier · quentin lhoest · Anton Sinitsin · Dmitry Popov · Dmitry V. Pyrkin · Maxim Kashirin · Alexander Borzunov · Albert Villanova del Moral · Denis Mazur · Ilia Kobelev · Yacine Jernite · Thomas Wolf · Gennady Pekhimenko
Devendra Singh · Siva Reddy · Will Hamilton · Chris Dyer · Dani Yogatama
Sandareka Wickramanayake · Wynne Hsu · Mong Li Lee
Colin White · Arber Zela · Robin Ru · Yang Liu · Frank Hutter
Hankook Lee · Kibok Lee · Kimin Lee · Honglak Lee · Jinwoo Shin
Ting Chen · Calvin Luo · Lala Li
Muhammad Muzammal Naseer · Kanchana Ranasinghe · Salman H Khan · Munawar Hayat · Fahad Shahbaz Khan · Ming-Hsuan Yang
Aditya Vardhan Varre · Loucas Pillaud-Vivien · Nicolas Flammarion
Vaidyanathan Peruvemba Ramaswamy · Stefan Szeider
Vignesh Ram Somnath · Charlotte Bunne · Connor Coley · Andreas Krause · Regina Barzilay
Tanya Marwah · Zachary Lipton · Andrej Risteski
Yair Schiff · Brian Quanz · Payel Das · Pin-Yu Chen
Anastasia Makarova · Ilnura Usmanova · Ilija Bogunovic · Andreas Krause
Yaoyao Liu · Bernt Schiele · Qianru Sun
Saber Jafarpour · Alexander Davydov · Anton Proskurnikov · Francesco Bullo
Suraj Kothawade · Nathan Beck · Krishnateja Killamsetty · Rishabh Iyer
Jonas Köhler · Andreas Krämer · Frank Noe
Victor-Alexandru Darvariu · Stephen Hailes · Mirco Musolesi
Sebastian Jaszczur · Aakanksha Chowdhery · Afroz Mohiuddin · LUKASZ KAISER · Wojciech Gajewski · Henryk Michalewski · Jonni Kanerva
Robin Ru · Clare Lyle · Lisa Schut · Miroslav Fil · Mark van der Wilk · Yarin Gal
Thomas Scialom · Paul-Alexis Dray · Jacopo Staiano · Sylvain Lamprier · Benjamin Piwowarski
JIABO HE · Sarah Erfani · Xingjun Ma · James Bailey · Ying Chi · Xian-Sheng Hua
Le Hui · Lingpeng Wang · Mingmei Cheng · Jin Xie · Jian Yang
Jeffrey Ichnowski · Paras Jain · Bartolomeo Stellato · Goran Banjac · Michael Luo · Francesco Borrelli · Joseph Gonzalez · Ion Stoica · Ken Goldberg
Murtaza Dalal · Deepak Pathak · Russ Salakhutdinov
Antonio Vergari · YooJung Choi · Anji Liu · Stefano Teso · Guy Van den Broeck
Quentin Lutz · Elie de Panafieu · Maya Stein · Alex Scott
Jihun Yun · Aurelie Lozano · Eunho Yang
Ishan Durugkar · Mauricio Tec · Scott Niekum · Peter Stone
Zhun Deng · Linjun Zhang · Kailas Vodrahalli · Kenji Kawaguchi · James Zou
Marco Federici · Ryota Tomioka · Patrick Forré
Yanis Bahroun · Dmitri Chklovskii · Anirvan Sengupta
Mani Malek Esmaeili · Ilya Mironov · Karthik Prasad · Igor Shilov · Florian Tramer
John Abowd · Robert Ashmead · Ryan Cumings-Menon · Simson Garfinkel · Daniel Kifer · Philip Leclerc · William Sexton · Ashley Simpson · Christine Task · Pavel Zhuravlev
Christoph Dann · Mehryar Mohri · Tong Zhang · Julian Zimmert
Emiel Hoogeboom · Didrik Nielsen · Priyank Jaini · Patrick Forré · Max Welling
Guocheng Qian · Hasan Hammoud · Guohao Li · Ali Thabet · Bernard Ghanem
Gal Shachaf · Alon Brutzkus · Amir Globerson
Jason Altschuler · Sinho Chewi · Patrik R Gerber · Austin Stromme
Gui Citovsky · Giulia DeSalvo · Claudio Gentile · Lazaros Karydas · Anand Rajagopalan · Afshin Rostamizadeh · Sanjiv Kumar
Tengyang Xie · Ching-An Cheng · Nan Jiang · Paul Mineiro · Alekh Agarwal
Shiqi Wang · Huan Zhang · Kaidi Xu · Xue Lin · Suman Jana · Cho-Jui Hsieh · J. Zico Kolter
Maryam Negahbani · Deeparnab Chakrabarty
Christoph Dann · Teodor Vanislavov Marinov · Mehryar Mohri · Julian Zimmert
Luca Weihs · Unnat Jain · Iou-Jen Liu · Jordi Salvador · Svetlana Lazebnik · Aniruddha Kembhavi · Alex Schwing
Joshua Robinson · Li Sun · Ke Yu · Kayhan Batmanghelich · Stefanie Jegelka · Suvrit Sra
Avi Schwarzschild · Eitan Borgnia · Arjun Gupta · Furong Huang · Uzi Vishkin · Micah Goldblum · Tom Goldstein
Michael Boratko · Dongxu Zhang · Nicholas Monath · Luke Vilnis · Kenneth L Clarkson · Andrew McCallum
Gal Greshler · Tamar Shaham · Tomer Michaeli
Guillaume Le Moing · Jean Ponce · Cordelia Schmid
Yang Bai · Xin Yan · Yong Jiang · Shu-Tao Xia · Yisen Wang
Dandan Shan · Richard Higgins · David Fouhey
Artin Spiridonoff · Alex Olshevsky · Yannis Paschalidis
Yunxiang Zhang · Xiangyu Zhang · Peter Frazier
Pietro Mazzaglia · Tim Verbelen · Bart Dhoedt
Thong Nguyen · Anh Tuan Luu
shuang ma · Zhaoyang Zeng · Daniel McDuff · Yale Song
Ahmet Alacaoglu · Yura Malitsky · Volkan Cevher
Vladimir Braverman · Shaofeng Jiang · Robert Krauthgamer · Xuan Wu
Hongji Yang · Xiufan Lu · Yingying Zhu
Gaurav Yengera · Rati Devidze · Parameswaran Kamalaruban · Adish Singla
Ke Sun · Yafei Wang · Yi Liu · yingnan zhao · Bo Pan · Shangling Jui · Bei Jiang · Linglong Kong
Tianchang Shen · Jun Gao · Kangxue Yin · Ming-Yu Liu · Sanja Fidler
Jayaraman Thiagarajan · Vivek Sivaraman Narayanaswamy · Deepta Rajan · Jia Liang · Akshay Chaudhari · Andreas Spanias
Zekun Tong · Yuxuan Liang · Henghui Ding · Yongxing Dai · Xinke Li · Changhu Wang
Johannes Gasteiger · Chandan Yeshwanth · Stephan Günnemann
Kaixiong Zhou · Xiao Huang · Daochen Zha · Rui Chen · Li Li · Soo-Hyun Choi · Xia Hu
Mohammad Ali Bashiri · Brian Ziebart · Xinhua Zhang
Subha Maity · Debarghya Mukherjee · Mikhail Yurochkin · Yuekai Sun
Ran Liu · Mehdi Azabou · Max Dabagia · Chi-Heng Lin · Mohammad Gheshlaghi Azar · Keith Hengen · Michal Valko · Eva Dyer
Hussein Hazimeh · Zhe Zhao · Aakanksha Chowdhery · Maheswaran Sathiamoorthy · Yihua Chen · Rahul Mazumder · Lichan Hong · Ed Chi
Vincent ADAM · Paul Chang · Mohammad Emtiyaz Khan · Arno Solin
Virginia Aglietti · Neil Dhir · Javier González · Theodoros Damoulas
Ziwei Ji · Justin Li · Matus Telgarsky
Wenbo Guo · Xian Wu · Usmann Khan · Xinyu Xing
Jaehyeong Jo · Jinheon Baek · Seul Lee · Dongki Kim · Minki Kang · Sung Ju Hwang
Soumyadip Ghosh · Mark Squillante · Ebisa Wollega
Shantanu Gupta · Zachary Lipton · David Childers
Yong Xu · Feng Li · Zhile Chen · Jinxiu Liang · Yuhui Quan
Subhadip Mukherjee · Marcello Carioni · Ozan Öktem · Carola-Bibiane Schönlieb
Steven Hansen · Guillaume Desjardins · Kate Baumli · David Warde-Farley · Nicolas Heess · Simon Osindero · Volodymyr Mnih
Hanlin Tang · Yao Li · Ji Liu · Ming Yan
Ari Pakman · Amin Nejatbakhsh · Dar Gilboa · Abdullah Makkeh · Luca Mazzucato · Michael Wibral · Elad Schneidman
Jonathan Crabbe · Zhaozhi Qian · Fergus Imrie · Mihaela van der Schaar
Rati Devidze · Goran Radanovic · Parameswaran Kamalaruban · Adish Singla
Stanislav Fort · Jie Ren · Balaji Lakshminarayanan
Man Shun Ang · Jianzhu Ma · Nianjun Liu · Kun Huang · Yijie Wang
Ruiquan Huang · Weiqiang Wu · Jing Yang · Cong Shen
Yang Zhang · Ashkan Khakzar · Yawei Li · Azade Farshad · Seong Tae Kim · Nassir Navab
Marcelo Arenas · Daniel Báez · Pablo Barceló · Jorge Pérez · Bernardo Subercaseaux
Wasim Huleihel · Arya Mazumdar · Soumyabrata Pal
Johannes Gasteiger · Florian Becker · Stephan Günnemann
Yuhong Li · Cong Hao · Pan Li · Jinjun Xiong · Deming Chen
Kazuki Irie · Imanol Schlag · Róbert Csordás · Jürgen Schmidhuber
Stephen Roller · Sainbayar Sukhbaatar · arthur szlam · Jason Weston
Melih Barsbey · Milad Sefidgaran · Murat Erdogdu · Gaël Richard · Umut Simsekli
Jonas Gehring · Gabriel Synnaeve · Andreas Krause · Nicolas Usunier
Charles Packer · Pieter Abbeel · Joseph Gonzalez
Soojung Yang · Doyeong Hwang · Seul Lee · Seongok Ryu · Sung Ju Hwang
Pedro Rodrigues · Thomas Moreau · Gilles Louppe · Alexandre Gramfort
Kurtland Chua · Qi Lei · Jason Lee
Roland S. Zimmermann · Judy Borowski · Robert Geirhos · Matthias Bethge · Thomas Wallis · Wieland Brendel
Scott Pesme · Loucas Pillaud-Vivien · Nicolas Flammarion
Vincent Cohen-Addad · David Saulpic · Chris Schwiegelshohn
Lili Chen · Kimin Lee · Aravind Srinivas · Pieter Abbeel
Ziyu Jiang · Tianlong Chen · Ting Chen · Zhangyang Wang
Frank Ruis · Gertjan Burghouts · Doina Bucur
Mathias Lechner · Đorđe Žikelić · Krishnendu Chatterjee · Thomas Henzinger
Kaiji Lu · Zifan Wang · Piotr Mardziel · Anupam Datta
Stefano Teso · Andrea Bontempelli · Fausto Giunchiglia · Andrea Passerini
Ioana Bica · Daniel Jarrett · Mihaela van der Schaar
Yura Perugachi-Diaz · Jakub Tomczak · Sandjai Bhulai
Alexander Hoyle · Pranav Goel · Andrew Hian-Cheong · Denis Peskov · Jordan Boyd-Graber · Philip Resnik
Jingjing Li · Wei Ji · Qi Bi · Cheng Yan · Miao Zhang · Yongri Piao · Huchuan Lu · Li cheng
Mandela Patrick · Dylan Campbell · Yuki Asano · Ishan Misra · Florian Metze · Christoph Feichtenhofer · Andrea Vedaldi · João Henriques
Erik Daxberger · Agustinus Kristiadi · Alexander Immer · Runa Eschenhagen · Matthias Bauer · Philipp Hennig
Van Huy Vo · Elena Sizikova · Cordelia Schmid · Patrick Pérez · Jean Ponce
Bohdan Kivva · Goutham Rajendran · Pradeep Ravikumar · Bryon Aragam
Nan Liu · Shuang Li · Yilun Du · Josh Tenenbaum · Antonio Torralba
Toru Lin · Jacob Huh · Christopher Stauffer · Ser Nam Lim · Phillip Isola
Nicolas Skatchkovsky · Osvaldo Simeone · Hyeryung Jang
Kareem Amin · Giulia DeSalvo · Afshin Rostamizadeh
Kirill Struminsky · Artyom Gadetsky · Denis Rakitin · Danil Karpushkin · Dmitry Vetrov
Yi-Lin Tuan · Connor Pryor · Wenhu Chen · Lise Getoor · William Yang Wang
Stefani Karp · Ezra Winston · Yuanzhi Li · Aarti Singh
Xuezhe Ma · Xiang Kong · Sinong Wang · Chunting Zhou · Jonathan May · Hao Ma · Luke Zettlemoyer
Mitchell Plyler · Michael Green · Min Chi
Nimita Shinde · Vishnu Narayanan · James Saunderson
Ji Lin · Wei-Ming Chen · Han Cai · Chuang Gan · Song Han
Elias Frantar · Eldar Kurtic · Dan Alistarh
Alon Cohen · Yonathan Efroni · Yishay Mansour · Aviv Rosenberg
Max Ryabinin · Eduard Gorbunov · Vsevolod Plokhotnyuk · Gennady Pekhimenko
Jianhong Wang · Wangkun Xu · Yunjie Gu · Wenbin Song · Tim C Green
Fabian Falck · Haoting Zhang · Matthew Willetts · George Nicholson · Christopher Yau · Chris C Holmes
harsh satija · Philip Thomas · Joelle Pineau · Romain Laroche
Buddhima Gamlath · Xinrui Jia · Adam Polak · Ola Svensson
Aldo Pacchiano · Jonathan N Lee · Peter Bartlett · Ofir Nachum
Marin Biloš · Johanna Sommer · Syama Sundar Rangapuram · Tim Januschowski · Stephan Günnemann
Xueqian Li · Jhony Kaesemodel Pontes · Simon Lucey
Soumya Basu · Branislav Kveton · Manzil Zaheer · Csaba Szepesvari
Meera Hahn · Devendra Singh Chaplot · Shubham Tulsiani · Mustafa Mukadam · James Rehg · Abhinav Gupta
Jonas Zehnder · Yue Li · Stelian Coros · Bernhard Thomaszewski
Stelios Triantafyllou · Adish Singla · Goran Radanovic
Emile Mathieu · Adam Foster · Yee Teh
Giulia DeSalvo · Claudio Gentile · Tobias Sommer Thune
Matteo Almanza · Flavio Chierichetti · Silvio Lattanzi · Alessandro Panconesi · Giuseppe Re
Sahra Ghalebikesabi · Lucile Ter-Minassian · Karla DiazOrdaz · Chris C Holmes
Julian Zilly · Alessandro Achille · Andrea Censi · Emilio Frazzoli
Pranjal Awasthi · Natalie Frank · Mehryar Mohri
David Abel · Will Dabney · Anna Harutyunyan · Mark Ho · Michael Littman · Doina Precup · Satinder Singh
Katja Schwarz · Yiyi Liao · Andreas Geiger
Emmanuel Abbe · Pritish Kamath · Eran Malach · Colin Sandon · Nathan Srebro
Sudhanshu Chanpuriya · Cameron Musco · Konstantinos Sotiropoulos · Charalampos Tsourakakis
Zhengyang Geng · Xin-Yu Zhang · Shaojie Bai · Yisen Wang · Zhouchen Lin
Ali Taghibakhshi · Scott MacLachlan · Luke Olson · Matthew West
Vincent Cohen-Addad · Silvio Lattanzi · Ashkan Norouzi-Fard · Christian Sohler · Ola Svensson
Luigi Carratino · Stefano Vigogna · Daniele Calandriello · Lorenzo Rosasco
Bowen Cheng · Alex Schwing · Alexander Kirillov
Joshua Engels · Benjamin Coleman · Anshumali Shrivastava
Janardhan Kulkarni · Yin Tat Lee · Daogao Liu
Chen Gao · Yinfeng Li · Quanming Yao · Depeng Jin · Yong Li
Soufiane Hayou · Fadhel Ayed
James Bell · Linda Linsefors · Caspar Oesterheld · Joar Skalse
Henning Petzka · Michael Kamp · Linara Adilova · Cristian Sminchisescu · Mario Boley
Zhongzhan Huang · Wenqi Shao · Xinjiang Wang · Liang Lin · Ping Luo
Tom Zahavy · Brendan O'Donoghue · Guillaume Desjardins · Satinder Singh
Songwei Ge · Shlok Mishra · Chun-Liang Li · Haohan Wang · David Jacobs
Simon Geisler · Tobias Schmidt · Hakan Şirin · Daniel Zügner · Aleksandar Bojchevski · Stephan Günnemann
Silvio Lattanzi · Benjamin Moseley · Sergei Vassilvitskii · Yuyan Wang · Rudy Zhou
Tianshi Cao · Sasha (Alexandre) Doubov · David Acuna · Sanja Fidler
Alkis Gotovos · Rebekka Burkholz · John Quackenbush · Stefanie Jegelka
Beidi Chen · Tri Dao · Eric Winsor · Zhao Song · Atri Rudra · Christopher Ré
Miltiadis Allamanis · Henry Jackson-Flux · Marc Brockschmidt
Aadil Oufkir · Omar Fawzi · Nicolas Flammarion · Aurélien Garivier
Ayush Sekhari · Karthik Sridharan · Satyen Kale
Indra Kumar · Carlos Scheidegger · Suresh Venkatasubramanian · Sorelle Friedler
Vasu Singla · Songwei Ge · Basri Ronen · David Jacobs
Bahare Fatemi · Layla El Asri · Seyed Mehran Kazemi
Bahjat Kawar · Gregory Vaksman · Michael Elad
Christina Yuan · Yash Chandak · Stephen Giguere · Philip Thomas · Scott Niekum
Adrian Bulat · Juan Manuel Perez Rua · Swathikiran Sudhakaran · Brais Martinez · Georgios Tzimiropoulos
Lucas Liebenwein · Ramin Hasani · Alexander Amini · Daniela Rus
Shiwei Liu · Tianlong Chen · Xiaohan Chen · Zahra Atashgahi · Lu Yin · Huanyu Kou · Li Shen · Mykola Pechenizkiy · Zhangyang Wang · Decebal Constantin Mocanu
Hippolyt Ritter · Martin Kukla · Cheng Zhang · Yingzhen Li
Jacob Austin · Daniel D. Johnson · Jonathan Ho · Daniel Tarlow · Rianne van den Berg
Soumyabrata Pal · Arya Mazumdar · Venkata Gandikota
Irina Higgins · Peter Wirnsberger · Andrew Jaegle · Aleksandar Botev
Dongmin Park · Hwanjun Song · Minseok Kim · Jae-Gil Lee
Fabian Latorre · Leello Tadesse Dadi · Paul Rolland · Volkan Cevher
Shahab Bakhtiari · Patrick Mineault · Timothy Lillicrap · Christopher Pack · Blake Richards
Quinlan Dawkins · Minbiao Han · Haifeng Xu
Rohan Paleja · Muyleng Ghuy · Nadun Ranawaka Arachchige · Reed Jensen · Matthew Gombolay
Dilip Arumugam · Benjamin Van Roy
Gonzalo Jaimovitch-Lopez · David Castellano Falcón · Cesar Ferri · José Hernández-Orallo
Julien Boussard · Erdem Varol · Hyun Dong Lee · Nishchal Dethe · Liam Paninski
Yuzhou Chen · Baris Coskunuzer · Yulia Gel
Nils Bjorck · Carla Gomes · Kilian Weinberger
Christoph Hertrich · Amitabh Basu · Marco Di Summa · Martin Skutella
Sohini Upadhyay · Shalmali Joshi · Himabindu Lakkaraju
Xiangyu Liu · Hangtian Jia · Ying Wen · Yujing Hu · Yingfeng Chen · Changjie Fan · ZHIPENG HU · Yaodong Yang
Drew Linsley · Girik Malik · Junkyung Kim · Lakshmi Narasimhan Govindarajan · Ennio Mingolla · Thomas Serre
Aljaz Bozic · Pablo Palafox · Justus Thies · Angela Dai · Matthias Niessner
Amrith Setlur · Oscar Li · Virginia Smith
Debolina Paul · Saptarshi Chakraborty · Swagatam Das · Jason Xu
George Zhang · Jingjing Qian · Jun Chen · Ashish Khisti
Rafael Rafailov · Tianhe Yu · Aravind Rajeswaran · Chelsea Finn
Quynh Nguyen · Pierre Bréchet · Marco Mondelli
Peisong Wen · Qianqian Xu · Zhiyong Yang · Yuan He · Qingming Huang
Simon Kornblith · Ting Chen · Honglak Lee · Mohammad Norouzi
Yuming Shen · Ziyi Shen · Menghan Wang · Jie Qin · Philip Torr · Ling Shao
Maciej Wołczyk · Bartosz Wójcik · Klaudia Bałazy · Igor T Podolak · Jacek Tabor · Marek Śmieja · Tomasz Trzcinski
Go to Event Page
Social

Un-bookclub Algorithms of Oppression

Rajasi Desai · Anoush Najarian · Sindhuja Parimalarangan
11:00 AM - 12:00 PM

Let’s come together for an Un-Bookclub book Algorithms of Oppression social at NeurIPS. We’ve been learning a lot from the discussions in the cross-continental book club that we’ve been running out of this book by the celebrated UCLA Professor Dr. Safyia Umoja Noble. We’d love to give you the gift of connection, conversation, and reflection Dr. Noble gave us. We’ll briefly introduce the author’s ideas and do hands-on exercises to seed discussions about the human impact of AI and search engines in our lives. There is no prework for this social and you are not expected to have read the book to participate in the exercises and discussions.

... more
Affinity Workshop

WiML Workshop 4

Soomin Aga Lee · Meera Desai · Nezihe Merve Gürel · Boyi Li · Linh Tran · Akiko Eriguchi · Jieyu Zhao · Salomey Osei · Sirisha Rambhatla · Geeticka Chauhan · Nwamaka (Amaka) Okafor · Mariya Vasileva
11:00 AM - 3:00 PM

WiML’s purpose is to enhance the experience of women in machine learning. Our flagship event is the annual Women in Machine Learning (WiML) Workshop, typically co-located with NeurIPS. We also organize an “un-workshop” at ICML, as well as small events at other machine learning conferences such as AISTATS, ICLR, etc.

Our mission is to enhance the experience of women in machine learning, and thereby

Increase the number of women in machine learning
Help women in machine learning succeed professionally
Increase the impact of women in machine learning in the community

Toward this goal, we create opportunities for women to engage in substantive technical and professional conversations in a positive, supportive environment (e.g. annual workshop, small events, mentoring program). We also work to increase awareness and appreciation of the achievements of women in machine learning (e.g. directory and profiles of women in machine learning). Our programs help women build their technical confidence and their voice, and our publicity efforts help ensure that women in machine learning and their achievements are known in the community.

... more
Social

Roundtable Chatroom

Beverly Chen · Ronald Clark · Daniel Lenton · Shuyu Lin
12:00 PM - 2:00 PM

Roundtable Chatroom is a community that fosters communication and sharing of great ideas dedicated to AI and ML practitioners. Our main event is inspired by the roundtable chats back in the physical conference era, where participants discuss a topic for some time before moving on to the next one.

Constrained by the pandemic, we will be using virtual breakout rooms (e.g Zoom) to simulate the ‘roundtables’. To ensure the quality and experience of our discussions, we have invited ‘mentors’ who are passionate about the topic with profound knowledge in their field to lead each breakout room.

The topics we will discuss at NeurIPS 2021 include: The next big thing in AI AI in finance How to develop a research idea? Do we publish too much?

Check out our previous event at ICLR 2021 https://www.roundtable-chatroom.com/ A list of mentors will be finalized soon on the homepage.

... more
Panel

How Should a Machine Learning Researcher Think About AI Ethics?

Amanda Askell · Abeba Birhane · Jesse Dodge · Casey Fiesler · Pascale N Fung · Hanna Wallach
3:00 PM - 4:00 PM

As machine learning becomes increasingly widespread in the real world, there has been a growing set of well-documented potential harms that need to be acknowledged and addressed. In particular, valid concerns about data privacy, algorithmic bias, automation risk, potential malicious uses, and more have highlighted the need for the active consideration of critical ethical issues in the field. In the light of this, there have been calls for machine learning researchers to actively consider not only the potential benefits of their research but also its potential negative societal impact, and adopt measures that enable positive trajectories to unfold while mitigating risk of harm. However, grappling with ethics is still a difficult and unfamiliar problem for many in the field. A common difficulty with assessing ethical impact is its indirectness: most papers focus on general-purpose methodologies (e.g., optimization algorithms), whereas ethical concerns are more apparent when considering downstream applications (e.g., surveillance systems). Also, real-world impact (both positive and negative) often emerges from the cumulative progress of many papers, so it is difficult to attribute the impact to an individual paper. Furthermore, regular research ethics mechanisms such as an Institutional Review Board (IRB) are not always a good fit for machine learning and problematic research practices involving extensive environmental and labor costs or inappropriate data use are so ingrained in community norms that it can be difficult to articulate where to draw the line as expectations evolve. How should machine learning researchers wrestle with these topics in their own research? In this panel, we invite the NeurIPS community to contribute questions stemming from their own research and other experiences, so that we can develop community norms around AI ethics and provide concrete guidance to individual researchers.

... more
Oral
6 Events in this session
Noam Rozen · Aditya Grover · Maximilian Nickel · Yaron Lipman
Q&A
Ran Liu · Mehdi Azabou · Max Dabagia · Chi-Heng Lin · Mohammad Gheshlaghi Azar · Keith Hengen · Michal Valko · Eva Dyer
Q&A
Q&A
Go to Event Page
Oral
4 Events in this session
Yangsibo Huang · Samyak Gupta · Zhao Song · Kai Li · Sanjeev Arora
Q&A
Frances Ding · Moritz Hardt · John Miller · Ludwig Schmidt
Q&A
Go to Event Page
Oral
6 Events in this session
Rowan Zellers · Ximing Lu · Jack Hessel · Youngjae Yu · Jae Sung Park · Jize Cao · Ali Farhadi · Yejin Choi
Q&A
Q&A
Q&A
Go to Event Page
Oral
4 Events in this session
Q&A
Zhenyu Huang · Guocheng Niu · Xiao Liu · Wenbiao Ding · Xinyan Xiao · Hua Wu · Xi Peng
Q&A
Go to Event Page
Oral
6 Events in this session
Simone Parisi · Victoria Dean · Deepak Pathak · Abhinav Gupta
Q&A
Q&A
Daniel Kumor · Junzhe Zhang · Elias Bareinboim
Q&A
Go to Event Page
Test Of Time

Online Learning for Latent Dirichlet Allocation

Matthew Hoffman · Francis Bach · David Blei
5:00 PM - 6:00 PM

This paper introduces a stochastic variational gradient based inference procedure for training Latent Dirichlet Allocation (LDA) models on very large text corpora. On the theoretical side it is shown that the training procedure converges to a local optimum and that, surprisingly, the simple stochastic gradient updates correspond to a stochastic natural gradient of the evidence lower bound (ELBO) objective. On the empirical side the authors show that for the first time LDA can be comfortably trained on text corpora of several hundreds of thousands of documents, making it a practical technique for “big data” problems. The idea has made a large impact in the ML community because it represented the first stepping stone for general stochastic gradient variational inference procedures for a much broader class of models. After this paper, there would be no good reason to ever use full batch training procedures for variational inference anymore.

... more